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Abstract: Nisin A, the prototypical lantibiotic, is an antimicrobial peptide currently utilised as a
food preservative, with potential for therapeutic applications. Here, we describe nisin E, a novel
nisin variant produced by two Streptococcus equinus strains, APC4007 and APC4008, isolated from
sheep milk. Shotgun whole genome sequencing and analysis revealed biosynthetic gene clusters
similar to nisin U, with a unique rearrangement of the core peptide encoding gene within the
cluster. The 3100.8 Da peptide by MALDI-TOF mass spectrometry, is 75% identical to nisin A, with
10 differences, including 2 deletions: Ser29 and Ile30, and 8 substitutions: Ile4Lys, Gly18Thr, Asn20Pro,
Met21Ile, His27Gly, Val32Phe, Ser33Gly, and Lys34Asn. Nisin E producing strains inhibited species
of Lactobacillus, Bacillus, and Clostridiodes and were immune to nisin U. Sequence alignment identified
putative promoter sequences across the nisin producer genera, allowing for the prediction of genes in
Streptococcus to be potentially regulated by nisin. S. equinus pangenome BLAST analyses detected
6 nisin E operons across 44 publicly available genomes. An additional 20 genomes contained a
subset of nisin E transport/immunity and regulatory genes (nseFEGRK), without adjacent peptide
production genes. These genes suggest that nisin E response mechanisms, distinct from the canonical
nisin immunity and resistance operons, are widespread across the S. equinus species. The discovery
of this new nisin variant and its immunity determinants in S. equinus suggests a central role for nisin
in the competitive nature of the species.
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1. Introduction

Bacterial antimicrobial resistance (AMR) caused an estimated 1.27 million deaths
in 2019, which is predicted to rise to 10 million annually by the year 2050, according to
the World Health Organisation [1,2]. Novel antimicrobials that can be utilised to combat
AMR pathogens are increasingly in demand. Produced by bacteria, bacteriocins are a
heterogeneous group of ribosomally-synthesised peptides and post-translationally mod-
ified peptides (RiPPs) with antimicrobial activity [3,4]. They are small (<10 kDa), with
either broad or narrow inhibition spectra and are classified into groups and subgroups
according to their structure [5,6]. Class I bacteriocins are post-translationally modified and
include lantibiotics, peptides in which serine and threonine residues are dehydrated enzy-
matically to 2,3-didehydroalanine (Dha) and 2,3-didehydrobutyrine (Dhb), which in turn
form lanthionine and methyllanthionine thioether bridges with neighbouring cysteines [7].
Bacteriocins could be an alternative or adjunct to antibiotics, for certain applications.

Nisin is the prototypical lantibiotic, first described in 1928 as an ‘inhibiting effect’
produced by Lactococcus lactis on Lactobacillus bulgaricus [8]. The 34-amino acid lantibiotic
has been studied extensively, was granted generally recognised as safe (GRAS) status in
1988, and was approved for use as a food ingredient by EFSA under the code E234 [9]. The
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structure of nisin A produced by L. lactis includes five rings, a three-residue flexible ‘hinge’
region, and a five-residue cationic tail that interacts with cell membranes and is crucial
for activity [10]. Nisin inhibits a broad range of Gram-positive bacterial genera, including
many clinically relevant pathogens, biofilms, and sporeformers [11–13]. Nisin has also been
subject to extensive site-directed mutagenesis, which has identified functionally critical
regions in which amino acid substitutions increase or decrease peptide activity against
particular organisms [14–16].

More than ten natural variants of nisin have been identified since the discovery of
nisin A. Nisin Z is produced by L. lactis and contains a single amino acid substitution
(His27Asn) [17]. Nisin F and Q are also produced by members of the genus Lactococcus
and exhibit only subtle differences in sequence [18,19]. More recently, distantly related
nisin J, nisin O (O123, and O4), and kunkecin A were identified from human skin, gut,
and honeybee microbiota, and are produced by Staphylococcus capitis, Blautia obeum, and
Apilactobacillus kunkeei FF30-6, respectively [20–22]. The genus Streptococcus has been a rich
source of natural nisin variants, and species of diverse origin produce nisin variants U/U2,
H, P, and most recently, G [23–27].

Nisin expression is autoregulated by a two-component histidine kinase/response
regulator quorum sensing system (nisRK) encoded within the nisin gene cluster [28]. Cells
sensing extracellular mature nisin activate the expression of lantibiotic immunity and pro-
duction machinery from two NisRK regulated promoters [29]. The NisRK two-component
system is also exploited by a separate nisin resistance cassette identified in Streptococcus
spp., which confers resistance to nisin through proteolytic cleavage and peptide export [30].

In this study, we aimed to isolate and characterise novel bacteriocin-producing lactic
acid bacteria. Upon identification of two nisin variant-producing Streptococcus equinus
strains, we sought to establish their novelty relative to other nisin producers through
genetic comparison and to determine the prevalence of this nisin variant in the species.
Comparative analysis of nisin variant gene clusters revealed specific regulatory elements of
Streptococcus equinus and other Streptococcus spp. highlighting conservation and diversity
across nisin expression regulation systems.

