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Abstract: Despite being the largest freshwater lake system in the world, relatively little is known about
the sestonic microbial community structure in the Laurentian Great Lakes. The goal of this research
was to better understand this ecosystem using high-throughput sequencing of microbial communities
as a function of water depth at six locations in the westernmost Great Lakes of Superior and Michigan.
The water column was characterized by gradients in temperature, dissolved oxygen (DO), pH, and
other physicochemical parameters with depth. Mean nitrate concentrations were 32 µmol/L, with
only slight variation within and between the lakes, and with depth. Mean available phosphorus was
0.07 µmol/L, resulting in relatively large N:P ratios (97:1) indicative of P limitation. Abundances
of the phyla Actinobacteria, Bacteroidetes, Cyanobacteria, Thaumarchaeota, and Verrucomicrobia
differed significantly among the Lakes. Candidatus Nitrosopumilus was present in greater abundance
in Lake Superior compared to Lake Michigan, suggesting the importance of ammonia-oxidating
archaea in water column N cycling in Lake Superior. The Shannon diversity index was negatively
correlated with pH, temperature, and salinity, and positively correlated with DO, latitude, and N2

saturation. Results of this study suggest that DO, pH, temperature, and salinity were major drivers
shaping the community composition in the Great Lakes.

Keywords: Laurentian Great Lakes; Lake Michigan; Lake Superior; microbiome; 16S rRNA; microbial
diversity; archaea

1. Introduction

The Laurentian Great Lakes, hereafter referred to as the Great Lakes, are a series of
interconnected freshwater lakes located in North America. The Great Lakes form the largest
group of freshwater lakes on Earth, containing 21% of the volume of the world’s surface
fresh water [1]. These lakes possess sea-like characteristics, such as rolling waves, sustained
winds, strong currents, great depths, and distant horizons, and have been referred to as
inland seas [2]. As a source of water, transportation, food, and recreation, the Great Lakes
have had a major influence on the history and development of the United States and
Canada [3]. Interestingly, Lake Superior and, to a lesser extent, Lake Michigan, are known
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to have small concentrations of total phosphorus (TP), typically below 0.01 µmol/L, with
comparatively greater concentrations of nitrate and a resultant large N:P ratio [4]. This is
particularly true when compared to the 16:1 N:P “Redfield ratio” of typical marine and
oligotrophic lacustrine ecosystems.

Microbes inhabit all freshwater habitats and are one of the major drivers regulating
biogeochemical cycles of lakes. However, geologically rapid changes in ecosystem state
caused by nutrient loading through municipal waste discharges, air- and waterborne
pollution, as well as changes in climate and other anthropogenic activities have raised
serious concerns about the health of the Great Lakes [1]. This has resulted in massive
changes at all biotic levels, resulting in deterioration of water quality and the diversity
of macro flora, including aquatic animals, plants, and microflora [1,5]. As one example,
anthropogenic activities have resulted in increased surface temperatures, which can lead
to unfavorable shifts in the structure of the microbial community, including nuisance
cyanobacteria species, such as Microcystis spp. and Cylindrospermopsis spp. Investigating
and identifying the composition of the microbial communities of these lakes at different
spatial and temporal scales will enable better understanding of the microbial ecology and
help determine how significant microbial interactions respond to and influence the overall
status and trends in conditions of the Great Lakes.

It has been shown that lakes within the same geographic region can vary largely
in spatial and temporal conditions [6]. These differences are caused by differences in
environmental exchanges including runoff, outflow, and atmospheric loading, as well as
differences in physical and geochemical states that can affect structures and functions of
microbial communities and the biogeochemical processes that they mediate [7]. Microbial
communities regulate essential processes, such as nutrient cycling, which controls overall
ecological state through interactions between primary production and organic matter
processing [8]. Abundance of individual taxa relative to the numerically dominant microbial
community members can be influenced by changes in physicochemical properties [9,10].
Thus, it is particularly important to understand microbial communities throughout the
water column, particularly in deep lakes where gradients prevent continuous mixing.

