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Abstract: Bacteroides fragilis is a commonly investigated commensal bacterium for its protective role
in host diseases. Here, we aimed to develop a reproducible antibiotic-based model for conditioning
the gut microbiota and engrafting B. fragilis into a conventional murine host. Initially, we selected
different combinations of antibiotics, including metronidazole, imipenem, and clindamycin, and
investigated their efficacy in depleting the mouse Bacteroides population. We performed 16S rRNA
sequencing of DNA isolated from fecal samples at different time points. The α-diversity was similar
in mice treated with metronidazole (MET) and differed only at weeks 1 (p = 0.001) and 3 (p = 0.009)
during metronidazole/imipenem (MI) treatment. Bacteroides compositions, during the MET and
MI exposures, were similar to the pre-antibiotic exposure states. Clindamycin supplementation
added to MET or MI regimens eliminated the Bacteroides population. We next repeated metron-
idazole/clindamycin (MC) treatment in two additional independent experiments, followed by a
B. fragilis transplant. MC consistently and reproducibly eliminated the Bacteroides population. The
depleted Bacteroides did not recover in a convalescence period of six weeks post-MC treatment. Finally,
B. fragilis was enriched for ten days following engraftment into Bacteroides-depleted mice. Our model
has potential use in gut microbiota studies that selectively investigate Bacteroides’ role in diseases
of interest.

Keywords: gut microbiota; metronidazole; Bacteroides fragilis; imipenem; clindamycin

1. Introduction

The gut microbiota plays an essential role in shaping and modulating host physio-
logical and immune processes at proximal and peripheral sites [1–6]. Our knowledge of
the community dynamics and diversity of commensal microbes residing in the gut (gut
microbiota) has increased in the last two decades, especially with the development of
culture-independent techniques. It is estimated that the gut microbiota consists of roughly
100 trillion microbes, outnumbering host cells [7,8].

The gut microbiota is a highly dynamic ecosystem influenced by age, host genotype,
and lifestyle [9]. Perturbations to the gut microbiota have been linked to an increased
risk of inflammatory bowel disease, diabetes, obesity, colon cancer, and Parkinson’s dis-
ease [10–23]. Recent studies have also linked alterations in the gut microbiota composition
to compromised host immune responses during Mycobacterium tuberculosis infection, lead-
ing to increased susceptibility [4,6,24,25]. As a result, there is a growing interest in under-
standing how the microbiota interacts with the host (as a whole or as discrete members),
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which may aid in developing microbiota-targeted therapeutics for several human diseases.
Therefore, establishing animal models for testing with distinct microbiota is crucial for
distinguishing causal from correlative effects in disease.

The major gut microbiota phyla include Bacteroidetes, Firmicutes, Proteobacteria, Acti-
nobacteria, Fusobacteria, and Verrucomicrobia. The most abundant are the Firmicutes and
Bacteroidetes [26,27]. Bacteroides belonging to the Bacteroidetes phylum constitute a sub-
stantial proportion of the microbiota composition and are predominantly anaerobic [28,29].
More than twenty species have been classified within the Bacteroides genus; however,
Bacteroides fragilis is a commonly studied gut commensal for its potential immunomodula-
tory properties and protective role in different diseases [28,30–34].

Indeed, studies have shown that B. fragilis, together with its capsular polysaccharide-
A molecule (PSA), can induce host pro-and anti-inflammatory processes and cytokines
such as interferon (IFN)-γ, interleukin (IL)-10, and IFN-β [35–37]. Induction of host im-
mune response and cytokines by B. fragilis occurs via antigen-presenting cell (APC)-major
histocompatibility complex (MHCII) presentation of the processed fragment of PSA to
CD4 T-cells similar to proteins, a characteristic unique to PSA as well as other zwitteri-
onic polysaccharides [38,39]. Accordingly, many studies have reported the protective role
of B. fragilis or PSA in diseases such as encephalomyelitis [40,41], pulmonary inflamma-
tion [36], viral infection [34,42], colitis [43], colorectal cancer [31,32], and asthma [44] in
different mouse models.