2. Materials and Methods
2.1. Strain Isolation, Bacteriocin Activity Screening, and Speciation of Isolates

In total, 112 samples, consisting mainly of raw ovine, bovine, and caprine milk (Sup-
plementary Table S1) were spread on several media for the isolation of putative lactic acid
bacteria, as described previously ([31]). Briefly, samples were streaked or serially diluted
and plated on Streptococcus thermophilus selective agar; M17 agar with 10% lactose; de Man,
Rogosa, and Sharpe (MRS) agar containing 30 µg·mL−1 vancomycin, MRS adjusted to
pH 5.4; Lactobacillus selective agar (LBS); and transgalactosylated oligosaccharide (TOS)
agar, supplemented with 50 µg·mL−1 lithium mupirocin, and incubated for 24 to 72 h at
42 ◦C, 30 ◦C, and 37 ◦C, aerobically, and 42 ◦C, 30 ◦C, and 37 ◦C, anaerobically, respec-
tively. All isolates were screened for bacteriocin production by overlaying with sloppy
MRS agar (0.75% wt/vol agar), pre-tempered to 50 ◦C and seeded with 0.25% (vol/vol)
of an overnight Lactobacillus delbrueckii ssp. bulgaricus LMG6901 culture. Colonies pro-
ducing distinct zones of inhibition were triple-streaked for purity and cultured in broth
overnight to produce a cell-free supernatant (CFS) for subsequent well diffusion assays.
Overnight cultures were centrifuged at 16,000× g for 3 min and the resulting supernatant
was filtered through a 0.2 µm filter (Sarstedt, Wexford, Ireland), yielding CFS. For well
diffusion assays, 20 mL volumes of sloppy MRS agar seeded with L. bulgaricus LMG6901
were poured into petri dishes and allowed to set. Six-millimeter wells were bored in the
agar using glass Pasteur pipettes, into which 50 µL CFS was added. Plates were examined
for zones of inhibition following overnight incubation. Supernatants producing zones of
inhibition (active supernatant) were treated with 20 mg·mL−1 proteinase K (Merck) for 3 h
to digest proteinaceous compounds, and the well diffusion assays were repeated. Loss of
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activity denoted a proteinaceous compound. Potential bacteriocin producers were subject
to MALDI-TOF mass spectrometry, as previously described ([31]).

2.2. Strain Speciation and Genomic Comparison

Strains of interest were subject to genomic DNA extraction using the GenElute Bac-
terial Genomic DNA kit (Merck, Wicklow, Ireland) and 16s rRNA gene sequencing (Ge-
newiz, Leipzig, Germany) with the 27F (5′-AGAGTTTGATCCTGGCTCAG-3′), U1492R
(5′-GGTTACCTTGTTACGACTT-3′) universal primers. Genomic DNA was quantified
with a Qubit 2.0 fluorometer and prepared for sequencing with the Illumina Nextera XT
kit, according to manufacturer protocols. Sequencing was performed using the Illumina
MiSeq platform with paired-end 2 × 300-bp reads using the Teagasc Sequencing Centre,
(Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland). Assemblies were per-
formed de novo with SPADES (v 3.0.0) [32]. Contigs were aligned to reference genomes
using Mauve (version 20150226, build 10), and annotation was performed using RAST
(version 2.0) [33,34]. Any further annotation was performed using the Artemis genome
browser (version 16.0) [35]. Average nucleotide identity was calculated relative to related
species genomes using OrthoANI (version 0.93.1), with publicly available Streptococcus
spp. reference genomes from NCBI [36]. Draft genomes were subject to bacteriocin gene
cluster prediction with BAGEL4 [37]. Amino acid sequences of encoded bacteriocin pep-
tides were aligned to homologues using MUSCLE and visualised using Jalview [38,39].
Percent identity matrices were generated using Clustal Omega [40]. A dendrogram of
aligned peptide sequences was generated using SimplePhylogeny [41] and visualised using
iTOL [42]. Streptococcus genomes were examined for genomic differences using the Mauve
genome aligner, and Easyfig (version 2.1) [43]. Following genome sequencing, a 69 bp
contig boundary gap was present within the nseB gene encoded by S. equinus APC4008. To
close the gap and confirm the contiguous nature of the gene cluster, a PCR was performed
with KOD Hot Start master mix (Merck) using the primers nisE_F (5′ CTGCCCGTTGGAG-
GTTAAGT 3′) and nisE_R (5′ ACAGTGTGCTTAGGACAAACA 3′), with a denaturation
step of 96 ◦C for 2 min and 30 cycles of 96 ◦C for 15 s, 55 ◦C for 15 s, 72 ◦C for 20 s, and
a final extension of 72 ◦C for 10 min. The single resulting 794 bp product was purified
using a GenElute PCR purification kit (Merck) and sent for sequencing (Genewiz, Leipzig,
Germany). The sequence was examined for quality using Chromas (version 2.6.6), then
aligned to the corresponding region within S. equinus APC4007 and 4008, using Clustal
Omega and Jalview.

2.3. Streptococcus Equinus Pangenome Analysis

Publicly available S. equinus sequences were acquired from ncbi.nlm.nih.gov/datasets,
accessed on 10 March 2022 (Supplementary Table S2). Local BLAST+ executables were
downloaded (ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/, accessed on 10
March 2022) and used to construct local nucleotide and protein databases from S. equi-
nus genomes. The nucleotide database was interrogated using the 13,339 bp nucleotide
sequence of the nisin E operon from S. equinus APC4007. The protein database was con-
structed and interrogated with Streptococcus sp. Nisin resistance and nisin immunity protein
sequences were acquired from UniprotKB [44] (Supplementary Tables S3 and S4).

