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Abstract: Fungal infections currently pose a real threat to human lives. In the current study, soil
bacterial isolates were screened for the production of antifungal compounds to combat human fungal
pathogens. Notably, the bacterial F1 isolate exhibited antimycotic action towards the Candida albicans
ATCC 10231 and Aspergillus niger clinical isolates. By employing phenotypic and molecular tech-
niques, we identified the F1 isolate as the Bacillus toyonensis isolate OQ071612. The purified extract
showed stability within a pH range of 6–7 and at temperatures of up to 50 ◦C. It demonstrated poten-
tial antifungal activity in the presence of various surfactants, detergents, and enzymes. The purified
extract was identified as 6-methoxy-1H-Indole-2-carboxylic acid using advanced spectroscopic tech-
niques. To optimize the antifungal metabolite production, we utilized response surface methodology
(RSM) with a face-centered central composite design, considering nutritional and environmental
variables. The optimal conditions were as follows: starch (5 g/L), peptone (5 g/L), agitation rate of
150 rpm, pH 6, and 40 ◦C temperature. A confirmatory experiment validated the accuracy of the
optimization process, resulting in an approximately 3.49-fold increase in production. This is the first
documented report on the production and characterization of 6-methoxy-1H-Indole-2-carboxylic acid
(MICA) antifungal metabolite from Bacillus toyonensis.

Keywords: Bacillus toyonensis; response surface methodology (RSM); central composite design (CCD);
indole carboxylic acid; antifungal

1. Introduction

A variety of secondary metabolites, including antibiotics, antifungals, and siderophores,
are produced by microbes in soil ecosystems to facilitate communication, competition, and
interaction with other species in the environment [1]. Few culturable microbial taxa provide
the bulk of known antibiotics, and little is known about most soil bacteria’s capacity for
biosynthesis [1]. The majority of recognized bacterial natural products, including currently
used antibiotics, are derived from the microbial isolates of the Actinobacteria, Proteobac-
teria, and Bacillus, which represent microorganisms that frequently form a minority in
soil microbial communities [1]. These natural sources avoid the contamination of water
and the environment and minimize the risk to animal and human health [2]. Many sec-
ondary metabolites with novel antifungal and antibacterial activities from different fungal
sources have also been characterized [2]. Secondary metabolites produced by microor-
ganisms cause the effective inhibition of the germination of conidia in various pathogenic
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fungi [3]. Recent studies reported the inhibitory role of secondary metabolites, including
the antagonistic activity against S. sclerotiorum and Alternaria dauci fungal pathogens [2].
Fungal illnesses have grown in medical, veterinary, and ecological importance over the
last half-century. Globally, the present burden of mycotic illnesses in humans has reached
several million cases [4,5]. A variety of fungi can result in diseases. However, Candida sp.
is probably the most commonly observed [6]. The increased use of immunosuppressive
medication, invasive surgery, and medical devices in modern medicine has caused a higher
prevalence of human fungal infections. Another contributing factor is the frequent use of
broad-spectrum antibiotics and antifungal medications. While these drugs are essential
for combating bacterial and fungal infections, their extensive use can disrupt the natural
balance of microbial communities in the body, thereby increasing the risks of diarrhea and
other fatal infections [7]. Collectively, the aforementioned factors have contributed to the
ongoing rise of invasive fungal infections, emphasizing the need for enhanced preventive
measures, early detection, and targeted treatment strategies to address this global health
challenge. The situation became more dangerous and challenging during and after the
2019 coronavirus disease (COVID-19) pandemic, where COVID-19 patients admitted to
intensive care units (ICU) had the same risk factors for invasive fungal infections, including
chronic respiratory diseases, corticosteroid medication, intubation/mechanical ventilation,
cytokine storm, etc. [8]. Many articles indicated co-infection caused by bacteria and fungi
in ICU COVID-19 patients, with Aspergillus infections being among them [9,10]. Mucormy-
cosis, also known as “Black Fungus”, has also been linked to COVID-19 patients, making
up approximately 70% of all mucormycosis cases reported [11]. Moreover, when the pre-
and post-COVID-19 eras are compared, there is a higher number of candidemia-COVID-19
co-infections [12]. Furthermore, Aspergillus fumigatus has been identified as one of the most
common sources of fungal infections in severely ill COVID-19 patients [13].

Bacillus toyonensis is a member of the Bacillus cereus group—it is a spore-forming,
Gram-positive organism [14]. It has enormous economic significance; for example, Bacillus
toyonensis BCT-7112 spores have been utilized as probiotic supplements in animal nutri-
tion [15]. It was previously reported to exhibit plant growth promotion, biodegradation,
and probiotic and biocontrol properties [16–18]. Its biocontrol properties are rarely reported;
however, Wang et al. reported its toyoncin-producing ability. Toyoncin is a bacteriocin
(a class of natural macromolecular protein) that is commonly produced by bacteria, e.g.,
Bacillus spp and Lactobacillus spp [19,20]. Toyoncin is an indole carboxylic acid derivative
that displays antibacterial action against two major foodborne pathogens, B. cereus (through
limiting the growth of its spores) and Listeria monocytogenes [20]. It also causes cell mem-
brane damage [20]. Indole carboxylic acid derivatives have been previously reported for
their antifungal activity [21,22] and have previously been documented to be produced by
algae [23] and bacteria, such as Micromonospora sp. [24] and Sandaracinus amylolyticus [25].

