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Abstract: Halophilic/halotolerant myxobacteria are extremely rare bacteria but an important source
of novel bioactive secondary metabolites as drug leads. A slightly halophilic myxobacterium,
“Paraliomyxa miuraensis” SMH-27-4, the producer of the antifungal antibiotic miuraenamide A, was
considered to represent a novel genus. This study aimed to use the whole-genome sequence of
this difficult-to-culture bacterium to provide genomic evidence supporting its taxonomy and to
explore its potential as a novel secondary metabolite producer and its predicted gene functions. The
draft genome was sequenced and de novo assembled into 164 contigs (11.8 Mbp). The 16S rRNA
gene sequence-based and genome sequence-based phylogenetic analyses supported that this strain
represents a novel genus of the family Nannocystaceae. Seventeen biosynthetic gene clusters (BGCs)
were identified, and only five of them show some degree of similarity with the previously annotated
BGCs, suggesting the great potential of producing novel secondary metabolites. The comparative
genomic analysis within the family Nannocystaceae revealed the distribution of its members’ gene
functions. This study unveiled the novel genomic features and potential of the secondary metabolite
production of this myxobacterium.

Keywords: halophilic myxobacteria; Paraliomyxa miuraensis; Nannocystaceae; miuraenamide A;
biosynthetic gene cluster; draft genome

1. Introduction

Myxobacteria are famous for their complex life cycle of multicellular fruiting body
formation and cooperative preying behavior. They are considered as a template for the
study of bacterial social behavior [1–3]. Aside from this, their potential for immense sec-
ondary metabolite production also makes them candidates for a next-generation microbial
drug factory [4–6]. Since their first description as a novel taxon in 1892 [7], myxobacteria
were considered terrestrial bacteria until 1998, when the first isolation of obligate halophilic
marine myxobacteria was reported by Iizuka et al. [8]. Although the difficulty with isolation
and cultivation obstructs the discovery of halophiles, the limited number of strains already
shows great potential for producing novel bioactive leads with unique molecular scaffolds
and activities [9–12]. To date, all discovered and cultivable halophilic myxobacteria are
grouped into the suborder Nannocystineae, which consists of two families, Kofleriaceae
and Nannocystaceae [10].

In 2006, the myxobacterium strain SMH-27-4 was isolated from a near-seashore soil
in Japan and tentatively named “Paraliomyxa miuraensis” [13]. The phylogenetic analysis
based on a partial 16S rRNA gene sequence suggested that it represents a new genus of the
family Nannocystaceae [13,14]. Nannocystaceae is the most ecologically diverse myxobac-
terial family and, besides Paraliomyxa, contains four genera: two marine-derived genera
Plesiocystis and Enhygromyxa, a brackish water genus Pseudenhygromyxa, and a terrestrial
genus Nannocystis [15]. In 2016, Iizuka reported the chemotaxonomic and physiological
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characteristics of the strain SMH-27-4 and provided the descriptions of “Paraliomyxa” gen.
nov. and “Paraliomyxa miuraensis” sp. nov. (Reference S1) [14]. The optimal salt concentra-
tions for the growth of “P. miuraensis” SMH-27-4 were determined as 0.5–1.0% (w/v) NaCl,
and requires Mg2+ and Ca2+ for its growth [13]. On the agar plate, the strain swarms in a
radial pattern and sometimes cleaves the agar gel matrix [14]. The major cellular fatty acids
are iso-C15:0 and iso-C17:0. They do not degrade filter papers or grow in a yeast medium,
such as VY/2 agar, generally used for terrestrial myxobacteria. The above characteristics
were shared with the slightly halophilic myxobacteria Pseudenhygromyxa [14,16]. However,
its major cellular quinone is MK-8, and long-chain polyunsaturated fatty acids were not
detected. These two properties are the same as the terrestrial strain Nannocystis exedens
DSM 71 [14,17]. No distinct fruiting body was observed for this strain, which made it
more enigmatic [13,14]. The major secondary metabolite of “P. miuraensis” SMH-27-4,
miuraenamide A (Figure 1), exhibited potent antifungal activity, especially against the
phytopathogenic oomycete Phytophthora capsici at a minimum inhibition dose of 25 ng/disk
by inhibiting the mitochondrial respiratory chain [13]. It was also shown to significantly
change the morphology of the cytoplasm and nucleus of a tumor cell line by stabilizing
actin filaments [18]. Over the last decade, its total synthesis and biological activity as an
actin filament stabilizer have been broadly explored [19–26]. The potential of miuraenamide
A for medical applications makes this strain more worthy of investigation.
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Figure 1. Chemical structure of miuraenamide A. 