2.4. Nisin Variant Cross-Immunity Assay

L. lactis ATCC11454, L. lactis NZ9800 pCI372-nisA, L. lactis NZ9800 pCI372-nisZ, L.
lactis NZ9800 pCI372-nisF, L. lactis NZ9800 pCI372-nisQ, Staphylococcus capitis APC2923,
S. uberis 42, S. equinus APC4007, S. equinus APC4008, S. hyointestinalis DPC6484, and S.
agalactiae DPC7040 (nisin A, A, Z, F, Q, J, U, E, E, H, and P producers, respectively) were
cultivated in the appropriate broth medium from fresh streak overnight (Table 1). The
strains were stocked in a 96-well plate with glycerol to a final concentration of 20% (vol/vol).
Using a 96-pin replicator, the nisin producers were stamped on M17 containing lactose,
M17 containing glucose, and BHI agar plates. Following incubation overnight, the plates

ncbi.nlm.nih.gov/datasets
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were subjected to agar overlay, as described above, with 50 mL sloppy agar inoculated
either with a nisin producer or indicator species.

Table 1. Nisin-producing strains used in this study and their growth conditions.

Organism Strain Nisin Variant Temp. O2 Medium

Lactococcus lactis
ssp. lactis ATCC11454 A 30 Aerobic M17, 0.5% glucose

Lactococcus lactis NZ9800
pCI372-nisA A 30 Aerobic M17, 0.5% glucose, 10 µg·mL−1

Chloramphenicol

Lactococcus lactis NZ9800
pCI372-nisZ Z 30 Aerobic M17, 0.5% glucose, 10 µg·mL−1

Chloramphenicol

Lactococcus lactis NZ9800
pCI372-nisF F 30 Aerobic M17, 0.5% glucose, 10 µg·mL−1

Chloramphenicol

Lactococcus lactis NZ9800
pCI372-nisQ Q 30 Aerobic M17, 0.5% glucose, 10 µg·mL−1

Chloramphenicol
Staphylococcus

capitis APC2923 J 37 Aerobic BHI

Streptococcus uberis 42 U 37 Aerobic BHI
Streptococcus

equinus APC4007 E 37 Aerobic BHI

Streptococcus
equinus APC4008 E 37 Aerobic BHI

Streptococcus
hyointestinalis DPC6484 H 37 Anaerobic BHI

Streptococcus
agalactiae DPC7040 P 37 Aerobic BHI

2.5. Promoter Prediction and Transcription Start Site Mapping

Nucleotide sequences containing nisin gene clusters were obtained (Supplementary Table S5)
and used for promoter prediction by sequence alignment to known promoters in L lactis ssp.
lactis [29]. Alignments were generated with Clustal Omega, and visualised with Jalview. Rho-
independent terminators were predicted using ARNold [45], under default settings.

3. Results
3.1. Isolation of Two Bacteriocin-Producing Streptococcus equinus Strains

S. equinus APC4007 and S. equinus APC4008 were initially isolated from separate
sheep milk samples as small (1–3 mm diameter), round, convex, creamy-white, semi-
translucent colonies. The colonies produced zones of inhibition against the acid-tolerant
indicator species Lactobacillus delbrueckii ssp. bulgaricus LMG6901 in agar overlays of
colonies and spots on the plates (Figure 1). L. bulgaricus LMG6901 was also inhibited by
the pH-neutralised cell-free supernatant of the isolates in a well diffusion assay indicating
export of a soluble antimicrobial compound. This activity was found to be sensitive to
treatment with proteinase K, suggesting that the compound was proteinaceous in nature
(Figure 1).
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Figure 1. Zones of inhibition of Lactobacillus delbrueckii ssp. bulgaricus LMG6901 produced by
Streptococcus equinus strains APC4007 (top) and APC4008 (bottom) in deferred antagonism assays,
and well diffusion assay of cell free supernatant (CFS) and CFS treated with proteinase K.

S. equinus APC4007 and S. equinus APC4008 were subject to 16s rRNA gene sequencing
and identified as Streptococcus sp. with 97–99% identity to Streptococcus lutetiensis, S.
equinus, and Streptococcus infantarius. S. equinus APC4007 and 4008 were subject to whole-
genome shotgun sequencing to speciate and characterise the strains, resulting in two draft
genomes consisting of ten (JANHMF000000000) and nine (JANHME000000000) contigs,
respectively. Average nucleotide identities of both strains were calculated relative to
complete genomes of S. equinus MDC1, S. equinus NCTC8140, S. lutetiensis NCTC13774,
S. infantarius FDAARGOS 1019, and S. gallolyticus ssp. gallolyticus DSM 16831 (RefSeq
accessions: GCF_014041875.1, GCF_900636465.1, GCF_900475675.1, GCF_016127275.1, and
GCF_002000985.1, respectively) (Supplementary Figure S1). The two isolates shared the
highest identity with S. equinus MDC1 and S. equinus NCTC8140 and thus, were designated
as S. equinus species.