Germ-free (GF) and antibiotic-treated conventionally colonized wild-type mice are
valuable tools for investigating host-microbiota relationships. Generally, GF mice models
are considered to be the gold standard in studying the contribution of single microbiota
species during host disease. As an advantage, GF mice allow for the generation of gnotobi-
otic animals colonized solely by the target microbe of interest, enabling the investigation
of specific gut microbiota-disease relationships in the complete absence of other gut mi-
crobes. However, GF mouse models are expensive and require specialized skills and
facilities, limiting their use, especially in resource-constrained settings. Aside from the cost
of maintaining GF animals, there are other inherent limitations to consider in their use.
For example, the mucosal immune system of GF mice is underdeveloped, containing few
immunoglobulin-A-secreting plasma cells, small lymphoid follicles, and reduced submu-
cosal T-cell populations [45]. Therefore, specific microbiota-induced immune responses
in these animals may be naturally defective or skewed. In addition, microbiota-initiated
immune responses in GF mice may not precisely represent conventional systems, given
that under normal circumstances, a host is never totally sterile. Thus, complementary
conventional mouse models that leverage antibiotic manipulation of the gut microbiota
are needed.

Whole or selective manipulation of the gut microbiota with antibiotics has remained a
popular, cheap, and viable technique for studying the gut microbiota’s role in disease. Still,
reproducibility in many antibiotic models is challenging and not unexpected, considering
the variability in the choice of antibiotics, spectrum, duration of treatment, and the delivery
method used in different studies. Here, we aimed to develop a reproducible antibiotic-based
model for conditioning the gut microbiota and engrafting B. fragilis into a conventional
wild-type murine host, which could be valuable for investigating the role of Bacteroides in
diseases of interest.

2. Materials and Methods
2.1. Mice

Eight-week-old inbred female C57BL/6J mice, which are conventionally colonized by
gut microbiota, were used in the study. The mice were fed an autoclaved diet and water
and were housed under pathogen-free conditions in temperature- and humidity-controlled
cages on a 12 h light-dark cycle in the Animal Biosafety Level 3 (ABSL3) Laboratory at
Tygerberg Campus, Stellenbosch University. The experimental protocol was approved by
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the Stellenbosch University Animal Care and Use Ethics Committee (ACU-2019-8993 and
ACU-2020-15458).

2.2. Antibiotic Treatment

We initially treated four different groups of mice (4–5 per group) separately with ei-
ther metronidazole (5 mg/mL) or a combination of metronidazole (5 mg/mL) + clindamycin
(10 mg/mL), metronidazole (5 mg/mL) + imipenem (5 mg/mL), or metronidazole
(5 mg/mL) + imipenem (5 mg/mL) + clindamycin (10 mg/mL) (Sigma Aldrich, USA)
(Figure 1A). All mice received a daily dose of 200 µL of antibiotic preparations via the
oral gavage for four weeks. The metronidazole (5 mg/mL) + clindamycin (10 mg/mL)
treatment was repeated in two additional independent experiments using different sets of
mice (Figure 1B,C). Fresh antibiotics were prepared at every 3-day interval.
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Figure 1. Experimental design for the different antibiotics’ treatment and B. fragilis engraftment
(A) first experiment with four different groups of mice treated with metronidazole, metronidazole +
imipenem, metronidazole + clindamycin, and metronidazole + imipenem + clindamycin, respectively
(B) metronidazole + clindamycin repeated treatment in an independent experiment with conva-
lescence timepoint extended to six weeks (C) metronidazole + clindamycin treatment followed by
Bacteroides fragilis inoculation. n = 4–5 mice/group in each experiment.
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2.3. Bacteroides Fragilis Strain and Engraftment into Antibiotic-Treated Mice

We obtained Bacteroides fragilis NCTC 9343 from the National Collection of Type
Cultures (London, UK). The bacterium was reactivated following the manufacturer’s
protocol. B. fragilis was grown in Brain Heart Infusion (BHI) broth (Sigma Aldrich, St. Louis,
MO, USA) and used for transplantation in the antibiotics-treated mice. The culture was
incubated anaerobically at 37 ◦C for 24 h [34]. A 5 × 107 CFU/mL culture suspension
of B. fragilis was centrifuged at 3000× g for 15 min. Bacterial pellets were resuspended
in phosphate-buffered saline and washed twice. Viability was determined by plating an
aliquot of serially diluted bacterial suspension on blood agar (Sigma Aldrich, St. Louis, MO,
USA). The mice were gavaged with 200 µL of B. fragilis suspension a day after stopping
antibiotics (Figure 1C).