To confirm the taxonomy of “P. miuraensis” SMH-27-4 as well as the productivity of 
other secondary metabolites and the distribution of gene functions, we comprehensively 
analyzed its draft genome sequence. 

2. Materials and Methods 
2.1. Cultivation and Genomic DNA Isolation 

Isolation of “P. miuraensis” SMH-27-4 was previously described [13]. The strain is 
registered in DBRP as STAJ0000000110262 and deposited in NBRC (Kisarazu, Chiba, Ja-
pan) as NBRC 111985. On the VY/2-1/5SWS agar plate [13], the strain swarms in a radial 
pattern and burrows into the agar. The outer edge of the swarm was cut out of the agar 
strip and frozen as glycerol stock in 12% (w/v) glycerol solution at −80 °C [14]. After thaw-
ing, the glycerol stock was washed with autoclaved Milli-Q water and planted on the 
Vy5.S75.15 agar plate (see below). The plates were cultured for 14 days at 27 °C. Ten 0.5 cm 
square agar strips were cut out of the swarm edge and added to 750 mL of N2.0-S75.10 broth 
(see below) in a 2 L Erlenmeyer flask, which was shaken at 180 rpm. The cells tended to 
aggregate together, forming cell masses in the liquid broth. After 14 days of cultivation, 
the broth was filtrated by suction, and the orange or yellow cell mass on the filter paper 
was collected. Approximately 50 mg (wet weight) of the cells was used for the isolation of 
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To confirm the taxonomy of “P. miuraensis” SMH-27-4 as well as the productivity of
other secondary metabolites and the distribution of gene functions, we comprehensively
analyzed its draft genome sequence.

2. Materials and Methods
2.1. Cultivation and Genomic DNA Isolation

Isolation of “P. miuraensis” SMH-27-4 was previously described [13]. The strain is
registered in DBRP as STAJ0000000110262 and deposited in NBRC (Kisarazu, Chiba, Japan)
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as NBRC 111985. On the VY/2-1/5SWS agar plate [13], the strain swarms in a radial pattern
and burrows into the agar. The outer edge of the swarm was cut out of the agar strip and
frozen as glycerol stock in 12% (w/v) glycerol solution at −80 ◦C [14]. After thawing, the
glycerol stock was washed with autoclaved Milli-Q water and planted on the Vy5.S75.15
agar plate (see below). The plates were cultured for 14 days at 27 ◦C. Ten 0.5 cm square agar
strips were cut out of the swarm edge and added to 750 mL of N2.0-S75.10 broth (see below)
in a 2 L Erlenmeyer flask, which was shaken at 180 rpm. The cells tended to aggregate
together, forming cell masses in the liquid broth. After 14 days of cultivation, the broth was
filtrated by suction, and the orange or yellow cell mass on the filter paper was collected.
Approximately 50 mg (wet weight) of the cells was used for the isolation of genomic DNA
by a QIAGEN Genomic-tip 100/G (QIAGEN, Venlo, Nederland) and Genomic DNA Buffer
Set (QIAGEN) according to standard protocols.