3.2. Nisin E Is a Novel Variant Unique to Streptococcus equinus

The genomes of S. equinus APC4007 and 4008 were found to encode highly similar
nisin biosynthetic gene clusters (Figure 2a). The nucleotide region of the nisin production
gene clusters was 99.86% identical between the two strains, containing 16 single nucleotide
polymorphisms. The gene cluster organisation does not match any previously described
nisin variant (Figure 2a). The gene clusters resemble the nisin U gene cluster, with genes
corresponding to nsuBTCI (nseBTCI) located downstream of nsuPRKFEG (nsePRKFEG)
(relative to nisin A in L. lactis). The position of the structural gene nseA, between nseFEG
and nsePRK, is unlike the nisin A or U gene clusters (Figure 2a). Both strains encode a
structural peptide, designated as nisin E, which shares 76.4% and 75% amino acid identity
with the nisin A prepropeptide and the leaderless peptide, respectively (Figure 2b). Nisin E
is 32 amino acids in length, containing 10 differences from nisin A; two deletions, Ser29 and
Ile30, and eight substitutions, Ile4Lys, Gly18Thr, Asn20Pro, Met21Ile, His27Gly, Val32Phe,
Ser33Gly, and Lys34Asn. The cleaved peptide is similar to nisin U, sharing 93.6% identity,
two amino substitutions, Ile15Ala, Leu21Ile, and one additional C-terminal Asn32 residue
(Figure 2b). The unmodified mass of the nisin E peptide is predicted to be 3245.9 Da and
3101 Da, following eight dehydrations. Mass spectrometry detected a mass of 3100.8 Da,
corresponding to the mature peptide produced by S. equinus APC4007 and 4008 (Figure 2c).
A dendrogram of peptide relatedness clustered nisin E with other Streptococcus derived
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nisins, U and P, in addition to O1 and O4 from Blautia obeum (Figure 3). S. hyointestinalis
DPC6484′s nisin H clustered more closely with the lactococcal nisins A, Z, F, and Q.
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3.3. A Predicted Streptococcus-Specific Promoter for Expression of nisP

Given the novel layout of the nisin E gene cluster, we sought to characterise the
promoters responsible for nisin E expression through multiple sequence alignments of
nucleotide regions upstream of nisA, nisF, nisR, and nisI-type genes of the A, Z, Q, H, P, U, E,
J, and O type. These alignments revealed some conservation of promoter sequences across
genera (Figure 4, Supplementary Figures S2–S4). Rho-independent terminator prediction
software identified 30 transcription terminators, with a Gibbs free energy (∆G) stronger than
−5.0 kcal/mole across the nisin variant gene clusters (Figure 4, Supplementary Table S6).
The nisin E gene cluster contained the most predicted terminators (7), followed by U (5),
P (5), O (4), A (3), Z (3), Q (2), and J (1). None were predicted within the nisin H gene
cluster. Seven putative terminator sequences were predicted to have a ∆G stronger than
−10.0 kcal/mole, six of which are present in streptococcal gene clusters. The nisin E gene
cluster contains three strong terminators, one within the nseR open reading frame, one
immediately following nseK upstream of nseA, and a third following nseI. Nisin A, Z, Q, P,
U, E, and O gene clusters contain predicted terminators of various strengths, immediately
following the core peptide encoding genes (Figure 4).
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Figure 4. Predicted promoters of nisin variant production operons. Absent promoter sequences are
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predicted by ARNold.

The predicted promoter upstream of the nisR homologues in the Z and Q gene clusters
(PnszR, and PnsqR) are homologous to L. lactis ssp. lactis (PnisR), which we designate Lacto-
coccus type (L type) (Supplementary Figure S3). S. equinus APC4007, APC4008, S. uberis 42,
S. agalactiae DPC7040, and Blautia obeum A2-162 share a distinct conserved predicted nisR
promoter structure, which we designate as Streptococcus type (S type), that encodes a −35
and −10 nucleotide sequence of TGCACA and TATTAC, respectively, separated by 15 nu-
cleotides (Supplementary Figure S3). S. hyointestinalis DPC6848 (nisin H) does not share the
conserved−35 or−10 of either type upstream of nshR. The nisin O gene cluster encodes two
copies of nisRK homologs, neither of which have nucleotide sequences that are similar to the
predicted nisR promoters in Streptococcus or Lactococcus spp. (Supplementary Figure S3).
Alignment of the 400 bp upstream of nisI and its homologues identified no obvious pro-
moter elements conserved across species (Supplementary Figure S4).