In holomictic lakes, mixing of the water column, turnover, and subsequent return to
stratified conditions occurs seasonally. This phenomenon can influence structures of micro-
bial communities as a consequence of shifting environmental conditions [11–13]. Thermal
stratification of water at different temperatures and densities results in a hypolimnion
that is colder with lesser concentrations of dissolved oxygen (DO) and pH relative to
the epilimnion, and inorganic nutrients typically accumulate in the hypolimnion [14,15].
Stratification is a major disturbance that will likely affect structures of microbial commu-
nities as the lake gradually stratifies post-mixing. Results of studies have suggested that
microbial communities respond to turnover with various degrees of resilience, and some
communities may remain unaffected by the disturbance [16,17].

Mixing of lakes can also transport dissolved organic carbon (DOC) throughout the
water column [18–20], which is important because DOC plays a key role in shaping compo-
sitions of sestonic microbial communities [21,22]. Following stratification, accumulation
and remineralization of organic matter in the hypolimnion are important biogeochemical
processes [23,24]. The phyla Actinobacteria, Proteobacteria, and Bacteroidetes are glob-
ally predominant in freshwater systems [25]. However, other phyla, such as Chloroflexi,
Thaumarchaeota Marine Group I, and members of Planctomycetes also dominate the oxy-
genated hypolimnion [26–30]. Although these constituents are important components
of the lacustrine microbial food web, it is unclear how abundant they are, and their eco-
logical importance to functional metabolic diversity of the freshwater ecosystem is not
well described.

The main goal of this study was to examine the bacterial community diversity as a
function of depth in the water column at several locations roughly along a north–south
transect in Lake Michigan (LM) and Lake Superior (LS). Lakes Michigan and Superior span
nearly 600 km east to west and over 800 km north to south. Based on nutrient status, Lakes
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Michigan and Superior are generally classified as oligotrophic [4,31–33]. Both lakes stratify
seasonally, with a substantial hypolimnion developed below the thermocline. However,
these lakes have unique and contrasting physicochemical properties. The objective of
this study was to characterize the microbial community structure and diversity within
each lake and across geographically distant sampling locations to analyze temporal and
spatial variability.

2. Materials and Methods
2.1. Sampling

Samples of water were collected from LM and LS in September 2010 and May 2011
onboard the US Environmental Protection Agency (USEPA) R/V Lake Guardian. Two sam-
pling locations from LM (M028 and M041) and four sampling locations from LS (S001, S008,
S019, and S114) were included in this study (Figure 1, Table S1). This sample collection
trip was ad hoc for this research and was not part of the seasonal cruises. At all locations,
samples of water were obtained at depths of 5, 10, 20 and 50 m, and then every 50 m
to the profundal zone with 2 additional samples at 2 and 10 m from the sediment-water
interface. In total, 16 samples of water were collected across 2 sampling locations of LM
and 33 samples of water across the 4 locations in LS. The sampling locations have been
sampled in several previous studies as points of comparison [34–40]. Sampling details are
provided in supplementary data.
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2.2. Extraction, PCR Amplification, and Sequencing of DNA

DNA was extracted using the PowerSoil DNA isolation kit following the manufac-
turer’s protocol (Qiagen, Inc, Germantown, MD, USA). A standard DNA extraction protocol
from the Earth Microbiome Project (EMP) was used (http://www.earthmicrobiome.org/
protocols-and-standards/dna-extraction-protocol. The detailed methods are provided in
supplementary data.

2.3. Bioinformatics and Statistical Analysis

Reads were quality filtered and taxonomic annotations were obtained using the auto-
mated annotation pipeline at MG-RAST web server [http://metagenomics.anl.gov/]. The
best hit classification was used with a maximum e-value 1 × 10−5 cutoff and a minimum
97% identity cutoff using the Greengenes database [41,42]. The quality-filtered OTU table
was compared at the phylum and genus level, with taxa comprising ≥1% of the reads
defined as abundant. Relative abundance for each taxon was normalized by the percentages
of respective reads over the total assigned reads of the microbiome. Data corresponding to
taxonomical distributions and sample comparisons were analyzed with the STAMP ver. 2.0
software [43]. The detailed methods are provided in supplementary data. LDA-based LEfSe
approach (linear discriminant analysis effect size) was used as the statistical biomarker
tool to identify preferentially abundant taxa across LM and LS as well as among various
sampling locations at phylum and genus level [44]. LEfSe analysis was run using Calypso
web server [45] with bootstrap iterations of 30 and minimum effect size of 3.0. The detailed
methods are provided in supplementary data.

