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Abstract: There has been a catastrophic loss of biodiversity in ecosystems across the world. A similar
crisis has been observed in the human gut microbiome, which has been linked to “all human diseases
affecting westernized countries”. This is of great importance because chronic diseases are the leading
cause of death worldwide and make up 90% of America’s healthcare costs. Disease development is
complex and multifactorial, but there is one part of the body’s interlinked ecosystem that is often
overlooked in discussions about whole-body health, and that is the skin microbiome. This is despite it
being a crucial part of the immune, endocrine, and nervous systems and being continuously exposed
to environmental stressors. Here we show that a parallel biodiversity loss of 30–84% has occurred
on the skin of people in the developed world compared to our ancestors. Research has shown that
dysbiosis of the skin microbiome has been linked to many common skin diseases and, more recently,
that it could even play an active role in the development of a growing number of whole-body health
problems, such as food allergies, asthma, cardiovascular diseases, and Parkinson’s, traditionally
thought unrelated to the skin. Damaged skin is now known to induce systemic inflammation, which
is involved in many chronic diseases. We highlight that biodiversity loss is not only a common
finding in dysbiotic ecosystems but also a type of dysbiosis. As a result, we make the case that
biodiversity loss in the skin microbiome is a major contributor to the chronic disease epidemic. The
link between biodiversity loss and dysbiosis forms the basis of this paper’s focus on the subject.
The key to understanding why biodiversity loss creates an unhealthy system could be highlighted
by complex physics. We introduce entropy to help understand why biodiversity has been linked
with ecosystem health and stability. Meanwhile, we also introduce ecosystems as being governed
by “non-linear physics” principles—including chaos theory—which suggests that every individual
part of any system is intrinsically linked and implies any disruption to a small part of the system
(skin) could have a significant and unknown effect on overall system health (whole-body health).
Recognizing the link between ecosystem health and human health allows us to understand how
crucial it could be to maintain biodiversity across systems everywhere, from the macro-environment
we inhabit right down to our body’s microbiome. Further, in-depth research is needed so we can
aid in the treatment of chronic diseases and potentially change how we think about our health. With
millions of people currently suffering, research to help mitigate the crisis is of vital importance.

Keywords: catastrophic biodiversity loss; skin microbiome; biodiversity; microbiome; chronic disease
epidemic; skin allergy epidemic; butterfly effect; entropy; chaos theory
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1. Introduction

“Catastrophic biodiversity loss” is a phrase used by ecologists like David Attenbor-
ough to describe what is happening in macro-ecosystems across the world due to human
intervention. The dire consequences of it are well documented [1]. But is a parallel bio-
diversity loss happening right here in our own bodies? And what is the impact on the
developed world’s health?

The rapid growth of allergies and chronic diseases in the Western world, named the
“chronic disease epidemic”, is now attributed to 90% of healthcare costs in the USA [2,3]
and 74% of global mortalities [4]. The exact causes remain formally unexplained [5], but
growing evidence suggests a causal link between the loss of microbial diversity in the
gut microbiome and a plethora of health issues [6,7]. This is thought to be influenced by
modern lifestyle factors such as the Western diet and antibiotics in food [7,8].

Previous instrumental work used aspects of macro-ecology to describe how a sig-
nificant loss of microbial diversity in the gut microbiome is associated with “most of the
human diseases affecting westernized countries” [7]. However, although the majority of the
body’s bacteria reside inside the gastrointestinal tract, the human microbiome is composed
of much more than just the gut [9]. Microbial ecosystems are present in other locations all
over the body, including on the skin, in the nasal passage, the lungs, the throat, and the
vagina [10].

The skin, with its estimated 1012 inhabiting bacteria, represents the second most
populous site of the human body [9]. As the body’s largest organ and the first line of
defense against environmental stressors, it is crucial for maintaining an effective immune
system [11] and is a vital part of the nervous and endocrine systems [12,13]. Despite this,
the skin microbiome and its influence on whole-body health are less frequently discussed
in comparison to the gut.

In this paper, we will be focusing on the area of biodiversity loss as a potential
marker for disease. We note that there are other possible markers, including site-specific
abundances of microbial species and strains within the microbiome, but an in-depth
evaluation of these is not within the scope of this paper.