2.4. Stool Collection, DNA Isolation, and Quality Control

We collected approximately 200–250 mg of fresh stool pellets from each mouse in the
different treatment groups. In the first experiment, the stool was collected at five time
points: weeks 0, 1-, 3-, 4-, and two weeks post-antibiotic administration (Figure 1A). For the
additional two experiments with metronidazole and clindamycin, the stool was collected
at (i) week 4 during treatment and weeks 2-, 4-, and 6- post-antibiotics (Figure 1B) and
(ii) week 3-post and day 10-post B. fragilis gavage, respectively (Figure 1C). DNA was
isolated from all mice using the QIAamp PowerFecal Pro DNA Kit (Qiagen, Germantown,
MD, USA), following the manufacturer’s protocol. Isolated DNA was quantified on the
Qubit 4.0 Fluorometer using the Qubit 1× dsDNA HS assay kit (Thermo Fisher Scientific,
Loughborough, UK). Spectrophotometry was thereafter performed on the NanoDrop®

ND-1000 to assess the purity of the DNA samples. Genomic quality scores (GQS) were
determined on the LabChip GXII Touch using the DNA Extended Range LabChip and
Genomic DNA Reagent Kit (PerkinElmer, Waltham, MA, USA), CLS140166 Rev.C (Supple-
mentary Report: Genomic DNA (gDNA) Quality Control). The DNA was stored at −80 ◦C
until amplification and sequencing.

2.5. 16S rRNA Gene Amplification

The Ion 16S™ Metagenomics Kit (Thermo Fisher Scientific, Loughborough, UK) was
used to amplify seven hypervariable regions of the 16S rRNA gene (V2, V3, V4, V6, V7, V8,
V9). Target regions were amplified from 2 µL of DNA across 25 cycles, with two primer
pools on the SimpliAmp Thermal Cycler (Thermo Fisher Scientific, Loughborough, UK)
following the protocol MAN0010799 REV C.0. The presence of amplified products was
verified on the PerkinElmer LabChip® GXII Touch (PerkinElmer, Waltham, MA, USA),
using the X-mark chip and HT DNA NGS 3K reagent kit according to the manufacturer’s
protocol CLS145098 Rev. E. PCR products from the two primer pools were combined for
each sample, purified with Agencourt™ AMPure™ XP reagent (Beckman Coulter, Brea,
CA, USA), and eluted in 15µL nuclease-free water. Purified amplicons were quantified
on the Qubit 4.0 Fluorometer using the Qubit 1× dsDNA HS assay kit (Thermo Fisher
Scientific, Loughborough, UK).

2.6. Library Preparation

Using the Ion Plus Fragment Library Kit, library preparation was performed from
100 ng pooled amplicons for each sample. Briefly, 79 µL of each purified, pooled PCR
product was end-repaired at room temperature for 20 min, using 1 µL end-repair enzyme
and 20 µL end-repair buffer in a final volume of 100 µL. The end-repaired products were
purified with Agencourt™ AMPure™ XP reagent (Beckman Coulter, Brea, CA, USA) and
ligated to 2 µL IonCode™ Barcode Adapters (Thermo Fisher Scientific, Loughborough, UK).
The adapter-ligated, barcoded libraries were further purified with Agencourt™ AMPure™
XP reagent (Beckman Coulter, Brea, CA, USA) and quantified using the Ion Universal
Library Quantitation Kit. qPCR amplification was performed using the StepOnePlus™
real-time PCR system (Thermo Fisher Scientific, Loughborough, UK), and library fragment
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size distributions were assessed on the LabChip® GXII Touch (PerkinElmer, Waltham,
MA, USA), using the X-mark chip and HT DNA NGS 3K reagent kit according to the
manufacturer’s protocol.