Vy5.S75.15 medium: 0.5% (w/v) yeast cake, 0.01% (w/v) Bacto™ yeast extract (Thermo
Fisher Scientific, Waltham, MA, USA) and 1.5% (w/v) NaCl were suspended in 75% Sea
Water Solution (SWS) [8], and pH was adjusted to 7.2–7.4 with 1 M NaOH before auto-
claving. Vitamin B12 (0.5 mg/1 mL water) was sterilized by filtration and added to the
autoclaved solution (1 L). Yeast cake: Dried yeast (Mitsubishi Tanabe Pharma, Osaka,
Japan) was suspended in Milli-Q water (10% (w/v)). The supernatant was discarded after
centrifugation (10,000× g rpm, 5 min), and the yeast cake was washed three times with
water by suspending, vortexing, and centrifugation. The cake was stored at −30 ◦C until
use. N2.0-S75.10 medium: 2% (w/v) casein sodium (FUJIFILM Wako Pure Chemical Cor-
poration, Osaka, Japan) and 1% (w/v) NaCl were suspended in 75% Sea Water Solution
(SWS), and the pH was adjusted to 7.2–7.4 with 1 M NaOH before autoclaving. Vitamin B12
(0.5 mg/1 mL water) was sterilized by filtration and added to the autoclaved solution (1 L).

2.2. Draft Genome Sequencing, Assembly, and Annotation

The whole genome was sequenced using the Illumina HiSeq platform, paired-end,
101 bp X 2 sequencing. The adapter sequence and low-quality bases were trimmed from
raw reads files using Cutadapt (version 1.1) [27] and Trimmomatic (version 0.32) [28]. After
trimming, sequence reads were assembled into contigs using the de novo genome assembler
Velvet (version 1.2.08) [29]. The gapclose module of Platanus (version 1.2.1) [30] was then
applied to reduce the N content introduced into the genome during scaffolding. The contigs
shorter than 200 bp were removed. Automated annotation of the draft genome sequence
was performed with the prokaryotic genome annotation pipeline (PGAP) of NCBI (version
6.3) [31]. The estimated genome size was calculated by KmerGenie (version 1.7051) based
on Kmer analysis. The completeness of genome assembly and annotation were assessed
using benchmarking universal single-copy orthologs (BUSCO) scores (version 5.3.2) [32].

2.3. Phylogenetic Analysis

The complete 16S rRNA gene sequence was identified by PGAP genome annotation.
A dataset of 16S rRNA gene sequences of 52 Myxococcales strains and Desulfovibrio desul-
furicans Essex 6 were retrieved from GenBank (Table S1). D. desulfuricans Essex 6 was
used as an outgroup to root the tree. The 16S rRNA gene sequences were aligned by
MAFFT (version 7.487) [33]. Maximum likelihood analyses were constructed in IQ-TREE
(version 2.1.4-beta) [34] using the best-fit model TN + F + R4, selected by the software
according to the Bayesian information criterion (BIC) scores. Bootstrap values were based
on 1000 replicates, and the obtained tree was visualized using iTOL [35].

The genome sequences of 51 strains of the order Myxococcales were retrieved from
the NCBI reference sequence (RefSeq) database (Table S2). The average nucleotide identity
(ANI)-based distance tree was produced using the ANI-matrix genome distance calcula-
tor [36]. The ANI tree was clustered using the neighbor-joining method.
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2.4. BGCs Prediction and Generation of Similarity Networks

The draft genome sequence of “P. miuraensis” SMH-27-4 was mined using the antibi-
otics and secondary metabolite analysis shell (antiSMASH) (version 6.1.1) [37] to identify
the secondary metabolite protoclusters using the “strict” setting. A machine learning-based
ribosomally synthesized and post-translationally modified peptide (RiPPs)-mining tool,
RiPPMiner [38] was also used to retrieve the RiPP protoclusters. The protoclusters were
regarded as BGCs under the following criteria: (1) in the case that the overlapping area
of two close protoclusters contains core biosynthetic genes, those with different cluster
types are united to one “hybrid” BGC, whereas those with same cluster types are united to
one BGC; (2) the following protoclusters predicted by antiSMASH were not considered as
BGCs: “RiPP-like”, non-specific RiPP-containing post-translational modification proteins
such as DUF 692 family, a function-unknown protein family, and “other” protoclusters that
cannot be classified into the known categories. All the predicted BGCs were then analyzed
using the biosynthetic gene similarity clustering and prospecting engine (BiG-SCAPE)
software package (version 1.1.2) [39], with the MiBIG database (version 2.1) [40] as a refer-
ence. BiG-SCAPE was conducted on auto mode with a distance cut-off score of 0.75 and
the parameters of “–clans-off”, “–no_classify”, and “–mix”. The “P. miuraensis” SMH-27-4
BGCs-related records were extracted, and the generated networks were visualized with
Cytoscape (version 3.8.2) [41].