The promoter responsible for the expression of the core peptide in L. Lactis (PnisA) is
somewhat conserved in the Z, Q, H, O, U, E, and O operons with a −35 and −10 consensus
of CTGAAC and TACAAT, respectively, with a non-canonical spacer of 20 nucleotides
(Supplementary Data S9). The non-canonical −35 sequence is part of a conserved TCT-
N8-TCT repeat, which is largely conserved across the NisRK regulated promoters, and
is also present 54 bp upstream of the −35 in the nisin A and Z operons (Supplementary
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Figure S2). Staphylococcus capitis APC2923 (nisin J producer) does not encode a similar
conserved promoter and is lacking an apparent −10 signal. The promoter responsible for
nisF and its downstream genes is also conserved across the nisin operons, with a consensus
of TGAACA and TATACT for the −35 and −10 regions, respectively, and a spacer length
measuring 19 nucleotides (Supplementary Figure S2). Alignments of the DNA sequence
upstream of the serine peptidase encoding gene (nisP) of S. equinus (nisin E), S. agalactiae
(nisin P), and S. uberis (nisin U) revealed homology with the NisRK regulated promoters
described above (Supplementary Figure S2). Upstream of nseP in S. equinus APC4007 and
APC4008, respectively, a conserved sequence of CTGAAC and TAAAAT is present, and
these sequences are nearly identical to the nisA consensus sequences of CTGAAC and
TACAAT (Supplementary Figure S2).

3.4. Spectrum of Inhibition of Nisin E Producers and Cross-Immunity to Other Nisin Producers

The spectrum of inhibition of S. equinus APC4007 and 4008 was determined by deferred
antagonism assay against 40 Grampositive indicators. Both strains inhibited the growth of
seven indicator species tested (Table 2). Strong inhibition was observed against Lactobacillus
bulgaricus LMG6901, Lactobacillus delbrueckii ssp. lactis DPC5387, and Bacillus firmis DPC6349.
Lactobacillus helveticus DPC5358, Ligilactobacillus salivarius DPC6502, Clostridioides difficile
DPC6534, Clostridium sporogenes LMG10143, S. intermedius DSM20373, and L. lactis HP
were weakly inhibited (Table 2). No inhibition was observed against other Bacillus and
Staphylococcus spp., Enterococcus spp., Listeria spp., or other streptococci (Table 2).

The cross-immunity of nisin E producers against other nisin producers was determined
by a deferred antagonism assay on different growth media. S. equinus APC4007 and
APC4008 were inhibited by nisin A, Z, F, and Q producers, weakly inhibited by nisin J, H,
and P producers (<1.0 mm zone radius), and not inhibited at all by the nisin U producer
(Figure 5). Nisin E producers failed to inhibit any nisin producers except for L. lactis
NZ9800 pCI372-nisQ, which was weakly inhibited on all media. Both S. equinus APC4007
and APC4008 were weakly active against L. lactis HP and were consistently more active
against L. bulgaricus LMG6901 on each media type (Figure 5).

Table 2. Spectrum of inhibition of nisin E producers S. equinus APC4007 and APC4008 against
bacterial strains, as determined by a deferred antagonism assay.

Organism Strain Temp O2 Media
Inhibition

4007 4008

Bacillus cereus NCIMB700577 37 Aerobic BHI − −
Bacillus subtilis S249 37 Aerobic BHI − −

Bacillus thuringiensis DPC6341 37 Aerobic BHI − −
Bacillus firmis DPC6349 37 Aerobic BHI +++ +++

Clostridioides difficile DPC6534 37 Anaerobic RCM + +
Clostridioides sporogenes LMG10143 37 Anaerobic RCM + +

Enterococcus faecium NCDO0942 37 Aerobic BHI − −
Enterococcus faecium (VRE) APC1026 37 Aerobic BHI − −
Enterococcus faecium (VRE) APC1032 37 Aerobic BHI − −
Enterococcus faecium (VRE) APC1033 37 Aerobic BHI − −
Enterococcus faecium (VRE) APC1039 37 Aerobic BHI − −
Enterococcus faecium (VRE) APC1044 37 Aerobic BHI − −
Enterococcus faecium (VRE) APC1055 37 Aerobic BHI − −

Lactococcus lactis HP 30 Aerobic GM17 + +
Lactococcus lactis * ATCC11454 30 Aerobic GM17 − −

Lactobacillus delbrueckii ssp. bulgaricus LMG6901 37 Anaerobic MRS +++ +++
Lactobacillus delbrueckii ssp. lactis DPC5387 37 Anaerobic MRS +++ +++

Lactobacillus helveticus DPC5358 37 Anaerobic MRS + +
Ligilactobacillus salivarius DPC6502 37 Anaerobic MRS + +

Listeria innocua DPC1768 37 Aerobic BHI − −
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Table 2. Cont.

Organism Strain Temp O2 Media
Inhibition

4007 4008

Listeria monocytogenes DPC3572 37 Aerobic BHI − −
Listeria monocytogenes L028 37 Aerobic BHI − −
Staphylococcus aureus 32679 37 Aerobic BHI − −
Staphylococcus aureus C5M 37 Aerobic BHI − −
Staphylococcus aureus 47.9 37 Aerobic BHI − −
Staphylococcus aureus DPC5243 37 Aerobic BHI − −
Staphylococcus aureus DPC7673 37 Aerobic BHI − −
Staphylococcus aureus R693 37 Aerobic BHI − −

Staphylococcus aureus (MRSA) DPC5646 37 Aerobic BHI − −
Staphylococcus epidermidis DSM3095 37 Aerobic BHI − −
Staphylococcus intermedius DSM20373 37 Aerobic BHI + +

Streptococcus agalactiae 35 37 Aerobic BHI − −
Streptococcus agalactiae 119 37 Aerobic BHI − −
Streptococcus agalactiae APC1055 37 Aerobic BHI − −
Streptococcus agalactiae ATCC13813 37 Aerobic BHI − −