2.7. Template Preparation, Enrichment, and Sequencing

Libraries were diluted to a target concentration of 10 pM. The diluted, barcoded
16S libraries were combined in equimolar amounts for template preparation using the
Ion 510™, Ion 520™, and Ion 530™ Chef Kit (Thermo Fisher Scientific, Loughborough,
UK). Briefly, 25 µL of the pooled library was loaded on the Ion Chef liquid handler, and
enriched template positive ion sphere particles were loaded onto an Ion 530™ Chip (Thermo
Fisher Scientific, Loughborough, UK). Massively parallel sequencing was performed on
the Ion S5™ Prime using the Ion S5™ Sequencing Solutions and Sequencing Reagents Kits
following the manufacturer’s protocol.

2.8. Data Analysis

Flow space calibration and BaseCaller analyses were initially performed using the
default analysis parameters in the Ion Torrent Suite Version 5.12.0 software. Sequences
were demultiplexed and quality filtered in QIIME 2 (version 2020.2) [46]. Fastq files were
imported (in SingleEndFastqManifestPhred33V2 format) into QIIME 2 using qiime tools
import. The DADA2 [47] plugin was used for denoising (qiime dada2 denoise-pyro) and
clustering. Merged representative sequences were aligned to the Greengenes 13.8 refer-
ence sequence using the QIIME 2 fragment insertion method SATé-Enabled Phylogenetic
Placement (SEPP) [48], and the resulting insertion tree was used for downstream analyses.
Taxonomic classification was performed using the q2-vsearch plugin [49]. Sequences are
available in the Sequence Read Archive (PRJNA820505). Downstream analyses were carried
out in RStudio (v1.3.1) as previously described [50]. Briefly, α-diversity was calculated
using Faith’s Phylogenetic Diversity (Faith’s PD) index, and β-diversity was computed
using weighted UniFrac in vegan. Differential abundance testing was performed in DESeq2
with Benjamini–Hochberg multiple comparison adjustments, where adjusted p-values < 0.2
were considered statistically significant.

2.9. Statistical Analysis

Statistical analyses were performed in GraphPad Prism version 8 (Graphpad Software
Inc., San Diego, CA, USA). Differences in α-diversity were assessed with the Friedman’s
test, followed by the Dunn’s multiple comparison post-hoc test. Permutational multivari-
ate analysis of variance (PERMANOVA) testing was performed to compare β-diversity.
p-values less than 0.05 were considered statistically significant unless otherwise specified.

3. Results
3.1. Clindamycin Supplementation Rapidly Reduces Gut Microbiota Diversity

An assessment of the activity of antimicrobials against Bacteroides shows low resis-
tance to metronidazole and carbapenems (imipenem) (<5–10%), while clindamycin was
moderately active, with 10 to 60% resistance in strains of B. fragilis group [51,52]. Infections
with clinical strains of the B. fragilis are routinely treated with metronidazole [53]. However,
how these commonly used antibiotics shape the Bacteroides population in a microbiota
setting and the time it takes for recovery remain to be determined. We first determined the
most effective combination of antibiotics to deplete the entire Bacteroides population.