2.5. Identification of Orthologous Proteins and Functional Categorization

The genome sequences of four strains of the family Nannocystaceae (Nannocystis exedens
DSM 71, Pseudenhygromyxa sp. WMMC2535 (GCA_011083025.2), Plesiocystis pacifica SIR-1,
and Enhygromyxa salina DSM 15201 (GCA_000737335.3)) were retrieved from the NCBI
genome and RefSeq database. Their genomes, including that of “P. miuraensis” SMH-27-4,
were re-annotated by the stand-alone PGAP (version 2021-07-01. build5508) with the same
parameters. The orthologous proteins were identified by Proteinortho [42]. The protein
functional annotation was conducted using the domain-based annotation tool reCOGnizer
(version 1.7.2) [43]. The results derived from the clusters of orthologous groups of proteins
(COGs) database were used for functional categorization, which consists of 26 categories.
Some proteins were classified into more than one functional category. In this case, each
protein was assigned as an equal portion of weight for each functional category.

2.6. Availability of Nucleotide Sequence Data

The whole genome shotgun project of “P. miuraensis” SMH-27-4 has been deposited
at DDBJ/ENA/GenBank under the accession number JAOVZF000000000. The version
described in this paper is version JAOVZF010000000. The raw sequencing data were sub-
mitted to the Sequence Read Archive database under the accession number SRR21887204.

3. Results
3.1. Draft Genome Sequencing, Assembly, and Annotation

A total of 2313 Mbp was obtained from Illumina HiSeq paired-end sequencing. The
results are summarized in Table 1. The assembled “P. miuraensis” SMH-27-4 draft genome
size is 11,849,290 bp, equal to 100.1% of the estimated genome size based on Kmer analysis.
The overall GC content is 69.7%. The draft genome consists of 164 contigs, with the N50
and L50 values of 398,768 bp and 11, respectively. The completeness of the draft genome
assembly was evaluated by calculating coverage for a set of single-copy orthologous genes
in deltaproteobacteria using BUSCO. The results showed that the genome coverage rate was
93.0 %. PGAP annotation predicted 9280 genes in the genome, including 31 pseudogenes,
84 RNAs, and 9156 protein-coding genes that account for 90.7% coding density. The
9156 protein sequences were aligned to the BUSCO database to evaluate the annotation
quality, and the coverage rate of 92.6% suggested a high degree of completeness of the
gene prediction. A total of 38.3% (3508) of the protein-coding genes were annotated as
hypothetical proteins.
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Table 1. Assembly and annotation statistics for the draft genome sequence of “P. miuraensis”
SMH-27-4.

Number of contigs 164
GC Content (%) 69.7
Estimated genome size based on Kmer analysis 11,832,550 bp
Assembled genome size 11,849,290 bp (100.1%)
N50 (bp) 398,768
L50 11
Genes (total) 9280
Pseudogenes (total) 40
Genes (RNA) 84
tRNAs 77
rRNAs 1, 1, 1 (5S, 16S, 23S)
ncRNAs 4
Genes (coding) 9156
Coding density 90.7%
Hypothetic proteins 3508 (38.3%)
Percentage (%) of complete BUSCOs in the genome assembly 93.0%
Percentage (%) of complete BUSCOs among the annotated genes 92.6%

3.2. Phylogenetic Analysis

Both the 16S rRNA gene sequence-based and genome sequence-based phylogenetic
analyses of the order Myxococcales were performed. The complete 16S rRNA gene sequence
of “P. miuraensis” SMH-27-4 consisted of 1544 bp (locus_tag = OEB96_36580), which is iden-
tical to the reported partial 16S rRNA gene sequence (1504 bp) [13]. In the 16S rRNA gene
sequence-based phylogenetic tree (Figure 2A), the strains in the family Nannocystaceae
were divided into two subclades with a support value of 100%. Although “P. miuraensis”
SMH-27-4 shared a subclade with the terrestrial genus Nannocystis, it branched out of
the strains of the genus Nannocystis with a support value of 76%. The strains of (slightly)
halophilic genera (E. salina DSM 15217, P. salsuginis DSM 21377, and P. pacifica DSM 14875)
formed the other subclade.

