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Abstract: The impact of climate change on biodiversity has been the subject of numerous research in
recent years. The multiple elements of climate change are expected to affect all levels of biodiversity,
including microorganisms. The common worldwide fungus Fusarium oxysporum colonizes plant roots
as well as soil and several other substrates. It causes predominant vascular wilt disease in different
strategic crops such as banana, tomato, palm, and even cotton, thereby leading to severe losses.
So, a robust maximum entropy algorithm was implemented in the well-known modeling program
Maxent to forecast the current and future global distribution of F. oxysporum under two representative
concentration pathways (RCPs 2.6 and 8.5) for 2050 and 2070. The Maxent model was calibrated
using 1885 occurrence points. The resulting models were fit with AUC and TSS values equal to 0.9
(±0.001) and 0.7, respectively. Increasing temperatures due to global warming caused differences in
habitat suitability between the current and future distributions of F. oxysporum, especially in Europe.
The most effective parameter of this fungus distribution was the annual mean temperature (Bio 1);
the two-dimensional niche analysis indicated that the fungus has a wide precipitation range because
it can live in both dry and rainy habitats as well as a range of temperatures in which it can live to
certain limits. The predicted shifts should act as an alarm sign for decision makers, particularly in
countries that depend on such staple crops harmed by the fungus.

Keywords: maxent; species distribution modeling; Fusarium oxysporum; climate change

1. Introduction

Nowadays, it is commonly acknowledged that the greatest threat facing humanity
today is climate change [1]. In fact, according to a recent report from the Intergovernmental
Panel on Climate Change (IPCC), the situation has worsened, and 3.3 billion people on
Earth are now considered to be highly vulnerable to climate change [2]. Additionally,
the report noted that the current unsustainable development patterns are increasing the
exposure of ecosystems and people to climate hazards [2]. According to the IPCC, the global
temperature is expected to rise by 1.8 to 4 ◦C by the end of the 21st century [2]. Temperature
changes have already become apparent; during the past century, a temperature increase
1 ◦C quicker than the average rate of global warming was recorded [3].

Microbes play important roles in climate change [3]. They produce and use carbon
dioxide (CO2), methane (CH4), and nitrous oxide (NO), which are the three main gases that
account for 98% of the increased warming (N2O) [1]. Although microorganisms produce
these gases as a byproduct of natural processes, some of the recent increases in these gases
can be attributed to modifications in human behavior that provide germs with easier access
to the carbon and nitrogen that they use to produce these three products [1].
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Our knowledge of how climate change impacts soil microorganisms and how they
govern Earth’s temperature is quite limited even though soil microbes play crucial roles in
maintaining the turnover of soil organic matter (SOM), which is the largest organic carbon
pool in the terrestrial biosphere [4]. Several topsoil-based studies showed that climate
warming causes a divergent succession of grassland microbial communities, accelerates
microbial temporal scaling, decreases microbial diversity, increases network complexity and
stability, promotes soil respiration and SOM decomposition, lowers respiratory temperature
sensitivity, and has no impact on soil carbon storage [5]. Although these fundamental
aspects have been found, it is unclear whether these experimental findings may be applied
generally to various terrestrial biomes and over a longer ecological time [6]. Contrarily,
the topic of microbes is rarely brought up when discussing climate change, particularly its
impact on these species [7]. One of these microbes is the genus Fusarium.

One of the most economically significant genera of fungal plant diseases is Fusarium,
which results in considerable crop losses and mycotoxin contamination of grain on a
global scale [8]. Additionally, some species can infect humans and other animals with
mycoses [8]. There are numerous species of Fusarium, many of which are responsible
for a variety of plant diseases that harm various crops, including important food and
fiber crops [9]. As primary or secondary invaders, Fusarium is a filamentous fungus that
produces thread-like hyphae that allow it to ramify through host tissues and penetrate
plant surfaces [10]. Mycotoxins, which are harmful secondary metabolites that are
produced by certain Fusarium species, spread from the hyphae into the substrate around
them such as grains or other infected tissues [11].

Fusarium oxysporum (F. oxysporum) is considered the best-known soil-borne plant
pathogen [12]. It encompasses more than 100 host-specific strains (formae speciales), many
of which have global distributions [13]. The formae specialis of F. oxysporum have caused
outbreaks of vascular wilt diseases in economically important crops; these diseases include
Fusarium wilt of cotton caused by (F. oxysporum f. sp. vasinfectum), fusarium wilt of banana
caused by (F. oxysporum f. sp. cubense), Fusarium wilt of tomato caused by (F. oxysporum f. sp.
lycopersici), and fusarium wilt of palm caused by (F. oxysporum f. sp. albedinis) [14–17].
Despite the enormous impact of F. oxysporum, little is known about its biogeography in
connection to climate [17].