To create an optimized product with superior attributes and quality, software-based
optimization methods are used [26]. Response surface methodology (RSM) is a statistical
tool that applies lower-order polynomial equations to develop, improve, and optimize
a process with many factors that influence the response [27]. RSM reduces the overall
number of possible combinations, saving time and materials during experimentation [28].
Hence, it was deemed necessary to use such techniques for optimizing the production of
6-methoxy-1H-Indole-2-carboxylic acid (MICA) for the first time from Bacillus toyonensis
OQ071612.

RSM via the multifactorial design has been previously applied in our and resulted in
the maximum production of many valuable microbial products, including antibiotics [29,30],
antifungal products, [28], biosurfactants [31], and probiotics [32]. It has been previously estab-
lished that statistical growth condition optimization improves the yield and the activities of
various secondary metabolites. Therefore, this study aimed to identify, characterize, and struc-
turally elucidate an antifungal metabolite produced by Bacillus toyonensis OQ071612, followed
by the optimization of key physiological and environmental factors affecting production to
reach the maximum productivity of the respective antifungal metabolite.
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2. Materials and Methods
2.1. Collection and Phylogenetic Analysis of the F1 Strain

A soil isolate, coded F1, was recovered from a soil sample during a screening program
previously conducted in our lab [33]. The strain was identified microscopically, biochemi-
cally, and via molecular techniques. The extraction of chromosomal DNA was performed
in order to amplify and sequence the 16 S ribosomal RNA (16 S rRNA), as previously
reported [34]. The final consensus sequence was obtained using the Staden package pro-
gram version 2 (http://staden.sourceforge.net/) (accessed on 30 August 2023) and was
analyzed using BLASTn (http://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 30 August
2023). The MEGA X software (version 11) was used for the evolutionary and phylogenetic
analyses [35]. The isolate was deposited in the Culture Collection Ain Shams Univer-
sity (CCASU) (http://ccinfo.wdcm.org/collection/by_id/1186) (accessed on 2 September
2023).under the accession code Bacillus toyonensis isolate CCASU-2023-OQ071612.

2.2. Evaluation of the Antifungal Activity

The isolate antifungal activity was demonstrated using the agar cross-streak technique
against Candida albicans ATCC 10231, as was previously reported [36,37]. A dual culture
technique was used for screening against A. niger [36,37]. After a 7-day preculture of
A. niger on SDA (Sabouraud dextrose agar medium), mycelial fragments (0.5 × 0.5 cm)
were placed on another plate on which the F1 isolate was co-cultivated [38]. The zone
of inhibition and the percentage inhibition of fungal radial growth were calculated after
incubation 7 days at 28 ◦C, as previously reported [39,40].

2.3. Evaluation of the Fungicidal Activity

To evaluate whether the antifungal activity was fungistatic or fungicidal against A.
niger, agar plug was taken from the zones of inhibition area, added to a new SDA plate,
followed by incubation at 28 ◦C for a week, and the growth of A. niger was monitored
as previously described [40–42]. If the growth of A. niger resumed, this indicated that
the metabolite had fungistatic properties, meaning it inhibited the growth of the fungus
without killing it. A. niger was also cultured on a plain SDA plate to show its normal
growth, and this served as a positive control.

2.4. Active Metabolite Production

A basal production medium was formulated, as previously stated by Singh et al. [39],
consisting of various components such as glucose, Na2HPO4, K2HPO4, NH4Cl, NaCl,
MgSO4, and CaCl2, at a pH 7 [43]. The isolate was inoculated into the medium at a count
of 1 × 107 CFU/mL, and the optimal incubation time was determined by preparing seven
flasks of inoculated medium and sampling one flask daily for a week. Then, aliquots
were centrifuged for 10 min at 51,610× g and the supernatant was tested for antifungal
metabolite production against Candida albicans ATCC 10231 using the agar cup–plate
technique. The resulting inhibition zones were measured each day and the largest value
indicated optimum incubation time [44].

2.5. Testing the Intracellular and Extracellular Nature of the Antifungal Metabolites

To separate extracellular metabolites from the cell pellet, a micro-centrifuge (Centurion
Scientific-K240R, West Sussex, UK) was used to centrifuge 1 mL of the culture for ten
minutes at 51,610× g. The supernatant was subsequently tested on SDA plates. This was
carried out on the day when the production of antifungal metabolites was at its peak, as
determined by the zones of inhibition. The average diameter of the zones of inhibition was
calculated from 3 replicates of each experiment. The plain production media was treated
similarly to serve as a control plate [44].

In order to test the intracellular metabolite, the cells that were pelleted during cen-
trifugation were washed by 1 mL sterile saline and resuspended in 200 µL of cell lysis
buffer (Thermo Scientific™ B-PER™, Waltham, MA, USA) and vortexed (Benchmixer™

http://staden.sourceforge.net/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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vortex mixer, Sayreville, NJ, USA). Afterwards, the pellets were incubated on ice for half
an hour. Cells were then placed in a 1.5 mL Eppendorf tube and gently moved under the
tip of the sonicator probe (Ultrasonic homogenizer, model 300 VT, 115 V/60 HZ (Anhui
Zhongke Duling Commercial Appliance C, Hefei, China). The samples were sonicated at a
frequency of 20 kHz for 30 s with 1 min stop intervals on ice between each run (pulsing
mode). The procedure was repeated 4–5 times. Samples were then cooled on ice for 5 min
and centrifuged for 15 min at 51,610× g to pellet debris. The supernatant (cell free lysate)
was taken to a new tube and was tested, as mentioned above [45]. Plain production media
was again treated similarly and served as the control [45]. The results were compared to
those of the extracellular activity.