We also note that chronic disease development is likely complex and multifactorial.
Despite a genetic predisposition playing a role, the ultimate trigger is unknown in many
cases and could be a combination of multiple other factors, such as a dysbiotic microbiome
as discussed here, diet, lifestyle, stress, age, access to healthcare, and exposure to chemical
pollutants in the environment [14,15].

2. Biodiversity Loss and the Skin Microbiome
2.1. Biodiversity Loss in Global Ecosystems

In global macro-ecosystems, ecologists are concerned that humans are causing a sixth
mass extinction event occurring at a pace far exceeding background rates [16]. The Living
Planet Index reports a 69% average decline in wildlife populations since 1970 [17], with
predictions suggesting that a further 1 million animal and plant species may face extinction
within decades [18].

Biodiversity loss is mainly driven by habitat loss and fragmentation [1]. A testament
to this is the loss of 90% of wetlands since 1700 [19], accompanied by an exponential rise in
human land use, expanding from 10% to 50% of the Earth’s landmass [20]. In a little over a
century, forest areas equivalent to the size of the United States have vanished, leaving less
than 3% of Earth’s total land with ecological integrity while exerting high pressure on 58%
of ecosystems [21].

The world’s oceans are also under threat. Home to around 25% of fish species and
other life forms, the world lost 14% of its coral [22] between 2009 and 2018. Other studies say
coral reefs may become extinct within our lifetimes [23], and one-third of marine mammals,
sharks, shark relatives, and reef-forming coral are also threatened with extinction [17].
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2.2. The Skin Microbiome, Biodiversity, and Dysbiosis

In parallel to our natural environment, the human body is a thriving ecosystem host
to trillions of living organisms [24]. One study suggests that only 43% of the human cell
count belongs to the individual, while the rest consists of microbes [9]. This ecosystem is so
important that one author believes that “understanding the structure and function of the
human symbiont communities might become the first great breakthrough of twenty-first
century medicine” [25]. Thousands of research papers and probiotic health proposals have
propelled the human gut microbiome and its influence on whole-body health to almost
mainstream levels of awareness [26,27]. And rightly so, in addition to being an essential
part of the body’s complex, interlinked immune system, the gut microbiome also plays a
key role in water absorption and nutrient metabolism [7].

Skin microbiome papers are outnumbered by their gut microbiome counterparts at a
ratio of 10 to 1 in the PubMed database. And while in recent years it appears that its role in
skin health and disease is becoming appreciated, we are only just beginning to realize the
skin microbiome’s potential impact on whole-body health. For example, the latest studies
are starting to shed more light on the gut-skin axis, its involvement in human immune
responses, and the associated pathologies [28–31]. It is believed that allergic sensitization
through damaged skin is a main factor in food allergy development [32,33].

The human skin microbiome consists of a variety of bacteria, fungi, and viruses,
which play an important part in immune system training, external pathogen protection,
and natural product metabolism [34–36]. In recent years, emerging novel technologies
such as shotgun metagenomic sequencing have enabled scientists to characterize these
microorganisms in detail, according to the skin site, the age of the individuals, the human
habitat, and their variability throughout time [37].

The intrinsic factor that contributed to the largest compositional differences observed
in the skin microbiota has been found to be the skin site microenvironment. A large varia-
tion was found between dry, oily, and sebaceous sites on the skin [11,38,39]. For example,
Cutibacterium species were more abundant in sebaceous sites such as the manubrium, the
face, and the back, while Corynebacterium and Staphylococcus species that flourish in humid
environments were more dominant in moist regions like the axillary vault, the groin, and
the toe web [11,37].

Altered microbial signatures have also been found more frequently in disease states
compared to healthy skin, where the delicate balance of the ecosystem has been disturbed,
often becoming harmful to the host. This is referred to by the umbrella term “dysbiosis”.

When talking about dysbiosis, it is important to pin down exactly what it is because
the use of the term immediately elicits the view of a damaged system. It is defined as “an
imbalance in bacterial composition, changes in bacterial metabolic activities, or changes
in bacterial distribution” [40]. Dysbiosis can be categorized into three main types: loss
of beneficial organisms, excessive growth of potentially harmful organisms, and loss of
overall microbial diversity [40]. It is important to note that in most cases, these types of
dysbiosis happen at the same time.