To perform genome-based taxonomic classification, the average nucleotide identity
(ANI) was compared between “P. miuraensis” SMH-27-4 and 51 other sequenced myxobac-
terial strains. The resulting genome-based phylogenetic tree (ANI tree, Figure 2B) indicated
that “P. miuraensis” SMH-27-4 was grouped into the family Nannocystaceae but did not
form any subclade with other strains of this family. This result is similar to the 16S rRNA
gene sequence-based tree (Figure 2A), supporting the novelty of the genus “Paraliomyxa”.

3.3. Biosynthetic Gene Clusters (BGCs)

The antiSMASH detected 30 protoclusters, which, due to the presence of some hybrid
types, were partially compiled to obtain 24 candidate BGC regions for secondary metabolite
biosynthesis (Table S3). The RiPPMiner retrieved five ribosomally synthesized and post-
translationally modified peptide (RiPP) protoclusters (Table S4). After the removal of
protoclusters of unspecific BGC type and combination of close protoclusters based on
the rules described in Section 2.4, 17 BGCs in total were annotated from the genome
of “P. miuraensis” SMH-27-4 (Figures 3 and S1). The BGCs include three hybrids of non-
ribosomal peptide synthetases/type I polyketide synthase (NRPS/T1PKS), one siderophore,
four terpenes, three thioamitides, one NRPS, one linear azol(in)e-containing peptide/aryl
polyene hybrid (LAP/APE, probably hybrid), two class-I lanthipeptides, one glycocin and
one head-to-tail cyclized bacteriocin. BGC1 (NRPS/T1PKS) was regarded as the BGC for
miuraenamide A because the predicted substrate selectivity of its eight modules and their
assembly order matched the backbone of miuraenamide A, consisting of five polyketide
units and a tripeptide composed of alanine, tyrosine, and phenylalanine. The biosynthesis
mechanism of miuraenamide A will be validated in future research.
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The BGC sequence similarity network obtained by Big-SCAPE suggested the great
potential of this strain to produce novel secondary metabolites. Each of the five BGCs
(BGC1–BGC5) formed a cluster with the known BGCs from the minimum information
about a biosynthetic gene cluster (MIBiG) database (Figures 4 and S2), while the other 12
BGCs showed no similarity with the BGCs for known products. The detailed gene organiza-
tions of the BGCs are shown in Figures S3–S7. BGC1 was clustered with the BGCs encoding
the biosynthesis of nine myxobacterial depsipeptides: chondramide A (1), epothilone (2),
nannocystin A (3), myxothiazol (4), microsclerodermin (6), thaxteramide C (7), antalid (18),
and two cyclic depsipeptides from actinobacteria and cyanobacteria, microtermolide A (5)
and nodularin (8). BGC2 was clustered with the BGCs encoding the following metabo-
lites’ biosynthesis: two groups of cyanobacterial cyclic lipopeptides minutissamides (9–12)
and puwainaphycins (19–23), a cyanobacterial non-ribosomal peptide nostopeptolide A2
(25) [44], the membrane morphology-disrupting fungicide occidiofungin A (17) [45], the
fungal chlamydospore formation-inducer ralsolamycin (24) [46], the delftibactins that
are able to detoxify toxic soluble gold (28, 29) [47], and the myxobacterial linear peptide
myxoprincomide-c506 (15). BGC3 was clustered with the BGCs encoding the biosynthesis of
the myxobacterial cyclic depsipeptides myxochromides (13, 14) and the antialgal cyanobac-
terial peptide kasumigamide (16) [48]. BGC4 was clustered with the BGCs encoding the
biosynthesis of the bacterial siderophores aerobactin (26) and ochrobactin (27). BGC5 was
clustered with the BGCs encoding the biosynthesis of geosmin (30) and 2-methylisoborneol
(31), both of which are responsible for the earthy–musty odor in water.