Streptococcus pneumoniae APC3850 37 Aerobic BHI − −
Streptococcus pneumoniae APC3857 37 Aerobic BHI − −

Streptococcus pyogenes DPC6992 37 Aerobic BHI − −
Streptococcus uberis ATCC5344 37 Aerobic BHI − −
Streptococcus uberis LL383 37 Aerobic BHI − −

−, No activity; +, 0.5–1.5 mm inhibition zone; ++, 2–3.5 mm inhibition zone; +++, ≥4 mm inhibition zone; * nisin
A producer.
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Nisin production from all strains was improved by growth on BHI agar, when com-
pared with M17 media containing glucose or lactose, as was evidenced by increased zone
sizes against the non-nisin-producing indicators, L. lactis HP and Lactobacillus delbrueckii ssp.
bulgaricus LMG6901 (Figure 5). S. agalactiae APC7040 (nisin P) failed to inhibit any strain
when cultured on M17 agar containing lactose, despite evident growth. S. hyointestinalis
DPC6484 (nisin H) was not inhibited by any nisin variant producer on any media type
(Figure 5).

3.5. Nisin E Immunity Genes Are Spread throughout the Streptococcus equinus Pangenome

The nsePRKAFEGBTCI gene cluster, encoding nisin E production, was found in 6 of
44 publicly available S. equinus genomes (B315-G597, GA-1, SN033, pR-5, SI, MDC1), in
addition to S. equinus APC 4007 and 4008 (Figure 6, Supplementary Table S7). Gene synteny
is conserved within the production gene cluster across all the genomes, but differs approxi-
mately 10kb upstream and downstream of nse genes in both APC4007 and 4008 (Figure 6). A
subset of 20/44 S. equinus genomes (45%) encode the nisin E histidine kinase/response reg-
ulator, and transport/immunity proteins (nseRKFEG) (Figure 7, Supplementary Table S7).
These genes are present, without the corresponding nisin E production machinery. The en-
coded NseRKFEG proteins share a high level of amino acid identity with the corresponding
proteins of the complete nisin E gene cluster, as opposed to homologous proteins encoded
by nisin U (NsuRKFEG) or nisin A (NisRKFEG) (Supplementary Figure S5). A database
of proteins extracted from the 44 public S. equinus genomes was searched for sequences
homologous to the nisin resistance protein (Nsr), from which no significantly similar hits
were identified. The same database was screened for the presence of nisin immunity protein
(NisI) homologs, and only the immunity proteins encoded within the previously identified
nisin E gene clusters were detected.
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4. Discussion

We describe the production of a novel nisin E variant by two S. equinus strains, APC4007
and APC4008, that were isolated from unpasteurised sheep milk sampled from geographically
separate locations in New Zealand; we then further describe the prevalence of this variant
across the S. equinus pangenome using publicly available sequences. Nisin E described the
following nisins: Z, U, F, Q, H, O1,2,3, and O4, P, J, G, and kunkecin A [17–27]. Streptococcal
variants now compose 45% (U, H, P, G, E) of the natural nisin variants described, which may
suggest an importance of their role in Streptococcus spp. competition and in niche colonisation
or quorum sensing. Of the five streptococcal variants, two (P and E) are produced by members
of the taxonomically complicated S. bovis/S. equinus complex (SBSEC) [25]. The SBSEC consists
of seven species and subspecies which are mainly commensal bacteria that colonise gastroin-
testinal tracts of animals [46]. Species of the SBSEC are found in unpasteurized ruminant milk,
likely via contamination of the teat skin and the teat canal. SBSEC members are implicated
in infection and antimicrobial resistance, but are also used in food fermentation. Bacteriocin
production by members of the SBSEC has been described previously, including bovicin HC5,
bovicin HJ50, bovicin 255, macedocin, macedovicin, gallocin, and gallocin D [47–53]. SBSEC
member bacteriocin production has been suggested as a mechanism that may support diverse
niche colonisation, including opportunistic pathogenesis [52–54]. As such, nisin E may confer
an advantage to strains of S. equinus to colonise ruminant niches. Despite isolation from sheep
milk, both strains of S. equinus produced less nisin E when cultured with lactose (Figure 5).
Nisin A expression has been shown to be lactose/galactose inducible, in addition to the tradi-
tional NisRK induction [55]. This expression has been attributed to the presence of a NisRK
regulated TCT-N8-TCT direct repeat upstream of the nisA promoter [56]. Expression by lactose
is not apparent in S. equinus or in nisin P expression from S. agalactiae DPC7040 (Figure 5),
which lack a similar repeat 54 bp upstream of the conserved promoter region (Supplementary
Figure S2). However other non-lactococcal producers lack the repeat sequence and express
nisin when cultured on lactose. This may suggest that the repeat sequence is not required for
the expression of nisin on lactose, and that another mechanism limits nisin E and P production
on the carbohydrate.