2.4. Molecular Phylogenetic Analysis for Thaumarchaeota

A 16S rRNA gene-based phylogenetic tree of closest known sequences within the
Thaumarchaeota from Lakes Michigan and Superior was constructed. The tree was based on
the aligned representative sequences for 14 OTUs from LM and 32 OTUs from LS identified
in this study. Representative sequences for Archaea were sequence matched using the
National Center for Biotechnology Information (NCBI) genome browser for each OTU. All
nucleotide sequences were aligned using ClustalW and a phylogenetic tree was constructed
using MEGA version 4.0 [46]. The method details are provided in the supplementary data.

3. Results and Discussion
3.1. Spatial Variation in Physicochemical Parameters

Great differences in aqueous geochemical parameters were observed between Lakes
Michigan and Superior (Figures 2 and S1). The LM water column had statistically signifi-
cantly (p < 0.0001) greater pH, temperature, and salinity compared to LS (Figure S1). In
general, the aqueous geochemical parameters were more similar between LM sampling
locations M028 and M041, while LS aqueous geochemical parameters varied to a greater
extent among sampling locations and depths. Greater N2 saturation and relatively compa-
rable concentrations of DO were observed among sampling locations in LS compared to
those among LM locations. In sampling location S008, samples at depths 2 m off bottom
and 10 m off bottom revealed a distinct pattern for temperature, pH, DO, and N2 saturation
compared to other depths, while no significant differences were detected in salinity among
these depths. At all locations, profiles of temperature, DO, beam transmission, and pH
clearly demonstrated stratification (Figure 2). The bottom water in LM had greater pH,
lower temperature, beam transmission, and DO compared to the surface water. In contrast,
the bottom water in LS had greater pH, concentrations of DO, and temperature, with lesser
beam transmission than the surface water. Comparing within LS, site S008 had lower
concentrations of DO and greater beam transmission compared to other locations within
the lake (Figure 2, Table S1). A Jaccard distance matrix shows the heatmap for variability
among aqueous chemical parameters across sampling locations and depths (Figure S2). In
contrast to physicochemical parameters, there was only a small variation in nutrient concen-
trations between and among lakes and with depth (Figure 3A,B). The mean concentration

http://www.earthmicrobiome.org/protocols-and-standards/dna-extraction-protocol
http://www.earthmicrobiome.org/protocols-and-standards/dna-extraction-protocol
http://metagenomics.anl.gov/
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of NO3
− was 31 ± 1 µmol/L in LM and 33 ± 2 µmol/L in LS, with no significant difference

(95% CI) observed in benthic samples (2 and 10 m off the bottom) compared to those in the
water column (Figure 3A). The only statistically significant difference in NO3

− (p < 0.001)
was observed between site S114 and locations S008 and S019. There were no statistically sig-
nificant differences in dissolved TP between and among lakes (0.066 ± 0.014 µmol/L and
0.073 ± 0.029 µmol/L in LM and LS, respectively), except for the peak in TP at 50 m depth
at site S019 (Figure 3B). These relatively large N and relatively small TP concentrations
resulted in large N:P ratios at all locations, averaging 97:1 on a molar basis (Figure 3C), a
value greater than the 16:1 Redfield ratio typically observed in marine and oligotrophic
lacustrine locations, suggestive of P limitations. Both the NO3

− and TP concentrations are
consistent with published results compiled for LS [4], with averages of 24–27 µmol/L and
0.036 µmol/L for NO3

− and dissolved TP, respectively.
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Figure 3. Nutrients in LM and LS sample locations. Shown are (A) nitrate (NO3), (B) total phosphorus
(TP), and (C) molar NO3- N:TP ratio in filtered LM and LS samples. Note that not all samples were
available for analysis. Error bars on x axis data represent the 95% uncertainty (U95), which was 2.3%
and 12.9% for nitrate and TP, respectively.