3.4. Distribution of Gene Fuctions of the Strains of the Family Nannocystaceae

The family Nannocystaceae that contains “P. miuraensis” SMH-27-4 is known to be
ecologically diverse. To explore the distribution of the gene functions of this family, a com-
parative genomic analysis was performed for the genomes of representative strains from
five different genera in the family Nannocystaceae: “P. miuraensis” SMH-27-4, N. exedens
DSM 71, Pseudenhygromyxa sp. WMMC2535, P. pacifica DSM 14875, and E. salina DSM
15201. The orthologous protein-coding genes were identified, and the genomic functional
annotation was performed by the clusters of orthologous groups (COG) approach. Here,
the protein-coding genes were divided into core, accessory, and strain-specific genes based
on the distribution of orthologous genes through the examined strains (Table 2). The core
genes, common genes in the five strains, accounted for 16–19% of each genome, while
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the strain-specific genes accounted for 44–59%. The others were classified into the acces-
sory genes that occupied 25–37% of the genomes. The COG approach performs microbial
genome-wide functional annotation against the COG database, which consists of COGs
with manually curated annotation and classifies the COGs into 26 functional categories.
The distribution of COG functional categories can reveal to some extent the metabolic or
physiological features of the bacteria. Approximately 43% of the protein-coding genes of
each strain were classified in COG superfamilies, while more than half were not, suggesting
that the genomic resources of myxobacteria are underexplored. The numbers of genes of
each COG functional category are listed in Table S5.
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Table 2. Comparative genomic analysis of five strains of the family Nannocystaceae.

Strains Protein-Coding Genes
Orthologous Genes

COG Annotated Genes
Core Genes Accessory Genes Strain-Specific Genes

Pm 9145 (100%) 1460 (16%) 2500 (27%) 5185 (57%) 3891 (43%)
Ne 9295 (100%) 1469 (16%) 2347 (25%) 5479 (59%) 4020 (43%)
Ps 7726 (100%) 1475 (19%) 2847 (37%) 3404 (44%) 3389 (44%)
Pp 8182 (100%) 1448 (18%) 2859 (35%) 3875 (47%) 3516 (43%)
Es 8079 (100%) 1448 (18%) 2788 (35%) 3843 (48%) 3390 (42%)

The strains included in this analysis are the following: Pm “P. miuraensis” SMH-27-4, Ne N. exedens DSM 71, Ps
Pseudenhygromyxa sp. WMMC2535, Pp P. pacifica SIR-1, Es E. salina DSM 1520.

The distribution of functional categories of all COGs was similar between the five
strains (Figure 5A), indicating a possibility of conservation in the genomic functions within
this family. Except for the poorly characterized categories [R] and [S], the most abundant
categories were related to signal transduction mechanisms [T], transcription [K], and
lipid transport and metabolism [I]. The abundance of these categories suggests that these
myxobacterial strains evolved particular environmental response mechanisms of extra- and
intracellular signals that include diverse proteins and metabolites. The average population
of functional categories in this family quite varied by the number of core, accessory, and
strain-specific genes (Figure 5B). In the accessory genes, signal transduction mechanisms
[T] showed the significantly high distribution (16.6%) compared to the other categories
(lower than 11.2%). In the strain-specific genes, both signal transduction mechanisms [T]
and transcription [K] categories accounted for high distributions (14.4–17.2%). On the
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other hand, the distribution of the core genes was more homogeneous. This trend was
evidenced by the standard deviations of the distribution of 4.3%, 3.9%, and 3.4% for the
strain-specific, accessory, and core genes, respectively. The variation of the gene functions
and the percentage of the gene number (Table 2) in the strain-specific genes give an account
of the diversity of these genera in the family Nannocystaceae.
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Figure 5. Distribution of COG functional categories in five strains of the family Nannocystaceae.
(A) Distribution of functional categories in COGs by strains; (B) Average distribution of functional
categories of all strains by the core, accessory, and strain-specific genes. Abbreviations: A: RNA
processing and modification; C: Energy production and conversion; D: Cell cycle control, cell division,
chromosome partitioning; E: Amino acid transport and metabolism; F: Nucleotide transport and
metabolism; G: Carbohydrate transport and metabolism; H: Coenzyme transport and metabolism;
I: Lipid transport and metabolism; J: Translation, ribosomal structure and bio-genesis; K: Transcrip-
tion; L: Replication, recombination and repair; M: Cell wall/membrane/envelop biogenesis; N: Cell
motility; O: Posttranslational modification, protein turnover, chaperones; P: Inorganic ion trans-
port and metabolism; Q: Secondary metabolites biosynthesis, transport and catabolism; T: Signal
transduction mechanisms; U: Intracellular trafficking, secretion, and vesicular transport; V: Defense
mechanisms; W: Extracellular structures; X: Mobilome: prophages, transposons; Z: Cytoskeleton; R:
General function prediction only; S: Function unknown.