2.6. Extraction and Purification

After the centrifugation of the culture broth (20,160× g for 30 min), the culture super-
natant was filtered and stored at 4 ◦C for additional analysis. To investigate the peptide
nature of the metabolite, ammonium sulphate was mixed with the supernatant, incubated
at 4 ◦C with shaking overnight, and was monitored for any peptide precipitation [43].

The extraction of the antifungal metabolites was carried out as previously reported [46,47].
Briefly, equal amounts of various solvents, including diethyl ether, methanol, ethanol,
chloroform, hexane, ethyl acetate (EA), acetone, dichloromethane, and n-butanol (PioChem,
Giza, Egypt; all of HPLC grade) were used at a ratio 1:1 (v/v) to extract the metabo-
lite(s) [48]. After shaking vigorously for ten minutes at room temperature, each mixture
was poured into a separating funnel and left to stand until the organic and aqueous phases
were distinct, then the organic phase was collected in separate containers. This process
was repeated thrice, and the organic phase later evaporated to dryness under reduced
pressure using a rotary evaporator at 45 ◦C (Staurt RE300; Kaison Co., Essex, UK) to
yield different organic solvents extracts [49]. The antifungal activity of the extracts was
tested using the agar well diffusion technique, and negative controls were created using
the corresponding solvents [48,50]. The solvent that showed the maximum extraction of
the antifungal metabolite—expressed by the largest zone of inhibition—was chosen for
subsequent procedures [51].

The purification of the antifungal metabolite was carried out using chromatography
silica gel column (3.5 × 80 cm), mesh size 60–120 (Merck, Darmstadt, Germany). The
linear gradients of increasing polarity for the chloroform and ethyl acetate solvents were
used, and the flow rate was adjusted to 1 mL/min [52]. Fractions were collected at regular
intervals, spotted on thin layer chromatography (TLC) plates and developed using the
same solvent system. Elutions with similar retardation factors (RF) were pooled together
and pooled fractions (PFs) were dried, weighed, and checked for their antifungal activity
using the bioautography method against C. albicans ATCC 10231 [53]. The fractions with
the greatest antifungal activity were purified once more using the column chromatography
method, and the purities were checked using TLC plates. Purity was confirmed via the visu-
alization of a single spot under a UV lamp (UVitec®, Novolab, Geraardsbergen, Belgium) at
254 nm and 365 nm. This made it possible to prove the antifungal compound’s purity in
the fractions, which was crucial to determine how effective they would be as therapeutic
agents [54].

2.7. Physicochemical Properties of the Antifungal Metabolite(s)

In order to ascertain the antifungal metabolite’s thermal durability, the following
temperatures were applied to 100 µL of the purified antifungal extract (100 µL g/mL) in
7 screw-capped ampoules for one hour: 30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C. The
final ampoule was autoclaved for 15 min at 121 ◦C [55]. Additionally, 1 mL of 0.1 M
phosphate buffer at various pH levels (5.7–8.0) was added to 1 mL of the tested metabolite
for an hour to assess the impact of pH on the stability of the metabolite. The effects of
various detergents, including sodium dodecyl sulphate (SDS), Tween 20, Tween 40, and
Tween 80, were also studied. A total of 10 ml of aqueous detergent solution (10 mg/mL) was
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combined with 100 µL of the antifungal solution and incubated at 30 ◦C for six hours [56].
The effect of enzymes was examined by combining 100 µL of the antifungal solution with
10 mL of the enzyme solutions (1 mg/mL), including proteinase K, alpha amylase, and
lysozyme (all from Sigma-Aldrich) and were incubated at 30 ◦C for 3 h. As controls,
tubes containing the antifungal solution without any enzymes or detergents were used.
Moreover, control tubes containing the enzymes and detergents only without the antifungal
metabolite were also tested for any activity [56]. Following the aforementioned treatments,
the metabolite’s residual antifungal activities were examined using cup–plate method
(100 µL/cup), and the average values of the inhibitory zones were recorded [55].

2.8. Spectroscopic Analysis

The spectroscopic analysis was carried out at the Drug Discovery and Development
Research Centre (DDDC), Ain Shams University Cairo, Egypt. A total of 1 mg of the sample
was dissolved in 10 mL of DMSO and a Shimadzu UV-1800 spectrophotometer was used to
record the ultraviolet (UV) spectrum in a range of 200–400 nm. (Two-dimensional) NMR
spectroscopic data were measured at room temperature in methanol on a Bruker® Avance
III HD 400 MHz spectrometer, Bremen, Germany, equipped with a 5 mm broad-band
multinuclear (PABBO) probe. The chemical shifts were reported in parts per million (ppm)
relative to TMS (δ = 0.0), used as internal standard, and the coupling constants (J) were
reported in Hertz (Hz). All the 1 H and 13C signals were assigned using the 1H—1H COSY,
1H—13C HSQC, and 1H—13C HMBC experiments. The electrospray ionization mass
spectrometry (ESI–MS) spectrum analysis of the isolated compound was recorded on a
Shimadzu LC-MS 8045 (Shimadzu, Japan).

2.9. Factors Affecting Antifungal Metabolite Production

The ‘one-factor-at-a-time’ (OFAT) method was employed for the primary screening of
important factors affecting production. These included various carbon and nitrogen sources.
Glucose already present in the medium was replaced with 4 other carbon sources (glycerol,
starch, lactose, or sucrose), all at 5 g/L. Similarly, the ammonium chloride (nitrogen source)
was replaced with 4 other nitrogen sources (casein, urea, yeast, or peptone) all at 1 g/L,
using the best carbon source chosen. Each experiment was carried out in triplicate, and the
matching inhibition zones’ mean values were calculated [43]. The optimal nitrogen and
carbon sources were chosen for the next assays.