3.2. Microbial Community Structure

Sample description and sequence details are provided in Table S2. The microbiome
data for each sample was ordinated by applying principal coordinate analysis (PCoA)
techniques (Figure 4). PCoA identified distinct clusters of LM and LS samples at both the
phylum (Figure 4A) and genus (Figure 4B) levels. PC1 and PC2 explained 16.5% and 7.9%
of the total variance among the samples for phylum and genus level, respectively. A 95%
confidence interval threshold showed a group separation of the LM and LS samples both at
phylum and genus level. Separation of the LM and LS microbiomes was determined by use
of Ward’s hierarchical clustering method using Pearson’s correlation similarity (Figure S3).
The dendrogram confirmed segregation of the LM and LS samples similar to the PCoA
analysis. LM samples were similar to one another, as were LS samples. To determine the
microbial diversity structure of different sampling locations, the microbial taxa in the lakes
were analyzed by use of PCoA analysis (Figure 4C). Together, these analyses indicate that
the LM and LS have markedly different microbial community compositions.
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Figure 4. Principal coordinate analysis of the bacterial diversity at phylum level (A) and genus level
(B) in Lakes Michigan and Superior. Also shown are (C) genus level diversity in different sampling
locations in Lakes Michigan and Superior. Each dot in the graph represents a sample and color circles
indicate various sampling locations. Red circles represent Lake Michigan and light green represent
Lake Superior samples. The Lake Michigan and Lake Superior groups are well separated and could
be differentiated readily using variation of the first two components (PC1 and PC2) of the PCA plot
and noted in both axis labels. Similar direction and magnitude of clustering indicate a large positive
association among the lake types. A 95% confidence interval was used as the threshold to identify
potential outliers.
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3.3. Microbial Taxa and Diversity Indices between Lakes

Microbiomes in both Lakes Michigan and Superior were dominated by two major bac-
terial phyla: Bacteroidetes (32–44%) and unclassified bacteria (26–32%). Proteobacteria were
similar in abundance in both Lakes (8–9%) whereas Cyanobacteria and Verrucomicrobia
were more abundant in LS (13–14%) compared to LM (4–7%) (Figure 5A, Table S3). The ar-
chaeal phyla Thaumarchaeota was detected in both LM and LS (0.2–0.6%) in low abundance.
Phylum Actinobacteria was much greater in abundance in LS (3.1%) compared to LM (0.7%).
Overall, the phyla Actinobacteria, Bacteroidetes, Cyanobacteria, Thaumarchaeota, and Ver-
rucomicrobia were statistically significantly different in microbial abundance between the
lakes. To focus on more specific classification between samples, data were analyzed at
the genus level (Figure 5B, Table S4). A total of 144 genus level OTUs were identified in
LM and 118 in LS. Of these 262 OTUs, 64% (102) were shared, 26% (42) were exclusive to
LM, and 16% (10) were identified in LS only (Figure S4A–C). The top 19 genera/families,
comprising >1% abundance between lakes, are shown in Figure 5B. The Shannon diversity
index and species evenness values were greatest for LS compared to LM (Figure S5). The re-
sults of a one-way ANOVA analysis indicate that significantly (p < 0.0001) greater Shannon
diversity was observed in near bottom-water depths compared to surface-water column
sample locations (Figures 2 and S5). Some studies have suggested that anoxic hypolimnion
microbial communities are more diverse (α-diversity) than in the epilimnion [47–49], while
others have found no significant difference in diversity [30].
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era/families across Lakes Michigan and Superior. The top 20 taxa, by abundance, are shown for
clarity. Significant differences among the lakes were computed using Mann–Whitney U test. * p < 0.05,
** p < 0.001, and *** p <0.0001. The significantly different phyla/genera/families among the lakes are
shown in the figure description.

3.4. Microbial Community Structure in Different Sampling Locations

In all the sampling locations, 20–26% of the microbial community was identified as
unclassified bacteria (Figure 6A, Table S5). Among the identified bacterial phyla, Bac-
teroidetes and Cyanobacteria were more abundant (54% vs. 45%, and 6% vs. 4%, re-
spectively; p < 0.001) at sampling location M028 compared to M041 (Figure 6A, Table S5).