The α-diversity did not change during metronidazole (MET) treatment (Figure 2A).
In metronidazole/imipenem (MI)-treated mice, a reduction in α-diversity was observed
at weeks 1 and 3, relative to the baseline (week 0) (Figure 2B). The most significant reduc-
tion in α-diversity was seen when clindamycin was added to the antibiotic combination
(Figure 2C,D). β-diversity differed between baseline and subsequent time-points in each
antibiotic combination (Figure 3A–D).
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Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria were the most abundant
phyla at baseline (Figure 4A–D). Overall, MET- and MI-treated mice had similar microbial
taxa composition between the antibiotics’ pre-treatment state and throughout treatment
(Figure 4A,B). Clindamycin-containing combinations (MC and MIC) depleted mice of
all phyla except Proteobacteria within the first week of treatment (Figure 4C,D). This
effect persisted at weeks 3 and 4 in MC-treated mice (Figure 4C), whereas MIC-treated
mice showed some recovery of Firmicutes from week 3 onwards (Figure 4D). Bacteroides
population was essentially unchanged at the genus level in the MET and MI-treated
mice (Figure 5A,B). Prevotella and Lactobacillus were mainly depleted, while Sutterella
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and Bifidobacterium were represented during MET and MI treatment, as visualized in
Figure 5A,B.
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Bacteroides did not recover in MC and MIC-treated mice two weeks post-treatment
(Figure 5C,D). In MC-treated mice, Sutterella and Helicobacter were represented at week 4,
while Sutterella, Oscillospira, Helicobacter, Enterococcus, and Ruminococcus were also seen two
weeks post-treatment (Figure 5C). Sutterella, Ruminococcus, and Helicobacter were the most
represented in the MIC group at week 4 during treatment, while Bifidobacterium, Sutteralla,
Lactobacillus, Oscillospira, and Ruminococcus were present post-treatment (Figure 5D).

3.2. Bacteroides Did Not Recolonize the Gut following a Six-Week Convalescence Period

Given the efficacy of clindamycin-containing antibiotics in depleting Bacteroides, we
repeated the metronidazole/clindamycin (MC) treatment in a different set of mice to
determine the reproducibility of the results. We treated the mice with MC for four weeks
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via daily oral gavage and measured microbiome changes at the end of treatment. To
determine the time point at which Bacteroides would begin to recover, we extended the
post-treatment convalescence window to weeks 4 and 6. MC reduced α-diversity at week 4
and began to recover by week 2 post-treatment (Figure 6A). No differences were observed
between baseline and weeks 4 and 6 post-treatment (Figure 6A). β-diversity, on the other
hand, differed between the baseline and all subsequent time points (Figure 6B).
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As with the first experiment, treating mice with MC for four weeks completely de-
pleted all phyla except Proteobacteria. The phyla composition at weeks 2, 4, and 6 post-
treatment was similar but clearly distinguishable from baseline. Bacteroidetes, Defferib-
acteres, and TM7 (Saccharibacteria phyla) remained completely depleted six weeks after
stopping MC treatment. On the other hand, Firmicutes had recovered at W2-post MC
treatment and, together with Proteobacteria, dominated at weeks 2, 4, and 6 post-treatment
(Figure 6C).
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As observed in the first experiment, Sutterella and Helicobacter were the most rep-
resented genera during MC-treatment (Figure 6D). As with phyla comparisons, genera
at weeks 2, 4, and 6 post-treatment were similar but differed from baseline (Figure 6D).
Bacteroides did not recover at week 6 post-MC treatment, whereas Sutterella, Ruminococcus,
Enterococcus, Oscillospira, and Helicobacter were present at weeks 2, 4, and 6 after treatment
was stopped (Figure 6D).

3.3. Engraftment of Bacteroides fragilis into MC-Treated Mice Reshapes the Gut Microbiota

Following the depletion of Bacteroides, we next aimed to engraft B. fragilis into MC-
treated mice. MC treatment for three weeks depleted the α-diversity, and no difference was
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seen ten days following B. fragilis inoculation (Figure 7A). β- diversity was altered during
MC treatment and after the B. fragilis gavage (Figure 7B).
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Figure 7. Transplantation of B. fragilis into MC-treated mice. (A) α-diversity measured using Faiths’
phylogenetic index. p values for comparison between the baseline and the different time points
are shown. (B) Principal coordinate analysis plots illustrating differences in β-diversity based on
weighted Unifrac. stacked relative abundance plots at the (C) genus level and (D) phylum level.
(n = 5 mice/group).