2.10. Production Optimization Using RSM

For the optimization procedure, a face-centered central composite design (CCD) was
used [57]. The factors A, B, C, D, and E were the carbon source, nitrogen source, temperature,
pH, and agitation rate, respectively. As shown in Table 1, three levels of each factor were
evaluated. The inhibition zone diameter (response value) was determined after 4 days.
Utilizing Design Expert® v. 11.0 (Design Expert® Software, Stat-Ease Inc., Statistics Made
Easy, Minneapolis, MN, USA), the experiments were designed. A total of 22 runs were
completed. To clarify the correlations between the five experimental variables and the
inhibition zone widths, three-dimensional response surface graphs were plotted.

Table 1. Parameters used for the face-centered central composite design.

Factor Symbol
Level

−1 0 +1

Starch (g/L) A 1 3 5

Peptone (g/L) B 1 3 5

Temperature (◦C) C 30 35 40

pH D 6 7 8

Agitation rate (rpm) E 150 225 300
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2.11. Confirmation of the Model Used for Optimization

The recommended optimal conditions were obtained from the Design Expert® Soft-
ware, and a further experiment was run using these optimum parameters. The concentra-
tion of antifungal metabolites acquired under these settings was compared to that obtained
under the basal conditions.

2.12. Statistical Analysis

Every experiment was performed in triplicate, and the results shown were the mean with
the standard error. Experimental design and graphical plots were created using Design Expert®

v. 11.0. ANOVA analysis was employed to statistically validate the experimental data.

3. Results
3.1. Antifungal Activity and the Identification of the F1 Isolate

The F1 isolate showed significant antifungal activity against C. albicans (IZ = 12.6± 0.58 mm)
(Figure S1) and radial mycelial growth inhibition of 61.3% using the dual culture method
against A. niger (Figure S2). The F1 isolate was found to be a Gram-positive, spore-forming
bacteria with the following biochemical reactions: positive for citrate utilization, urease
synthesis, and starch and casein hydrolysis; negative for catalase and gelatin liquefaction.

The 16 S ribosomal RNA sequence of F1 isolate was obtained and deposited in Gen-
Bank (NCBI code, OQ071612 (https://www.ncbi.nlm.nih.gov/nuccore/OQ071612 (ac-
cessed on 30 August 2023). A BLASTn similarity search with Bacillus toyonensis OQ071612
as the query sequence found a 98.8% similarity with the Bacillus toyonensis strain G (NR
_025357.1). Their close kinship was further supported by the phylogenetic tree, which
was created (Figure S3). Accordingly, the F1 isolate was identified as Bacillus toyonensis
OQ071612.

3.2. Characterization of the Antifungal Metabolite

It was observed that no growth of A. niger could be observed upon culturing the agar
plug that was excised from the edge of the inhibition zone, confirming that the antifungal
metabolite had a fungicidal activity against A. niger. It was shown that an incubation period
of 4 days was the optimum time for the highest production of the respective antifungal
metabolite (Figure S4). Production on day 4 was significantly higher (p < 0.05) than
production on all other days, except day 3. The antifungal metabolite was found to be
secreted in the culture broth of Bacillus toyonensis OQ071612 in larger amounts than those
obtained intracellularly, as indicated by the resulting mean inhibition zones (Figure S5). This
proved that the antifungal metabolite is excreted extracellularly in a reasonable quantity.

3.3. Solvent Extraction

Ammonium sulphate did not precipitate the creation of any peptides from the culture
supernatant. As displayed in Table 2, ethyl acetate was the optimum solvent producing a
dry weight of 0.28 mg from one ml culture broth and inhibition zones of 14.4 and 14.1 mm
against the C. albicans ATCC10231 and A. niger clinical isolates, respectively. Based on their
TLC characteristics, 145 fractions were gathered and aggregated into 22 pooled fractions
(PFs). The bioautography assay revealed the highest antifungal activity for PFs 17, 18, and
19. Other PFs displayed little or no activity (Table 3).

Table 2. Extraction yield and mean inhibition zones of different solvents.

Solvent Extraction Yield (mg/mL)
Mean Inhibition Zones (mm) ± SD

C. albicans A. niger

Ethyl acetate 0.28 14.4 ± 0.32 14.1 ± 0.58
Chloroform 0.26 14.11 ± 0.16 14.0 ± 0

https://www.ncbi.nlm.nih.gov/nuccore/OQ071612
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Table 2. Cont.

Solvent Extraction Yield (mg/mL)
Mean Inhibition Zones (mm) ± SD

C. albicans A. niger

n-hexane
Dichloromethane

0.22
0.19

14.0 ± 0
13.2 ± 0.58

13.9 ± 0.72
13.0 ± 0

Acetone 0.15 12.43 ± 0.52 12.1 ± 0.15
Diethyl ether 0.11 11.3 ± 0.42 11.4 ± 0.33
n-butanol(n-butyl alcohol) - - -
Ethanol - - -
Methanol - - -

Table 3. Solvent ratio for each pooled fraction, numbers of recovered elutes, and corresponding zones
of inhibition.