Nisin A has a dual mechanism of action, wherein it binds lipid II, preventing cell wall
biosynthesis, and subsequently forms pores in bacterial cell membranes. Nisin variants are
typically broad spectrum in nature, inhibiting a range of Gram-positive species, but variants
may possess different specific activities or be differentially produced. The recently described
nisin G produced by S. salivarius DPC6487 was found to be selectively active against 9 of 23
tested bacteria (21 Gram-positive), including Gram negative Fusobacterium spp., whereas a
nisin A producer inhibited all 21 Gram-positive isolates to varying degrees [27]. Similarly,
nisin E inhibited 9 of the 40 Gram-positive bacteria screened, including Bacillus firmis
DPC6349, Clostridioides spp., Lactobacillus spp., and Staphylococcus intermedius DSM20373
(Table 2). It remains to be determined if this is due to a higher minimum inhibitory
concentration of nisin E, that it is poorly expressed relative to other nisin variants, or a
combination of these factors.

Nisin E is the second natural variant of 32 residues to be described, the first being
the distantly related nisin O4, produced by the human gut bacterium, Blautia obeum [22].
Nisin E contains 10 differences from nisin A, including 8 substitutions, Ile4Lys, Gly18Thr,
Asn20Pro, Met21Ile, His27Gly, Val32Phe, Ser33Gly, and Lys34Asn, and 2 deletions, Ser29
and Ile30 (Figure 2b). Nisin E is very similar to nisin U/U2 and P with just three (93%
identity), and four (90% identity) amino acid differences, respectively. Specifically, Ala15,
common to both nisin A and E, is changed into an Ile residing in nisin U, while Met21
is changed to Ile in nisin E and Leu in nisin U. The peptide is one amino acid longer
than nisins U [23] and P, as nisin E contains an Asn32 residue which is absent in the
other 31 amino acid peptides and all other nisins. S. equinus, S. agalactiae, S. gallolyticus
subsp. pasteurianus, and S. uberis are closely related and frequently inhabit the same niches,
facilitating gene transfer events that may explain the similarity between nisin’s E, P, and U.
If streptococcal nisin variants are frequently encountered by bacteria in animal GI-tracts,
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then maintaining nisin production and immunity systems would also be beneficial for
competition survival. Nisin H, produced by S. hyotintestinalis DPC6484, is less similar to
nisins E, P, and U (sharing ~67–70% amino acid identity) and more similar to nisin A (85%
identity), which may suggest a more recent divergence from lactococcal nisins, which is
also reflected in gene cluster structure. Nisin E lacks a serine at position 29, which in nisin
A, makes the peptide susceptible to cleavage and inactivation by the nisin resistance protein
(Nsr). Therefore, nisin E could be a desirable natural variant that escapes Nsr peptide
inactivation, though this has yet to be demonstrated. Nisin E also contains a proline at
position 20 which, when bioengineered in nisin A, shows an increased specificity of the
peptide towards Staphylococcus aureus; taken together these changes may indicate nisin
as a useful natural nisin variant for therapeutic purposes. However, previous studies
have demonstrated that shortening the C-terminus of nisin A to 31 residues reduces its
activity 10 fold, but nisin1–32 exhibits similar activity to that of the full length peptide.
Extending the C-terminus has been found to improve the permeation of cell membranes
by the peptide and to increase activity against Gram-negative bacteria [57]. However, it
remains to be determined if the additional Asn residue impacts the activity relative to other
nisins, particularly as Asn is a polar amino acid.

Among the variants, the hinge region of natural nisin variants displays a large degree
of amino acid variation in residues 20 and 21. The hinge region of nisin A (NMK) is
conserved in lactococcal-derived nisins, with the exception of nisin Q (NLK), which contains
one amino acid difference. The hinge region of nisin E (PIK) more closely resembles the
streptococcal-derived hinge regions, i.e., Nisin U and O (PLK) and nisin P (AIK). This
variation likely impacts activity, as bioengineering of the nisin A hinge region has been
previously demonstrated to alter the activity of nisin variants [16]. The isoleucine at
position 21, within the hinge region of the nisin E peptide (PIK), is also present in nisin P
(AIK) [25,26], although the specific three-residue hinge combination is unique to nisin E
(Figure 2b).

Nisin E genes were detected among S. equinus species and not in other Streptococcus
spp., including closely related members of the SBSEC. As such, nisin E production may be a
unique feature of the species S. equinus, whereas nisin P has been found to be produced by
both S. gallolyticus ssp. pasteurianus and by S. agalactiae DPC7040 [25,26]. The nisin E gene
cluster encodes all of the genes typically involved in nisin production, including transport,
modification, and immunity. However, the gene order differs from that of other nisin gene
clusters, with the structural peptide immediately upstream from the lanFEG transport and
immunity genes (Figure 2a). The nisin U gene cluster possesses transposases flanking the
gene cluster, as well as another directly upstream from nsuA, to which the reorganisation of
the cluster relative to nisin A is attributed [23]. The gene rearrangement of the nisin U gene
cluster relative to nisin A is also observed in the similar streptococcal nisin P gene cluster
(Figure 2). No transposase sequences were found in the nisin E gene cluster to indicate an
obvious mechanism of gene rearrangement.