Again, Proteobacteria predominated during treatment, with all other phyla completely
depleted (Figure 7C). Proteobacteria, Bacteroidetes, and Firmicutes returned to baseline ten
days after B. fragilis engraftment, while Actinobacteria, Deferribacteres, TM7, and Teneri-
cutes did not recover (Figure 7C). Bacteroides were highly represented ten days following
B. fragilis gavage (Figure 7D). Differential abundance analyses showed enrichment of Ag-
gregatibacter pneumotropica and Haemophilus parainfluenzae and depletion of Parabacteroides
distasonis and Bacteroides acidifaciens at week 3 versus week 0 (Figure 8A). Following B.
fragilis gavage, B. fragilis and B. ovatus were enriched, and several taxa were depleted
relative to week 0 (Mucispirillum schaedleri, Parabacteroides distasonis) (Figure 8B) and week 3
(Aggregatibacter pneumotropica, Haemophilus parainfluenzae) (Figure 8C).
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Figure 8. Volcano plots depicting differentially abundant taxa following transplantation of B. fragilis
into MC-treated mice as determined by DESeq2 at (A) week 0 versus week 3, (B) week 0 vs.
day 10 post-treatment, and (C) week 3 versus day 10 post-treatment. Significantly more dis-
criminatory taxa appear closer to the left or right and are above the threshold (red dotted line,
false discovery rate = 0.2). Relative abundance of taxa is indicated by circle size. Bacteroides spp.
is bolded.

4. Discussion

There is an increased interest in investigating the role of individual gut microbiota
species in host disease processes. Polysaccharide producing-Bacteroides fragilis contribute
to the host’s protection in some reported disease cases [30–32,42]. Based on the available
data on the relationship between Bacteroides such as B. fragilis and host immunity, we could
expect new studies to emerge exploring the potential role of B. fragilis in yet unexplored
diseases. Our study aimed to develop a reproducible, antibiotic-based model for condi-
tioning the gut microbiota and engrafting B. fragilis into a conventional murine host, which
could be valuable for investigating its role in diseases of interest.

Overall, the composition of Bacteroides in mice treated with either metronidazole
or a combination of metronidazole and imipenem was similar to the antibiotic’s pre-
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treatment state. In marked contrast, the addition of clindamycin to the regimes rapidly
and consistently depleted Bacteroides composition and other microbiota phyla, except for
Proteobacteria. In an independent experiment, members of the Bacteroides genus did not
recover in a six-week convalescence period. Finally, we showed that B. fragilis engrafted
into the Bacteroides-depleted mice was highly enriched ten days following oral gavage and
dominated the microbiota composition.

In some studies, B. fragilis has been regarded as a potential next-generation probiotic.
Several Bacteroides strains have also been reported to play immunomodulatory or protective
functions in intestinal and extraintestinal diseases. Work by Wang and colleagues showed
that B. acidifaciens ameliorated liver injury by reducing the apoptosis of liver cells [54].
Mice reconstituted with B. acidifaciens had reduced clusters of differentiation (CD)95/CD95
ligand signaling, which decreased the L-glutathione/glutathione liver ratio and made them
more resistant to alcoholic liver injury [54]. In another study, oral inoculation of B. vulgatus
abrogated changes in the proportion of regulatory T-cells (Tregs) in the mesenteric lymph
node and colon cytokine mRNA expression following lipopolysaccharide (LPS)-induced
intestinal injury in mice [55]. Similarly, B. fragilis protected against LPS-induced systemic
inflammation in mice, an effect that was attributed to its ability to induce the production of
short-chain fatty acids (SCFA) and IL-10 secretion [56].

Furthermore, in a study by Sofi and colleagues, an increase in the Bacteroides population
was associated with reduced Graft-versus-host (GVHD) disease in recipient mice that
received fecal transplantation [30]. Oral inoculation of B. fragilis significantly improved
acute and chronic GVHD disease. The authors further suggested that the protective proper-
ties of B. fragilis were likely due to an increase in SCFA, IL-22, and Tregs, which reduced
inflammatory cytokine secretion and enhanced the integrity of gut tight junctions [30].