The important question is: what constitutes a sufficient loss of beneficial organisms
or excessive growth of potentially harmful organisms? This will have to be considered on
a case-by-case basis, with a specific understanding of each system and how to identify a
healthy or diseased system. Providing a definitive and global method to measure dysbiosis
by using overgrowth or loss of specific bacteria is an ongoing challenge that is made difficult
due to the aforementioned large variation between different sites and individuals [41–43].
For example, a dysbiotic skin microbiome in atopic dermatitis displayed global and body-
site-dependent variations [44], and despite years of research, no single pathogen has been
identified as the cause of psoriasis [45].

The difficulty in finding one exact composition for health and disease is exemplified
in the gut microbiome, where “no gold standard exists to determine the presence or extent
of a given imbalance or disturbance” [46]. This is because researchers still do not have a
clear definition to identify a healthy gut microbiome [41].
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A commonly used measure of dysbiosis is alpha and beta diversity [46], which makes
sense because biodiversity loss is one of the types of dysbiosis. This paper focuses on
biodiversity loss as a possible marker for disease due to its relation to dysbiosis.

When a system is in dysbiosis, it is probable, but not certain, that it has experienced
biodiversity loss. More research is needed to understand the instances in which there is
an increase in diversity during dysbiosis. The important point here is that dysbiosis of
the microbiome has been implicated in many diseases across the board, indicating poor
health [46].

In global macro-ecosystems, it is widely accepted that an increase in biodiversity cor-
responds to increased health and stability, with both experimental and theoretical evidence
used to highlight this point [47–50]. This pattern also appeared in the gut microbiome,
where many authors relate diversity to host health [7,51,52], and reduced biodiversity is
linked to a vast number of human diseases [7,53]. Crucially, a loss of microbial biodiversity
is also thought to be “the most common marker in intestinal dysbiosis” [7]. On aggre-
gate, and acknowledging that there are some research cases where disease states appear
to show an increase in biodiversity, this appears to be replicated in the skin microbiome
(see Section 3.2). Previous data shows that healthy skin is inhabited by a much more
biodiverse ecosystem than unhealthy or diseased skin [54,55]. One author stated “The
biodiversity of the skin microbial ecosystem can be directly linked to the skin’s overall
health, since skin diseases, such as atopic dermatitis and psoriasis, are often associated
with dysbiosis” [56]. For these reasons, multiple authors have spoken of the need for future
skin ailment solutions to increase the biodiversity of the skin microbiome [57–59].

It is important to note that one person’s healthy microbiome will be different from
another’s, and it will differ across body sites. Therefore, we are careful to talk about biodi-
versity “increase” or “decrease” throughout this paper instead of describing standalone
figures such as “high” or “low”.

2.3. Are We Seeing a Loss of Biodiversity in the Human Skin Microbiome, Just like in the
Environment and Our Gut?

The healthiest intestinal tracts ever recorded were found in infants dwelling in ru-
ral Burkina Faso [60,61]. They lacked western gut problems and displayed large differ-
ences in composition, coupled with extremely elevated biodiversity compared to urban,
city-dwelling children. This decreased biodiversity of the gut microbiome of people in
industrialized western countries was later supported by multiple other studies [7,62–64].
The Hadza tribe from northern Tanzania was found to have an average of 730 species of
gut microbes per person, compared to 277 and 436 for Californians and Nepalese farmers,
respectively [65]. It is now thought that modern humans have lost 50% of the gut microbiota
of our primate ancestors [66]. This “mass extinction”, mirroring macro-ecosystems, has
been attributed to exposure to Western world practices such as diet and the overuse of
antibiotics [7,51,65,67].

The same phenomenon described for the digestive system and global ecosystems was
found to have also occurred on the skin of western humans; isolated tribespeople, called the
Yanomami people, with negligible documented contact with the outside world, displayed
unprecedented levels of biodiversity in their skin microbiome [68]. Furthermore, there
was no evidence of modern skin problems such as acne and eczema [34,42], despite the
former affecting 79–95% of adolescents [69]. Similar findings were reported in other studies,
which found acne vulgaris to be a condition affecting primarily developed countries but not
people living in rural Papua New Guinea, Paraguay, or Brazil [69,70]. Due to the Yanomami
tribe living in relative isolation for over 11,000 years since their ancestors arrived in South
America, they could possess skin microbiomes that more closely resemble those of our
ancient human ancestors.