Pooled Fractions
(PFs)

Ratio of
Chloroform:

Ethyl Acetate
Elutes Recovered Retardation

Factor (RF)
Dry Weight of
Each PF (mg)

Mean Inhibition Zones (mm) ± SD

C. albicans A. niger

1 Chloroform 100% 1–4 0.87 0.63 - -
2 95:5 5–12 0.32 0.25 - -
3 90:10 13–19 0.44 0.71 11.0 ± 0 -
4 85:15 20–27 0.57 0.34 11.3 ± 0.14 11.0 ± 0
5 80:20 28–44 0.23 0.65 11.22 ± 0.28 11.3 ± 0.50
6 75:25 45–54 0.85 0.11 12.33 ± 0.61 12.11 ± 0.52
7 70:30 55–62 0.79 0.42 12.5 ± 0.12 12.26 ± 0.64
8 65:35 63–72 0.65 0.22 12.58 ± 0.21 11.6 ± 0.0.58
9 60:40 73–75 0.52 0.64 13.34 ± 0.64 13.12 ± 0.18

10 55:45 76–83 0.89 0.89 13.76 ± 0.30 12.3 ± 0.43
11 50:50 84–86 0.18 0.90 13.6 ± 0.48 13.1 ± 0.11
12 45:55 87–90 0.38 0.40 13.3 ± 0.23 12.76 ± 0.68
13 40:60 91–96 0.76 0.56 13.76 ± 0.12 13.4 ± 0.71
14 35:65 97–101 0.41 0.71 14.3 ± 0.64 14.0 ± 0
15 30:70 102–108 0.58 0.65 14.7 ± 0.56 14.3 ± 0.33
16 25:75 109–114 0.62 0.79 14.7 ± 0.16 14.6 ± 0.18
17 20:80 115–120 0.11 0.40 15.6 ± 0.44 15.4 ± 0.35
18 15:85 121–126 0.21 0.81 15.8 ± 0.72 15.6 ± 0.62
19 10:90 127–134 0.25 0.21 15.4 ± 0.14 15.1 ± 0.27
20 5:95 135–139 0.97 0.23 11.3 ± 0.33 11.1 ± 0.12
21 2.5:97.5 140–142 0.70 0.49 12.76 ± 0.54 12.4 ± 0.15
22 Ethylacetate 143–145 0.94 0.36 13.6 ± 0.32 13.3 ± 0.26

The elutes 121–126 forming PF 18 were obtained using a chloroform/ethyl acetate
solvent system with a ratio of 15:85 and exhibited the strongest antifungal activity, as
shown in the bioautography assay (Figure S6). Figure S7 confirms the purity through the
visualization of a single spot on TLC plate under a UV lamp (UVitec®) at 254 nm and
365 nm. Figures S8 and S9 show the HPLC chromatogram and the positive ESI–MS
spectrum analysis of the isolated compound, respectively. Figure S10 shows the linear
relationship between the various concentrations and the inhibition zones. The following
equation was a representative of this linear relationship: y = 0.1109x + 9.1094 (Y = inhibition
zone diameter in mm, X = concentration of the best active fraction in µg/mL).

3.4. Physicochemical Properties of the Antifungal Metabolite(s)

The bioactive metabolite of B. toyonensis preserved its activity up to 50 ◦C. Higher
temperatures resulted in a declined activity while autoclaving at 121 ◦C for 15 min caused
a complete loss in activity (Figure 1a). Regarding pH, the metabolite preserved its action
over a pH range from 6–7 (Figure 1b). Likewise, activity was not influenced by Tween 20,
40, and 80; SDS; alpha amylase; proteinase K; or lysozyme (Figure 1c). As controls, these
enzymes and detergents showed no activity against the tested fungus.
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3.5. Spectroscopic Analysis

The purified metabolite appeared as an off-white amorphous solid powder. The
ultraviolet (UV) absorption spectrum documented a λmax at 273 nm (Figure 2). For fur-
ther confirmation of the respective λmax, Figure S11 demonstrates different dilutions
(2–18 µg/mL) prepared for the respective compounds, and their recorded UV absorbances
at the chosen lambda maximum HPLC-ESIMS spectrum of the purified metabolite revealed
a pseudomolecular ion peak at m/z 192 (M+H) (Figures S8 and S9). The 1H NMR spec-
trum, COSY (Figure 3a), displayed correlations between coupled hydrogens, while HSQC
(Figure 3b) allowed for the assignment of carbons with connected protons. Connectivity be-
tween all groups is listed in Table 4 along with HMBC assignments for long range 1H—13C
couplings (Figure 3c).

Table 4. 1H NMR and 13C NMR data of the pure antifungal metabolite.

Position δH (MeOD, 400 MHz, J in Hz) δC Obtained from, COSY, HMBC and HSQC Spectra (MeOD,
100 MHz)

1 (NH) 6.3 (s) -
2 - 124.1 (C)
3 7.10 (s) 111.75 (CH)
4 7.41 (m) 114 (CH)
5 6.85 (m) 119.6 (CH)



Microorganisms 2023, 11, 2835 9 of 21

Table 4. Cont.