Although there are several antibiotic conditioning protocols in the literature, most
studies do not consider the influence of closely related species that may share similar
characteristics when conducting microbiota studies to investigate the role of single species
using conventional mice. For example, the ability of B. fragilis to induce host immune
responses is a feature attributed mainly to its zwitterionic polysaccharide production.
Nevertheless, polysaccharide synthesis is a unique feature of Bacteroides species. Many
species within the genus produce structurally similar polysaccharides to those produced
by B. fragilis [42,57–59]. A study by Stefan and colleagues showed that B. fragilis and
polysaccharide-A (PSA) isolated from B. fragilis regulated constitutive levels of interferon
beta (IFN-β) production, which was protective against viral infections [42]. The same study
also demonstrated that IFN-β induction was a shared feature of Bacteroides species. Outer
membrane vesicles isolated from several Bacteroides species, including B. thetaiotaomicron,
B. dorei, B. uniformis, B. ovatus, and B. vulgatus, also induced IFN-β, suggesting that the
production of lipooligo/polysaccharides may represent a broader mechanism by which
Bacteroides induce the immune response [42]. Furthermore, B. thetaiotaomicron has also been
shown to ameliorate allergic airway inflammation, similar to B. fragilis or PSA [36,44,60].

Our model would allow the mechanistic study of the impact of a gut environment
devoid entirely of Bacteroides during several chronic, inflammatory, and infectious diseases
and investigate the role of B. fragilis in the absence of most species within the Bacteroides
genus in a conventional system. For instance, understanding the gut microbiota’s role
in tuberculosis (TB) and identifying species that may be involved in the protection or
worsening of disease outcomes has recently become a topic of interest. Some animal
studies suggest that gut microbiota alterations increase Mycobacterium tuberculosis (Mtb)
susceptibility [4,24,25]. Our recent work also showed that specific gut anaerobes were
abundant in the stool of TB patients and correlated with the upregulation of immune
pathways associated with pro-inflammatory responses [50]. We recently also published a
review article that discussed the role of B. fragilis in the immune response to viral infections
and therapy, highlighting critical lessons that could stimulate new research to examine its
possible role during Mtb infection [61]. Indeed, findings from a recent study by Yang and
colleagues revealed that B. fragilis directly regulated a long non-coding RNA (lncRNA-CGB)
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during Mtb infection [62]. The lncRNA profile differs between germ-free and microbiota-
colonized mice and plays a role in modulating host-microbiota interactions and has been
implicated in regulating the host response to diseases such as obesity and cancer [63,64]. A
study by Yang and colleagues demonstrated that oral inoculation of B. fragilis enhanced anti-
TB immunity by promoting the expression of lncRNA-CGB through epigenetic modulation
of IFN-γ expression [62].

While our protocol was specific for B. fragilis, it could be adapted to other Bacteroides
species of interest. The concept may also be valuable in studies investigating species in other
genera. We acknowledge the following limitations in our study. Although our protocol
followed a longitudinal approach, where the baseline (week 0) microbiota composition
was used to measure the effectiveness of the antibiotic treatment in each group, we did not
include a naïve mice control group in order to eliminate possible background influences
in the result. We did not also determine at what point, beyond six weeks, the Bacteroides
population will begin to recover after stopping MC treatment. Furthermore, while we
successfully established reproducibility in the dose of the MC combination used, we did
not investigate the effect of different antibiotic concentrations. However, when deciding
on the antibiotic combinations and doses, we considered the various concentrations and
activities used in the available literature and their solubility (clindamycin is very soluble
in water at 50 mg/mL, while metronidazole and imipenem are soluble at 10 mg/mL,
respectively) and selected intermediate doses. As was shown in the result, MI combinations
at concentrations of 5 mg/mL, respectively did not eliminate all members of the Bacteroides
genus. Nevertheless, future studies following our concept could vary the concentrations
of the antibiotics, especially clindamycin, in the mix to minimize the effect on the other
microbiota as much as possible while retaining the impact on Bacteroides.

5. Conclusions

To summarize, we developed a new reproducible antibiotic-based model for condi-
tioning the Bacteroides population and transplanting a single species into a conventional
wild-type murine host. Additional studies may be needed to examine the long-term impact
of metronidazole/clindamycin treatment beyond the time points investigated in our study.
Nevertheless, our model already has the potential to be used in many microbiota studies,
selectively investigating the broad role of Bacteroides in several diseases of interest or studies
targeting a specific member of the genus, such as B. fragilis.
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