Microorganisms 2023, 11, 504 8 of 16

The phylum Verrucomicrobia was greater in abundance (9.6%) in sampling location M041
compared to M028 (5.8%) in LM. There were no significant differences in the phyla Acti-
nobacteria, Proteobacteria, and unclassified bacteria among these two sampling locations in
LM. The phylum Bacteroidetes (42.6%) was detected in great abundance at S001 compared
to sampling locations S008, S019, and S114. In addition, the phyla Cyanobacteria (12–18%),
Verrucomicrobia (14–16%), and Actinobacteria (2.5–4%) were significantly greater across all
sampling locations in LS compared to LM (Figure 6A, Table S5). There was no significant
difference among the phyla Proteobacteria and unclassified bacteria in all sampling loca-
tions in LS. Of particular interest, the only Archaeal phylum identified in all locations was
Thaumarchaeota, which varied on average between 0.2% total abundance in LM and 0.6% in
LS. The greatest abundance, of 1.3%, was detected at LS site S008. A genus-level analysis
provides the most in-depth details on the microbiome composition between and among
sample locations (Figure 6B, Table S6). Each sampling location revealed a characteristic site-
specific microbial profile that was readily distinguishable from other locations (Figure S6).
The genera Terrimonas and Synechococcus were abundant at specific depths across lakes,
while the genera Alistipes and Flavobacterium were predominant only at sampling locations
S008 and S001, respectively (Figure S14). Microbial diversity at phylum level across dif-
ferent depths provided further detailed description for the microbial diversity between
lakes (Figures S13 and S7A–H). At M041, Bacteroidetes abundance was lesser than that at
M028 (Figure S7F). As expected, photosynthetic Cyanobacteria were almost absent (<1%
abundance) in deep locations at 2 and 10 m off bottom compared to near-surface samples
at most sites.
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era/families across various sampling locations in Lakes Michigan and Superior. The top 22 taxa, by
abundance, are shown for clarity. Significant differences among the lake types were computed using
one-way ANOVA with Tukey’s post hoc test for multiple comparisons, *** p < 0.0001. Significantly
different phyla/genera/families among the lakes are shown in the figure description.

3.5. Distribution of Thaumarchaeota

Relative abundances of phylum Thaumarchaeota at various depths in LM and LS
sampling locations were significantly different (p < 0.0001) (Figure 7A,B). LS archaeal
sequences were more closely related to each other than to LM sequences (Figure S8). The
greatest abundance of Thaumarchaeota (1.4–1.6%) was detected in sampling location S008
in samples from near the bottom (50–200 m, 2–10 m off bottom) compared to surface
samples (1–1.4%) at 5 to 20 m depths. Sampling location S008 had the greatest abundance of
Thaumarchaeota compared to all other locations. At sampling location S114, Thaumarchaeota
abundance varied from 0.4–0.8%, and was greatest (0.8%) at the deepest site (365 m)
sampled in this study (Figure 7A,B). Prior to the discovery of ammonia-oxidizing archaea
(AOA, phylum Thaumarchaeota), oxidation of ammonia was thought to be limited to certain
lineages of Proteobacteria [50]. This discovery has dramatically increased our knowledge of
microbial nitrogen cycling in freshwater ecosystems [51–58]. The majority of AOA present
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in freshwater ecosystems belong to a specific subgroup referred to as Marine Group I.
Oxidation of ammonia produces protons that can create lower pH microenvironments and
potentially facilitate growth of AOA in the natural environments. Additionally, AOA can
also adapt to lower pH environments that might promote growth of AOA [59]. The results
from this study indicate that Thaumarchaeota are present throughout the water column in
LS at all sampling locations, in contrast to LM. Thaumarchaeota were most abundant at
location S008 and primarily at depths of 50 m and below from the surface. These sample
depths and locations also have lower temperature and pH compared to surface water,
consistent with the niche partitioning of AOA abundance.
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Figure 7. Distribution of Thaumarchaeota in the western Great Lakes. Shown are (A) relative
abundance of phylum Thaumarchaeota at different depths in Lake Michigan and Lake Superior
sampling locations, with relative abundance and sample name followed by depth shown in the x
and y axes, respectively. Horizontal dashed line represents the mean abundance within each group.
Lakes are separated by vertical black dashed lines. Samples are color coded to reflect sampling
location in both the lakes. (B) The significant differences among the sampling locations for phylum
Thaumarchaeota were computed using one-way ANOVA with Tukey’s post hoc test for multiple
comparisons. *** p < 0.0001.