A very important area of research currently is predicting how biodiversity will react
to climate change [18]. Predictions are crucial in warning scientists and decision makers of
potential threats in the future, supporting the link between biological changes and climate
change, and helping to design proactive policies to lessen the effects of climate change
on biodiversity [19]. A technique for predicting and describing the precise niche of each
species is called species distribution modeling (SDM) [20]. The presence-only data and
presumptive environmental variables can be used to do this [21]. Popular techniques
for estimating the present and future distribution of a specific species under various
climate change scenarios include CLIMEX, GARP, HABITAT, and Maxent [22,23], the most
effective and accurate of which is Maxent (which uses the maximum entropy model) [24,25].
Estimates of the effects of climate change on various fungus species are made using Maxent
modeling [26]. Hence, the present study aimed to predict the global current and future
distribution of Fusarium oxysporum using geographic information system (GIS) data and
bioclimatic covariates.

2. Materials and Methods
2.1. Occurrence Records for F. oxysporum

The occurrence data for F. oxysporum were collected from different digital databases
including the Global Biological Information Facility (GBIF.org; https://doi.org/10.15468
/dl.zekau6 (accessed on 19 October 2022)). The occurrence data were 1885 georeferenced
points (Table S1). Three major filtration steps were conducted using the data; these included
removing duplicate data, cleaning records without latitudes and longitudes, and finally
the spatial rarefication of points by distances [27,28]. The final records were converted
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to comma-delimited (CSV) files and utilized to predict the current and future global
distribution of F. oxysporum (Figure 1).
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Figure 1. Distribution of collected records of F. oxysporum.

2.2. Climatological Data

The WorldClim global climate database was used to derive a total of 19 bioclimate
variables (Table 1) with a spatial resolution of 2.5 arc minutes or 5 km2 at the equator
(accessed December 2021). For the current bioclimate data, 15 bioclimate covariates were
converted to ASCII format using ArcGIS v10.7. Bioclimatic layers 8–9 and 18–19 were
omitted due to known spatial artifacts [28,29]. The Pearson correlation coefficient was
used to reduce the multicollinearity between the bioclimate variables to a value equal
to (|r| ≥ 0.8) (Tables S2 and S3) [27–29]. This coefficient prevented correlations between
covariates through a feature of the SDM tool (Universal Tool; Explore Climate Data; Re-
move High Correlated Variable) in ArcGIS v10.7 [30]. Finally, five bioclimatic covariates
were selected for further analysis. For future predictions, parallel datasets of bioclimate
covariates were downloaded for two representative concentration pathways (RCP 2.6
and 8.5) covering the two time periods of 2050 and 2070 (www.worldclim.org (accessed
on 18 November 2021). These future bioclimatic data layers were also converted to ASCII
format via ArcGIS v10.7 and used for future projections in Maxent [31–33].

2.3. Modeling and Data Analysis

Using maximum entropy modeling methods implemented in Maxent (version 3.4.1),
the habitat distribution of F. oxysporum under current and future climate change scenarios
was simulated. In addition, some simple analyses were performed in DIVA-GIS soft-
ware V7.5 including the envelope test between Bio 1 and Bio 12 and the histogram of
annual mean temperature [32]. Both used presence-only data to predict the species distri-
butions at pseudo-absence points [31]. The following settings were used for the Maxent
model: output format = logistic, random test percentage = 25, regularization multiplier = 1,
maximum iterations = 10,000, convergence threshold = 0.0001, and maximum number of
background points (as pseudo-absent points) = 10,000. The model used 75% of the event
records for training the model and 25% of the records for testing. Maxent is a general model
for estimating species distributions using only occurrence data, and it works well even for
small samples [33,34].

www.worldclim.org
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Table 1. Environmental variables that were used to predict the current habitat suitability distribution
of F. oxysporum.