Position δH (MeOD, 400 MHz, J in Hz) δC Obtained from, COSY, HMBC and HSQC Spectra (MeOD,
100 MHz)

6 156 (C)
7 7.08 (brs) 121.6

6-OCH3 3.76 (s) 53.5 (C)

Assignments were carried out based on COSY, HSQC, and HMBC experiments.
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Based on the results obtained from the advanced spectroscopic analysis, the structure
of the metabolite was established as 6-methoxy-1H-Indole-2-carboxylic acid (Figure 4).
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3.6. Effect of the Composition of the Culture Media

The impact of various C and N sources on the IZ diameters produced by B. toyonensis
against C. albicans is shown in Figure 5. Large inhibitory zones showed an increase in the B.
toyonensis synthesis of the antifungal metabolite when compared to that obtained in normal
production media (IZ diameter = 12.56 mm). Starch (5 g/L) and peptone (1 g/L) were chosen
for further research since they influenced the maximum production of the active metabolite.
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3.7. Optimization of the Bacterial Culture Conditions Using RSM

The antifungal metabolite production was well optimized, and the values of the
assessed factors are displayed in Table 5. The resulting equation is as follows:

1/
√

IZ = 0.313021− 0.014527× starch− 0.004163× peptone− 0.000532temperature + 0.002966× pH+
0.000019× agitation rate.

Table 5. Observed and predicted responses of the central composite design runs.

Run A: Starch B: Peptone C:
Temperature D: pH E: Agitation

Rate

Observed
Inhibition Zone

(mm)

Predicted
Inhibition Zone

(mm)

1 5 3 35 7 225 18.6 18.09
2 3 3 30 7 225 13.76 14.46
3 1 3 35 7 225 11.76 11.43
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Table 5. Cont.

Run A: Starch B: Peptone C:
Temperature D: pH E: Agitation

Rate

Observed
Inhibition Zone

(mm)

Predicted
Inhibition Zone

(mm)

4 1 5 40 8 150 12.3 12.59
5 5 5 40 6 150 20.3 20.01
6 5 5 30 6 300 19 18.94
7 3 3 35 7 150 14.76 14.99
8 5 1 40 8 150 17.3 17.25
9 1 1 30 6 150 11.3 10.73
10 5 1 40 6 300 17.7 17.54
11 3 5 35 7 225 15.76 15.77
12 1 5 40 6 300 12.76 12.89
13 3 3 40 7 225 15.3 15.07
14 5 1 30 8 300 16.3 16.17
15 5 5 30 8 150 19.3 18.65
16 3 3 35 6 225 15 15.14
17 3 3 35 7 300 14 14.53
18 3 3 35 8 225 13.3 14.38
19 3 1 35 7 225 13 13.76
20 1 1 40 8 300 11 10.12
21 1 5 30 8 300 12 11.52
22 3 3 35 7 225 14.3 14.76

The significance of the generated model was assessed using ANOVA (Table 6). The
model’s F-value was 183.58 (p-value < 0.0001), demonstrating its significance. The signifi-
cant model terms were A, B, C, and D, which all have p-values under 0.05. Additionally, a
low coefficient of variation of 1.36 was found, indicating the strong dependability of the
experimental values. The coefficient of determination, R2, which was 0.9829, indicates that
the model could account for 98.2% of the response variability. Additionally, a respectable
adj R2 of 0.9775, closely agreeing with the pred R2 of 0.9712, was attained. Finally, the
adequate precision, or signal to noise ratio, was equal to 44.804. This model was therefore
appropriate for navigating the design space.

Table 6. The results of ANOVA analysis of the CCD model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.0117 5 0.0023 183.58 <0.0001 significant
A-Starch source 0.0106 1 0.0106 827.52 <0.0001
B-peptone
source 0.0009 1 0.0009 67.96 <0.0001

C-Temperature 0.0001 1 0.0001 6.93 0.0181
D-pH 0.0001 1 0.0001 8.62 0.0097
E-Agitation rate 0.0000 1 0.0000 2.05 0.1718
Residual 0.0002 16 0.0000
Corrected Total 0.0119 21

The 3D plots in Figure 6a–c illustrate how the IZ is influenced by any two factors.
The suggested ideal conditions for maximum production of the 6-methoxy-1H-Indole-2-
carboxylic acid were determined to be starch 5 g/L, peptone 5 g/L, an agitation rate of
150 rpm, a pH of 6, and a temperature of 40 ◦C.

The probability of residuals, the Box–Cox transformation and the predicted versus
actual values plots are displayed in Figure 7a–c, suggesting the linear pattern, the necessary
transformation, and an acceptable correlation between the predicted and the actual data,
respectively. In Figure 7d, the residual vs. run plot shows that the points were randomly
distributed around zero, which validates the generated model.
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Figure 6. The 3D response surfaces of the five parameters affecting activity of metabolite produced by B.
toyonensis OQ071612. When two factors where plotted, the other three factors were kept at optimum
levels. (a) The effect of the carbon source and nitrogen source, (b) the effect of the pH and carbon source,
and (c) the effect of the carbon source and temperature on antifungal metabolite production.
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of lambda to inverse square root. (c) Predicted vs. actual plot showing points close to the straight
line. (d) Residual vs. run plot showing a random scatter around zero.