3.6. Biomarker Signature Analysis (LEfSe)

LEfSe analysis can be used to analyze bacterial community data at any taxonomy level,
and in the present study, we conducted LEfSe analysis for each sampling location at both
the phylum level (Figure S9A) and genus level for each lake (Figures S9B and S10A). A
total of 6 bacterial phyla were distinct to at least 1 sampling location using the criterion of
logarithmic LDA score > 3 (Figure S9A). Notably, LDA score plots only show taxa with LDA
values > 3 for clarity. At the genus level, the top 24 enriched genera in different sampling
locations across lakes are shown (Figure S9B). Comparisons of biomarker genera across
the lakes reflected similar results to those seen in the comparison of sampling locations
(Figure S10A). Using the same LDA > 3 criterion, a total of 26 characteristic biomarker taxa
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were identified for LM and LS (Figure S10A). Based on the Log10 odds ratio, biomarker
taxa were identified; they can be used to segregate microbiomes by lake and sampling
location. A detailed description of 19 significantly different (p < 0.0001) taxa identified are
reported (Figure S10B).

3.7. Environmental Variation and Community Structure

ANOSIM between lakes and among sampling locations identified key differences
in structures of microbial communities (Figure S11A,B; ANOSIM R = 0.72, p < 0.0001).
Significant correlations (p < 0.001) were found between DO, pH, temperature, and other
variables and microbial beta diversity. Multivariate CCA was used to analyze variation
in community structure with DO, N2 saturation, pH, conductivity, salinity, temperature,
pressure, latitude, longitude, and depth. Collectively, these data explained 66.6% and
21.3% of the variation in community structure by the PC1 and PC2 principal components,
respectively (p < 0.05) (Figure 8A,B). This proportion is relatively high compared to those
reported in other studies of freshwater lakes [60,61]. Freshwater aquatic microbiomes are
greatly influenced and significantly correlated with DO [62], and this was observed in this
study since concentrations of DO were significantly (p < 0.001) related to compositions of
microbial communities (Figure 8A, Table S7). Multiple taxonomic groups were statistically
significantly correlated with environmental variables (Table S7). Specifically, members
of the phylum Thaumarchaeota were positively correlated with latitude, beam transmis-
sion, and surface irradiance, and negatively correlated with pH, salinity, conductivity,
and fluorescence. Proteobacteria were negatively correlated with DO while Bacteroidetes
were positively correlated with pH, salinity, conductivity, and temperature, and negatively
related to latitude, N2 saturation, beam transmission, and surface irradiance. Members
of Actinobacteria, Cyanobacteria, and Verrucomicrobia were negatively correlated to pH,
salinity, conductivity, and temperature, and positively correlated to latitude and N2 sat-
uration. The photosynthetic Cyanobacteria were positively correlated with DO, while
Planctomycetes were negatively correlated with DO. Unclassified bacteria were positively
correlated with salinity, conductivity, and temperature, and negatively correlated with N2
saturation. Other OTUs related to unclassified Sphingobacteriaceae (Chitinophaga) contain
aerobic microbial taxa [63] and are common in the Great Lakes [64]. Members of the phyla
Proteobacteria and Planctomycetes were inversely correlated to DO. While correlations
with pH suggest that preferred environmental pH can differ for individual genus level OTU,
the data are too few to make generalizations across most taxonomic groups. However, there
were groups of bacteria that were negatively correlated with pH, including Actinobacteria,
Cyanobacteria, Verrucomicrobia, and Thaumarchaeota (Figure 9), while Bacteroidetes and
unclassified bacteria were positively correlated with pH (Figure 10). Many others, including
Proteobacteria, Firmicutes, and Planctomycetes, were not correlated with pH. These taxa
may have been constrained by other factors (DO, temperature, or salinity), which can limit
the impact of pH as a constraining variable. As pH generally decreases with increasing
depth within the water column, these taxa may be more abundant near the water surface.
The Shannon diversity index was also negatively correlated with pH, temperature, and
salinity and positively correlated with DO, N2 saturation, and latitude (Figure 10).
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4. Conclusions