4. Discussion

The draft genome of “P. miuraensis” SMH-27-4 was sequenced, and de novo assembled
into 11.8 Mbp of 164 contigs. Both Kmer and BUSCO analyses suggested a high degree of
completeness of the genome assembly. We did not use third-generation long-read sequenc-
ing technologies but acknowledge that they facilitate the de novo assembly of complete
genomes, as longer reads can be aligned to repetitive sequences with high confidence and
increase assembly contiguity. Although the Illumina-based secondary generation short-
read sequencing can assemble over 99% of the complete genome, the few missing parts may
include essential genes, as recently illustrated in Pseudomonas aeruginosa [49]. The results
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of the 16S rRNA gene-sequence-based phylogenetic analysis and the genome-based taxo-
nomic classification by ANI values were consistent with each other and indicated that this
difficult-to-culture myxobacterium represents a novel genus in the family Nannocystaceae.
Aside from the BGC for miuraenamide A, the strain has 16 other BGCs that showed low or
no similarity with the BGCs for known products, revealing a great potential of the strain
to produce novel secondary metabolites. The similar distribution of the COG functional
categories through the strains from five genera within the family Nannocystaceae indicated
conserved genomic functions of this family. On the other hand, the average distribution
of COG functional categories by the core, accessory, and strain-specific genes suggests
that the five genera have diverse signal transduction and gene transcription mechanisms.
Regardless of the taxonomic and physiological novelty of this rare slightly halophilic
myxobacterium, the potential of great secondary metabolites production makes it worthy
of studying.

5. Conclusions

Myxobacteria are common in terrestrial habitats and known for their potential to
produce novel natural products, whereas marine-derived (or halophilic) ones are quite
rare and only seven species (five genera) have been identified since the isolation of the
first marine myxobacteria H. ochraceum and P. pacifica in 1998 [8]. Although these marine
myxobacteria are regarded as a good factory of valuable secondary metabolites beyond the
terrestrial ones, their cultivation is generally difficult and takes a long period for enough
growth. Their genomic information is therefore important to elucidate their great potential
to produce novel leads with unique molecular scaffolds and bioactivities. “P. miuraensis”
SMH-27-4 produces a series of PKS/NRPS hybrid molecules named miuraenamides [13],
but its metabolic profile indicated a scarcity of metabolite diversity; no other distinct
metabolites were detected in the extracts. The genomic analysis of this strain was therefore
performed in this study and revealed the presence of 17 BGCs for producing metabolites,
one of which was estimated to encode the biosynthesis of miuraenamides. The complete
genome sequence was not available in this study due to the extremely difficult cultivation
and DNA extraction from aggregated mucous cells. Nevertheless, because of the high-
quality sequence data, 93% coverage of the complete genome (the rest could be repetition),
and no overlooking of other possible BGCs, the present draft genome information could
contribute to improving the inadequate expertise in the marine myxobacterial genomic
functions, especially for hidden biosynthetic machineries leading to brand-new natural
products. Further studies will be needed to reveal the mechanism of the miuraenamide
biosynthesis as well as more precise genomic analysis.
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ters revealed by RiPPMiner; Table S5: COG classification of the protein-coding genes of five strains
in the family Nannocystaceae; Figure S1: Locations of BGCs. Figure S2: Chemical structures of the
secondary metabolites described in Figure 4; Figure S3: Organizations of BGC1 and its related BGCs
of other species; Figure S4: Organizations of BGC2 and its related BGCs of other species; Figure S5:
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