3.8. Confirmatory Experiment Using Optimal Conditions

The confirmation trial was conducted using the recommended optimal levels, yielding
a maximal inhibition zone of 21.3 mm or a concentration of 109.92 µg/mL. As a result, the
concentration of the metabolite was 3.49 times higher under the optimum conditions than
it was under the unoptimized ones (12.6 mm, corresponding to 31.48 µg/mL) (Figure 8).
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4. Discussion

The antifungal properties of the soil F1 isolate were examined in the current investi-
gation. Using the cross-streak and agar well diffusion procedures, significant antifungal
activity against C. albicans and A. niger were established. The F1 isolate was identified as B.
toyonensis based on its morphology, biochemical characteristics, and 16 S ribosomal RNA
sequencing (NCBI GenBank accession number OQ071612). This Gram-positive isolate be-
longed to Bacillus, which is frequently cited as a source of beneficial bioactive compounds.
The genus Bacillus are known as a bio-factor in antifungal secondary metabolites that
combat many pathogenic fungal strains [58]. Previously, a strain of B. toyonensis obtained
from the spontaneous cocoa beans fermentation showed a significant fungistatic activity
against Aspergillus carbonarius [59]. In another study, B. toyonensis exhibited antifungal ac-
tivities against many plant fungal pathogens [60]. Moreover, it showed many antimicrobial
properties [61] and targeted activity against B. cereus and Listeria monocytogenes through
its toyoncin production ability [20]. A soil-recovered strain of B. toyonensis has also shown
promising insecticidal activities in former studies [62].

In the current study, the respective metabolite was found to be formed extracellularly,
and ethyl acetate was used to extract it with a considerably higher yield (0.28 mg/mL).
A silica gel thin layer chromatogram was used to identify the active fraction (PF18) with
the highest antifungal activity, and bioautography testing against C. albicans served as
confirmation. The metabolite’s primary utility in pharmacotherapy is that it demonstrated
fungicidal activity [33]. We identified this compound as 6-methoxy-1H-Indole-2-carboxylic
acid using 1D- and 2D-NMR and LC-PDA-MS spectral studies. This compound contains
the indole carboxylic acid moiety, which had been previously reported for its antifungal
and antimicrobial activities [63] from various microorganisms and algae [23]. Furthermore,
4-[(1E)-3-methylbuta-1,3-dienyl]-1H-indole-3-carbaldehyde (indiacene A) and -[(1E,3E)-4-
chloro-3-methylbuta-1,3-dienyl]-1H-indole-3-carbaldehyde (indiacene B)-prenyl indoles
harboring the same moiety were extracted and purified from the culture broth of the
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Myxobacterium Sandaracinus amylolyticus [25]. Moreover, 3-methyl-1Hindole- 2-carboxylic
acid and 1H-indole-3-carboxaldehyde were previously isolated from the culture broth of
Micromonospora sp. and showed antagonistic activity against many pathogens, including
Staphylococcus aureus, Enterococcus faecium, and Escherichia coli [64].

Even though 1H-Indole-2-carboxylic acid derivatives have been reported in the litera-
ture, this is the first report denoting its production by B. toyonensis OQ071612. The method
through which secondary metabolites are produced by microorganisms is complex [65].
The quality and quantity of the produced metabolites can be affected by slight modifications
to the medium components and/or circumstances. Hence, the best sources of carbon and
nitrogen were first identified using the OFAT method. Carbon and nitrogen are essential
components needed for the growth of bacteria and the synthesis of metabolites [64]. In
bacterial fermentation operations, carbohydrates are typically employed as carbon sources,
but nitrogen sources can be either organic or inorganic [64,66]. In this investigation, the best
media components for maximizing metabolite production were identified to be starch and
peptone. Starch is agreed to be an important medium component for antifungal compounds
production from microorganisms. Maximum growth and antibiotic production was found
to occur when starch was used as the only C source [67]. This is in accordance with Shakeel
et al. (2016), who reported that starch was the optimum carbon source for the Strepto-
myces platensis 3–10 growth [68]. Jacob et al. (2014) reported that antibacterial metabolites
were produced at a higher level with starch as the carbon source in Streptomyces nogalater
NIIST A30 [69]. Chen et al. (2022) showed that the antifungal metabolites production
was significantly improved with the addition of soluble starch in S. alfalfae [70]. Carbon
sources are essential components not only in constructing cellular materials but also when
utilized as energy sources [71]. Nitrogen, on the other hand, is crucial for nucleic acid and
protein production, which are the raw materials that create cellular metabolites [72]. In
fermentation, the interaction between cell growth and secondary metabolite secretion is
critically affected by the growth-limiting nutrients at certain concentrations [68]. Hence,
selection is an essential step in the large-scale production of bacterial secondary antifungal
metabolites [70]. Peptone is a complex mixture of peptides, with a small content of free
amino acids, obtained from the enzymatic hydrolysis of animal proteins. The peptides
play an principal role in cell metabolism by supplying essential amino acids and metabolic
energy, and this explains the significant effect of peptone concentration on the metabolite
production [73]. Chattopadhyay et al. (1997) proposed peptone as a nitrogen source for
the maximum antifungal activity of Streptomyces rochei G 164 [74]. However, for different
strains of the same species, e.g., ACTA1551, Kanini et al. (2013) found soy peptone to be the
most appropriate source of nitrogen for antifungal activity against Fusarium oxysporum f.
sp. Lycopersici [75]. Moreover, peptone was considered an appropriate medium component
for antifungal production from Streptomyces chilikensis ACITM-1 [67].