Variables Description

Bio 1 Annual mean temperature
Bio 2 Mean diurnal range (mean of monthly max temp–min temp)
Bio 3 Isothermality (bio2/bio7 ) × 100
Bio 4 Temperature seasonality (standard deviation × 100)
Bio 5 Max temperature of warmest month
Bio 6 Min temperature of coldest month
Bio 7 Temperature annual range
Bio 8 Mean temperature of wettest quarter
Bio 9 Mean temperature of driest quarter

Bio 10 Mean temperature of warmest quarter
Bio 11 Mean temperature of coldest quarter
Bio 12 Annual precipitation
Bio 13 Precipitation of wettest month
Bio 14 Precipitation of driest month
Bio 15 Precipitation seasonality (coefficient of variation)
Bio 16 Precipitation of wettest quarter
Bio 17 Precipitation of driest quarter
Bio 18 Precipitation of warmest quarter
Bio 19 Precipitation of coldest quarter

To assess the possible range of F. oxysporum, the model was run using five bioclimate
variables and 1885 presence-only sites. The F. oxysporum occurrence records were divided
into two semi-independent groups that included 75% and 25% of the data used for model
training and testing, respectively [27]. To assess the error and compare the consistency of
the models, the models were fitted to the entire data set using 10-fold cross-validation [35].
The area under the curve (AUC) was used to assess the model’s performance. The AUC can
range from 0.5 to 1.0; values above 0.9 indicate a good performance [36]. The jackknife test
was used to discover bioclimatic variables important in assessing the potential spread of
target species. In addition, the predicted model accuracy was estimated using the true skill
statistic (TSS) [37]. The TSS value can vary from −1 to 1; positive values close to 1 indicate a
strong association between the predictive model and the distribution, and negative values
indicate a weak association [30]. Finally, all methodological steps were established with
the assistance of members of the Research Lab for Biogeography and Wildlife Parasitology
(RLBWP), Department of Entomology, Faculty of Science, Ain Shams University.

3. Results
3.1. Model Accuracy and Environmental Variables’ Effects

The Maxent model accurately predicted the potential distribution of F. oxysporum with
a mean test AUC value of 0.90. This result showed how the produced maps were nearly
reliable. In addition, the model’s capabilities were tested using the true skill statistic (TSS),
which showed a high-quality map creation with a score of 0.7. In general, TSS values
above 0.5 are considered acceptable. Bio 1 (annual mean temperature), Bio 2 (mean diurnal
range (mean of monthly max temp–min temp)), Bio 7 (temperature annual range), Bio 12
(annual precipitation), and Bio 14 (precipitation of driest month) were the most relevant
bioclimatic variables in predicting F. oxysporum habitat suitability (Figure 2a). These five
variables were the strongest predictors of F. oxysporum distribution with 75% of the variance.
The jackknife results showed that Bio 1 had a strong predictive power (Figure 2a). The
analysis of the distribution range of records agonist Bio 1 showed that most of the studied
records throughout the world occurred between 14.5 and 21.5 ◦C (Figure 2b). For the
most efficient bioclimatic variables used to study this fungus, Bio 1 and Bio 12 were the
most important parameters used in the envelope test to generate a two-dimensional niche
for F. oxysporum (Figure 2c). The two-dimensional niche analysis usually provided an
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idea regarding the species habitat preference, especially when using Bio 1 and Bio 12. In
the generated graph, the green points represent the points within the range limit of the
19 bioclimatic variables, while the red points are divided into two types: (1) those inside the
blue rectangle represents the points within the range limit of the selected variables (Bio 1
and Bio 12) but that had one or more bioclimatic variables that lay outside the species limit;
and (2) Those outside the blue rectangle already occurred outside the species range either
for the selected variable or for any of the other bioclimatic variables.

1 

 

 

Figure 2. (a) The jackknife test of the most important variables; (b) analysis of the distribution range
of records agonist Bio 1; (c) two-dimensional niche analysis using an envelope test between Bio 1 and
Bio 12.

3.2. Current Prediction Map of F. oxysporum Status

The current prediction map was a reflection of the real status of the fungus with a
cosmopolitan distribution. Europe showed the most suitable habitat for this species with
medium, high, and very high suitabilities, especially throughout most of its coasts on the
Mediterranean and the Atlantic Ocean. The eastern and south coasts of Australia also
represented very suitable habitats for F. oxysporum; this suitability decreased when going to
the heart of the desert part of the continent. New Zealand represented a highly appropriate
habitat for this fungus as well. The eastern coasts of North and South America represented
areas with high to very high suitabilities for this fungus. All of Mexico in North America
is at risk for this fungus, while the Amazon basin of northern South America showed a
low risk for this fungus. Africa showed medium, high, and very high probabilities of
F. oxysporum concentrated especially in the southern to sub-Saharan regions. In addition,
some of Africa’s Mediterranean coasts showed a suitability for this fungus. Madagascar
showed to be a very good home for this fungus. A low to very low habitat suitability
dominated most of Asia, but the southern parts showed high and very high suitabilities,
especially in India and China (Figure 3).
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3.3. Prediction of F. oxysporum Status under Different Climate Change Scenarios