We sought to predict the promoters present in the nisin E gene cluster through se-
quence alignment with previously characterised promoters in the Lactococcus lactis nisin A
gene cluster to provide further insights on nisin expression (Figure 4). The nisin A gene
cluster contains two constitutive promoters for the transcription of the nisin immunity
protein (nisI) and the response-regulator histidine kinase two-component system (nisRK),
respectively [29,58]. It also contains two inducible NisRK-regulated promoters responsible
for the expression of the nisin core peptide production (nisABTCI) and transport/immunity
genes (nisFEG)(Figure 4) [29]. The constitutive promoter upstream of nisR in L. lactis is not
conserved in Streptococcus spp., although we identified putative −35/−10 regions poten-
tially responsible for NisRK expression. S. equinus APC4007 and 4008 share a conserved
−10 region and −35, which overlaps with a TCT-N8-TCT direct repeat that is highly con-
served across all NisRK regulated promoters (PnisA and PnisF). Two such repeats upstream
of the transcription start site have been found to be optimal for inducible nisin expression
in Lactococcus lactis [56]. Exploring the absence and presence of these repeats across nisin
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producers may be of interest in future expression studies to increase production of natural
variants, some of which are known to be poorly expressed [22,25,26]. We also predict a
third nisin-inducible promoter upstream of the serine peptidase gene (nseP) in the nisin E
cluster, which is conserved in nisin U and P and would be essential for expression, given
their location at the periphery of the gene cluster.

We predict a number of Rho-independent (stem loop) transcription terminators within the
nisin E gene cluster, including the presence of a terminator within the nseR open reading frame
that may result in reduced levels of nisin production, as has been previously demonstrated [59].
We note the similarity between predicted operon promoter and terminator structure (Figure 4)
and the homology between peptide structures (Figure 3). Nisin J from S. capitis APC2923 does
not cluster with other nisin variants, and indeed, the nucleotide sequences are highly divergent
from other nisin production gene clusters. Interestingly, nisin H from S. hyointestinalis DPC6484
clusters more closely with lactococcal nisins, and the nucleotide sequences containing predicted
promoters are dissimilar to nisin E, P, and U (Supplementary Figure S2). Nisin E clusters with
closely related streptococcal variants nisin U and P, and is also more related to nisins O1,2,3, and
O4 from B. obeum than its lactococcal variants.

Nisin E sensing and export/immunity genes (nseRKFEG), without corresponding
production machinery genes, were found in 45.5% of publicly available Streptococcus equinus
genomes (20/44) (Figure 7). Nisin resistance/immunity gene clusters have previously
been described as consisting of an S41 peptidase nisin resistance protein (NSR) and a
BceAB-type ABC transporter (NsrFP), which are regulated by the nisin response-regulator
histidine-kinase two-component system (NisRK) [30,60]. Genes encoding NSR have been
detected in a range of pathogenic and non-pathogenic bacteria, including Corynebacterium
spp., Leuconostoc spp., Enterococcus faecium, Staphylococcus spp., and Streptococcus spp.,
and typically confer high levels of resistance to nisin [30,61]. The genes identified in S.
equinus are distinct from the nisin resistance gene cluster and are homologous to nisin E
genes, with 19/20 strains encoding proteins with greater than 90% amino acid identity
to NseRKFEG encoded in S. equinus APC4007 and APC4008 (Supplementary Figure S5).
Previous comparative genome analysis of 43 L. lactis genomes identified a subset of four
strains retaining nisFEG/nisI genes, without biosynthesis genes, but did not determine
if these strains retained full immune capacity to nisin [62]. A gene-trait matching study
of 710 individual L. lactis strains identified 59 strains that encoded nisRKFEG, without
other biosynthetic machinery, and found that nisFEG always co-occurred with nisRK and
imparted the ability to survive and acidify milk in the presence a 1.5 µg·mL−1 level of nisin,
but was not as effective as the presence of nsr [63]. The same study identified the presence
of the nisin immunity protein-encoding gene nisI co-localised with nisP in 16/710 genomes,
which conferred some degree of nisin resistance [63]. The nisIP sub-gene cluster was not
detected among S. equinus genomes, which could result from the fact that the two genes
are at opposing ends of the nisin E gene cluster, rather than co-localised, as they are in the
nisin A gene cluster, which would more easily facilitate co-retention after the loss of other
genes (Figure 2a). The presence of nseRKFEG in S. equinus genomes likely confers a level of
resistance to nisin E, enabling strains to colonise the same niche as nisin E producers, but
without expending the energy involved in nisin production.

Nisin A is the prototypical lantibiotic, and it has been extensively researched and
utilised since its discovery. Novel variants and related peptides continue to be identified
across a multitude of genera, many of which are of interest in the context of the current and
growing global AMR crisis. The continued discovery of novel nisin variants highlights the
ubiquity of nisin-associated genes across prokaryotic genera, suggesting a strong role in
Gram-positive bacterial competition in microbiomes. Features of the nisin E gene cluster
in S. equinus shed light on the complexity of nisin cluster structure and expression and
highlight some gaps in the current knowledge regarding the regulation of nisin variant
expression, despite a long history of nisin expression system exploitation [64]. Further
investigation of variant regulatory elements could result in improved production and
enable in-depth characterisation and utilisation of non-lactococcal variants. Taken together,
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the discovery of this new nisin variant in some S. equinus strains, along with the finding
that other strains apparently possess immunity determinants which are under nisin control,
suggests a central role for nisin in the competitive nature of the species.
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cleotide sequence alignment of 400bp region upstream of nisI and homologous genes, Figure S5:
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