To improve and optimize the production of the antifungal metabolite, we investi-
gated the growth condition variables and their interactions using a powerful statistical
method: RSM. RSM has frequently been employed to enhance the production of antifungal
metabolites by several soil bacterial isolates [76]. This method creates interactive plots and
model equations that show how various parameters affect a certain reaction [77]. This is all
accomplished with reasonable resources and time, as opposed to the OFAT approach. The
CCD, one of the most widely used and effective designs, is perfect for subsequent analysis,
with a manageable number of runs [78]. To investigate the effects of five variables (starch,
peptone, pH, temperature, and agitation) on production, a sum of 22 runs were performed.
The significance of the model was assessed using ANOVA, which offers an indication of the
sources of variance [79]. The significant nature of the model (p value < 0.0001) was demon-
strated using a large F-value (Fisher’s value = 183.58), which compares the mean square
values of the model and residual errors [61]. The determination coefficient, R2, adjusted
R2, and predicted R2 values, all being near 1, generally indicate excellent correlation for
any regression model [80,81]. The R2 value (0.982) proved a good fit between observed
and predicted responses. The obtained adj R2 (0.9775), which determines whether extra
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input factors contribute to the model, was also acceptable. The ability of the model to
precisely predict a response, or pred R2 (0.9712), should vary from the adj R2 by a value
of no more than 0.2, which was the case here [75]. The signal-to-noise ratio, or adequate
precision, was 44.804, which is greater than 4 and suggests a good signal. Furthermore, the
reliability of the trials was indicated by the low coefficient of variation (CV%) of 1.36 [82].
The p-value was used to identify the factors that had a significant impact on the metabolite.
Starch (A), peptone (B), temperature (C), and pH (D) were all significant (p < 0.05), as
presented in the results, showing that these four variables influence the production. The
model was displayed as three-dimensional plots, a three-dimensional depiction of the
response for chosen components, to help understand the influence of the factors on the
antifungal metabolite yield. These charts show how two variables interact, which makes
it possible to determine the optimum experimental setup directly. As shown in the color
code, a red zone indicates maximum inhibition zones, and thus, maximum production,
while a blue zone indicates the minimum production of the antifungal metabolite. These
3D plots, together with the numerical optimization function in the software, determine the
optimum conditions for maximum antifungal metabolite production, and these conditions
were verified experimentally. Our design and optimization model were validated because
the actual experimental results were in good agreement with the projected outcomes from
the software for this experiment. The metabolite produced a maximal inhibition zone of
21.3 mm, which is equal to 109.92 µg/mL. Therefore, compared to unoptimized conditions
(31.475 µg /mL), optimization in our investigation was able to increase the B. toyonensis
OQ071612 production of the metabolite by approximately 3.49-fold.

Graphical model diagnostics are plotted by the software (Design Expert® v. 11.0,
Minneapolis, MN, USA) to verify ANOVA results. These plots include normal plots of
residuals (Figure 7a), which reveal whether the residuals (difference between an actual and
predicted value) follow a normal distribution, i.e., a straight line or not. The Box–Cox plot
recommends the correct power transformation, based on the best lambda value obtained at
the lowest point of the curve. In our case, the software recommended a transformation to
the inverse square root, as shown in Figure 7b. Another diagnostic plot is the predicted vs.
actual plot, which displays the values not easily predicted by the model (Figure 7c). Finally,
the residual vs. run plot (Figure 7d) identifies trends that indicate lurking variables that
influence the response and ruin the analysis.

5. Conclusions

This study demonstrates the necessity of the continuous deciphering of promising
antifungal metabolites from natural sources. Herein, a soil isolate exhibited promising
antifungal activities against Candida albicans and A. niger was identified as Bacillus toyonensis
OQ071612. The produced antifungal metabolite exhibited promising fungicidal properties
and stability within a pH range of 6–7, temperatures of up to 50 ◦C, and in the presence
of various surfactants, detergents, and enzymes. The antifungal molecule was chemically
identified as 6-methoxy-1H-Indole-2-carboxylic acid, using advanced spectroscopic tech-
niques. Its production was statistically optimized using response surface methodology
(RSM) with a central composite design, resulting in an approximately 3.49-fold increase.
This is the first report on the production optimization of the respective chemical moiety
from Bacillus toyonensis against human fungal pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11122835/s1, Figure S1: Cross-streak method of
isolate (F1) against Candida albicans ATCC10231; Figure S2: Dual culture technique showing inhibitory
effect of the isolate (F1) against A. niger. (a) shows clear zone between the edges of fungal mycelia
and bacterial colonies. (b) shows the control, inoculated with A. niger without streaked bacteria.
(c) is the control, showing the diffuse growth of A.niger in the presence of a non-productive bacteria;
Figure S3: Molecular phylogenetic analysis of the query isolate Bacillus toyonensis OQ071612 strain
(F1) using the maximum likelihood method based on the Tamura–Nei model in MEGA X; Figure S4:
Effect of incubation time on the yield of the antifungal metabolite produced by Bacillus toyonensis
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OQ071612 against Candida albicans ATCC10231; Figure S5: Average inhibition zones of the tested
intracellular and extracellular antifungal metabolite(s) produced by Bacillus toyonensis OQ071612
against Candida albicans ATCC10231; Figure S6: The bioautography method was used to determine
the antifungal activity of the pooled fractions obtained from column chromatography fractionation
against C. albicans. Plate (a) highlights the zone of inhibition caused by the fractions of the B.
toyonensis metabolite with the most potent antifungal activity. Plate (b) shows the control plate;
Figure S7: Visualization of the most active pooled fractions of the antifungal metabolite of B. toyonensis
isolate OQ071612 under a UV lamp (UVitec®) at 365 nm (a) and at 254 nm (b); Figure S8: HPLC
chromatogram of the isolated compound; Figure S9. Positive ESI–MS spectrum analysis of the
isolated compound; Figure S10: The relationship between the inhibition zones against Candida
albicans ATCC10231, corresponding to various antifungal metabolite concentrations; Figure S11: The
relationship between the UV absorbance at λmax at 273 nm and various concentrations of antifungal
metabolite in µg/mL.
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