The Maxent model of the potential distribution of F. oxysporum under the future climate
change scenarios of RCP 2.6 and RCP 8.5 for 2050 and 2070 is shown in Figure 4. In Africa, the
predictive models ensured a very high fitness in the sub-Saharan region, especially for the
eastern and southern parts, but many areas in western Africa lost or showed some reduction in
their suitability. Madagascar also showed some reduction in such habitat fitness due to global
warming in all scenarios (Figure 4a–c). In Asia, Maxent models of future periods predicted
significant changes in F. oxysporum habitat fitness that would cause many parts of Southeast
Asia to become suitable for this fungus, especially with a high emission of greenhouse gases
in 2050 and 2070. In Europe, the West showed a moderate to high fitness in future projections
(Figure 4). In North America, the southern coast of the United States showed a moderate to
low suitability; while in South America, the north, including Colombia, Venezuela, Ecuador,
and major parts of Brazil and Bolivia, showed a high to very high suitability. (Figure 4). Finally,
Australia showed an increase in habitat fitness in many regions, while the models predicting
no future changes in New Zealand (Figure 4).
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The calibration maps of the four climate change scenarios indicated a high risk of
invasions of F. oxysporum throughout different parts of the world, especially in Europe,
where the fungus will dominate the continent in the worthiest scenario in 2070. On the other
hand, this species lost a very small range of its habitat that only showed some effectiveness
in Africa (Figure 5).
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4. Discussion

The composition and functioning of the terrestrial microbial community are impacted
by climate change both directly and indirectly [38]. Structures of the microbial population
change when the temperature rises, and methanogenesis, fermentation, and other processes
speed up as well [39]. Enzyme activity and microbiological physiological characteristics
are directly influenced by temperature [40]. The ability of soil microbes to utilize carbon
influences the response of soil carbon to climate change [41]. When microorganisms are
exposed to new environmental extremes, the abundance and function of microbial commu-
nities are affected; hence, environmental change or global warming/climatic perturbation
has an impact on microbial ecology, ecosystem structure, and function [42].

The majority of the challenges in predicting how human economic activity, climate
change, and/or pollution would affect microbial populations result from an inadequate
understanding of the specific roles that microorganisms perform at various biological
levels [43]. Because the vast majority of microorganisms are unable to grow in either liquid
or solid cultures in the laboratory, for a very long time our understanding of the diversity
of microbes in both terrestrial and aquatic habitats was greatly understated [44].

In many regions of the world, native soils have contained Fusarium oxysporum [45].
Plant roots and nonliving organic debris have yielded isolates, which indicated that these
substrates serve as supplies for cellular development and reproduction [45]. Fusarium can
destroy agricultural yields and taint plant products with mycotoxins, which has substantial
socio-economic effects and ramifications for global trade on food security [46]. The effects
differ from nation to nation depending on the main crops, agronomic techniques, and
climatic circumstances, which determine the types of fungi that can be found in a farming
system and how active they are [47]. The current investigation represented a step in the
direction of a better understanding of the habitat needs of F. oxysporum and how it will
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react to climate change in light of the global spread of this pathogen and the vascular wilts
it causes.

In 2014, the CLIMX model was used to predict broad-scale shifts of F. oxysporum in
European, the Middle East, and North Africa based only on temperature covariates under
the shadow of climate change [17]. Our study used the robust predictive power of Maxent
as a modeling tool. Our Maxent model predicted the habitat suitability of F. oxysporum
with a high degree of accuracy by showing AUC values equal to 0.9 which suggested a
close connection between the model and the species’ ecology. Moreover, the TSS value of
0.7 further demonstrated complete agreement between the model’s predictions and the
fungus dispersal.

The jackknife test illustrated that Bio 1 (annual mean temperature), Bio 7 (temperature
annual range), and Bio 12 (annual precipitation) contributed 74, 11.9, and 10% respectively,
to the F. oxysporum distribution. Along with Bio 2 (mean diurnal range (mean of monthly
max temp–min temp)) and Bio 14 (precipitation of driest month), they were the most
relevant bioclimatic variables for predicting F. oxysporum habitat suitability (Figure 2a).
Additionally, the two-dimensional niche analysis verified temperature as a significant
covariate that influenced F. oxysporum distribution (Figure 2c).