The Laurentian Great Lakes are unique, interconnected aquatic ecosystems for in-
vestigating fundamental questions on microbial evolution and community structure in a
natural freshwater system. Great lakes with ocean-like physical processes (strong currents
and upwelling) provide a unique opportunity to study key principles that maintain these
microbial communities in the freshwater ecosystems. Although they constitute a critical
component of aquatic ecosystems, microbial communities of great lakes have been far less
studied compared to small lake and marine ecosystems. Freshwater ecosystems along the
temporal and spatial scales have the potential to uncover diversity patterns that are not
apparent in the traditional studies of either bacteria or archaea in single freshwater lake
systems. Our objectives were to characterize microbial community patterns across lakes,
sampling depths, and locations to explore the physicochemical variables and interactions
that underlie these patterns. Our study further raises new questions on how and which
metabolic processes shape this wide genome diversity across different aquatic ecosystems.
This study provides an extensive overview of the sestonic microbial community struc-
ture in Lakes Michigan and Superior, down to some of the deepest depths in the water
column sampled. Microbial diversity analysis revealed that LM sampling locations are
more similar to each other yet represent a distinct microbiome signature. Similarly, LS
sampling locations represent a site-specific microbial structure and Thaumarchaeota was
present across all depths but greatly abundant in sampling location S008. The two lakes are
greatly different from each other in physicochemical variables, but surprisingly similar in
nutrient concentrations of N and P. Diversity index analysis identified that the Shannon
diversity index was negatively correlated with pH, temperature, and salinity, but positively
correlated with DO, latitude, and N2 saturation. In general, LS exhibited a greater diversity
index at all sampling locations and depths compared to locations in LM, with DO, pH, tem-
perature, and salinity being the most significant drivers in shaping the microbial dynamics
and composition.

Results of this study have highlighted the findings that the microbial communities
within DO, pH, and temperature-stratified lakes are greatly different from each other
compared to communities within lakes that do not chemically stratify. Surprisingly, these
differences do not appear to be influenced as strongly by N and P, although both nutri-
ents are present in small concentrations relative to most mid-latitude lacustrine systems.
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Correlations of individual microbial phyla and OTUs with DO, pH, salinity, latitude, and
temperature relate to the metabolic and functional capabilities of these microbial taxonomic
groups. This also suggests that lake stratification and environmental variables unique to
LM and LS may influence the adaptation and abundance of some microbial taxa more
strongly than others. Such adaptation may play a role in the abundance of Thaumarchaeota
in LS compared to LM. The strong correlation of Thaumarchaeota with pH in LS suggests the
need to investigate the impacts of acidification. A finding that more acidic pH promotes
the growth of AOA could potentially influence the ecosystem processes, such as ammonia
oxidation, that are carried out by these taxa. This is further supported by phylogenetic
analysis of archaeal 16S rRNA, which revealed that the archaea of LS are members of the
ammonia-oxidizing Group I.1a Thaumarchaeota that are most closely related to Candidatus
Nitrosopumilus sp. NM25. These AOA are distinct from the AOA in LM’s water column.
Pearson correlations and canonical correspondence analysis (CCA) showed that the differ-
ences in abundance and diversity of AOA are likely related to the sampling locations and,
thereby, to the different trophic states of both lakes.

Results of this study emphasize the importance of sampling the entire water column
from surface to near-bottom depths in lakes. Distinct physical and chemical attributes
among lakes suggest the potential impact of lake mixing and stratification as a disturbance
to microbial communities. Seasonal variations make the water column thermally stratified,
and development of vertical structure in depth profiles of nutrients, and other lake physic-
ochemical variables analyzed in this study, significantly correlate with microbial diversity
at various depths and locations. Within temperate freshwater lacustrine systems, these
sestonic changes could ultimately influence microbial community functional diversity and
biogeochemical processes. Our findings reveal that the LM and LS microbial diversity
is composed of similar microbial taxa shared across these lakes. However, they vary in
abundance and community structure based on sampling depth and location in each lake. At
the same time, some taxa show very strong enrichment only in certain sampling locations,
such as Synechococcus and Thaumarchaeota in LS sampling stations, suggesting a critical role
of selection in shaping these communities. Similarly, near the bottom, samples have lower
temperature and pH compared to surface water, consistent with the niche partitioning of
ammonia-oxidizing archaea abundance in LS. Of specific interest, our findings highlight
a highly underexplored freshwater habitat that may foster novel metabolic interactions
yet to be discovered. The temporal and spatial diversity patterns of surface-water micro-
bial communities were relatively invariant compared to bottom-water communities that
typically had great divergence among depths. This provides further evidence that lake
stratification is greatly important in shaping microbial communities across both lakes. Our
results provide a characteristic site-specific microbial profile that was readily distinguish-
able from other locations, highlighting the need to study how microbial evolution and
selection shapes the microbial diversity across these extreme water ecosystems.
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