The current prediction maps for F. oxysporum indicated a global distribution with very
few areas that were free from this fungus; in particular, in central Africa, where the temper-
ature is always beyond the optimum range in which the fungus can live (25–30 ◦C) [3,14].
Fusarium wilt of bananas (Panama disease), which is caused by F. oxysporum f. sp. cubense,
indicates the cosmopolitan importance of vascular wilts [47]. Bananas are considered the
world’s most important fruit in terms of both production volume and trade, and they are
among the world’s top 10 staple foods [48]. Globally, thousands of hectares of bananas
are produced by several countries (including South Africa), in Central America, and on
coasts of the Mediterranean and the Atlantic Ocean in Europe, China, India, Australia,
and New Zealand. This represents an annual production of 36 million tons worth approx-
imately USD 10 billion that is under threat [49]. Our current predictive models assured
that these countries showed high and very high suitability for F. oxysporum (Figure 3).
Tomato (Lycopersicon esculentum), another widely known fruit, is vulnerable to infections
with F. oxysporum f. sp. lycopersici, which causes severe losses in the economy of such an
important crop.

The majority of damages from global warming under the CO2 scenario are fictitious
harms to contemporary society [50]. Future society will be altered in terms of population,
economic scale, structure, technology, and socio-cultural and political issues, and will
have experienced the true effects of global warming [50]. These modifications will impact
society’s susceptibility to global warming and its potential for adaptation [51]. However,
the duration of the effects of global warming makes it impossible to foresee such future
events with any certainty, let alone accuracy [51]. As a result, scenarios are employed that
do not purport to explain the most likely future but rather describe possible futures [52].
Due to the utilization of these hypothetical situations, damage assessments related to global
warming are contingent and implicit in socio-economic scenarios [52].

Our future predictive models indicated that the F. oxysporum will have a wider distri-
bution range. Three GCMs under two RCPs (2.6 and 8.5) for 2050 and 2070 were used to
evaluate the global future status of F. oxysporum (Figure 4). The calibration maps of gains
and losses assured an increase in suitability in different parts of Eastern Europe and North
America (Figure 5). On the other hand, maps illustrated a loss in habitat suitability for
F. oxysporum in China, South Africa, South America, and eastern parts of Australia. These
predictive results could nourish the economy of staple crops such as bananas, tomatoes,
and even cotton affected by F. oxysporum infections. The current work represents a modest
advancement in our comprehension of the biogeography of this fungus and its habitat.
Several groups of free-living microorganisms require worldwide study that utilizes data
science and geographic information system (GIS) approaches to assist decision makers in
preventing medical, veterinary, and agricultural diseases.
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Our research helps to improve understanding of the F. oxysporum current and future
status around the world. Using only climatological factors, the models developed in
this study examined the effect of climate change on the current and future distribution
of the GWM. Several papers [22,27,40] used only climate factors to achieve this goal.
Other environmental variables, such as human population, land cover, vegetation index,
and host plants distribution, could contribute to their improvement. Sure, such factors
could do effects on the distribution shape However, the scarcity of future data on these
variables may limit their usefulness in studying the impact of climate change on current
distribution model.

5. Conclusions

The current study form step in a long way of understanding the effect of climate change
on microorganisms. As an interesting plant pathogen, F. oxysporum has cosmopolitan
distribution as it found on all continents except Antarctica. So, it form a hot biological
unite for studying climate change effects. The primitive modeling methods were used
to predict how the global warming will change its distribution using CLIMX model, but
through this work Maxent entropy algorithm implemented in up-to-date Maxent model
is used to generate several prediction maps for this serious fungi either for current or
future situations under different predicted scenarios. The result indicates that the extreme
condition of cold and hot represent a limitation for this fungus which already has a wide
range of growing temperature from 7–27 ◦C according to envelope test that done through
this study. The future situation of this fungi indicates that the tropical areas with very
high temperatures will loss this fungus. While the rise of temperature to certain limit in
Europe will increase the habitat suitability and consequently the economic impact of this
pathogen on agriculture sector in the continent. The result like that give an idea about
how the changing climate will reshape our world that we live in and encourage dissection
makers to decrease the green house gases emission to avoid such unsafe future.
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