When other cultures were analyzed, this phenomenon was not an anomaly. A study
that tested five areas at the same latitude in the Amazon rainforest found that the microbial
biodiversity of the skin microbiome decreased with increased urbanization, mirroring
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research on the gut [71]. Further work reported significantly increased biodiversity of the
skin microbiome in indigenous people, farmers, and those living in rural settings compared
to their urban counterparts [72]. In addition, a paper reported interesting findings on
a group of Amerindians living in the Venezuelan Amazon, called the Guahibo people,
who lived in rural settlements without running water or electricity; half of the group still
possessed much more biodiverse microbiomes than those in the developed nations [73].
However, this was the only study on these isolated people, with some nuance to the
findings. The Amerindians could be categorized into two groups with distinct bacterial
communities: the first one had much higher biodiversity than Americans, and the second
one had similar biodiversity but was dominated by Staphylococcus and not Cutibacterium. A
possible explanation is that some level of Staphylococcus infection could have been more
severe in one group, which lowered the biodiversity [74].

In our previous work, we quantified skin microbiome biodiversity across various
health states [55]. The comparison graph in Figure 1 demonstrates a progressive decrease
in biodiversity from the “caveman” skin of Amerindians down to the lowest seen in people
with skin ailments in developed Western countries. This shows a skin biodiversity reduction
of 30% to 84% in the developed world. Figure 2 summarizes gut and skin biodiversity loss.
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Figure 1. A graph showing the comparative biodiversity benchmarks for different skin health
states taken from previous work [55]. For an in-depth explanation and background on each, please
refer to the original study. The skin of individuals in basic settlements with limited urbanized
practices is reduced in biodiversity by 25% compared to Amerindians, and even individuals with
the healthiest skin in Western environments, labeled “Western-Healthy,” exhibit a 30% reduction in
biodiversity compared to the “Agrarian-Healthy” skin of Amerindians. The decrease falls further to
51% for individuals with diabetes but without skin lesions, 64% for diabetic individuals with skin
wounds, and an alarming 84% reduction in biodiversity for individuals with skin diseases in the
Western world.

2.4. What Is Causing the Biodiversity Loss in the Skin Microbiome?

Here we summarize the research to provide an overview while noting that it is beyond
the remit of this paper to come to a conclusion on the main contenders. Further research
needs to be done to answer this, which may be an important part of tackling the chronic
disease epidemic. This section is included to highlight how, as a phenomenon only observed
on the skin of people living urban, modern lives, there must be external factors in our
environment which are the main causes.

The exposure of the body to 21st-century soaps, cosmetics, pollution [75], medicine,
drugs, detergents, antibiotics, and synthetic chemicals in cleaning products appears to have
caused significant microbiome alterations [36,38,76–84]. A modern lifestyle characterized
by stress, poor diet, and indoor living isolated from nature is also thought to play a part.
The skin’s role as the external barrier between the body and the environment suggests it
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could be even more susceptible to extrinsic factors than the gut. Figure 3 summarizes the
factors listed below.
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The advent of modern medicine and pharmaceutical interventions has brought about
a remarkable transformation in global health, arguably unparalleled in human history.
However, a new challenge has emerged, stemming from the excessive use of medications
intended for acute illnesses but now being used for long-term management of chronic
conditions. A common 21st-century example of this is the excessive use of antibiotics [11,43],
which decreases microbiome biodiversity [85] and can induce dysbiosis on the skin [86].
Their indiscriminate approach to eliminating microbes [87] can render the skin vulnerable
to pathogens that were previously warded off by a great proportion of resident and mutual
bacteria [80,85].

Our hyper-sanitized indoor living environments and increasing isolation from na-
ture [88] are associated with microbiome depletion and immune system malfunction (re-
ferred to as “dysregulation”) from reduced exposure to a diverse range of microbes. Such
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exposure is crucial for training an innate and adaptive immune system [89], and without
this, our body becomes less effective at protecting against disease [90]. The biodiversity
and hygiene hypotheses describe this issue [91,92]. One line of evidence for this is offered
by “alpine altitude climate treatment” for eczema. The resultant significant increase in
the skin’s microbial diversity [93] was said to be due to the urban living environment’s
environmental pollutants, high aeroallergen count, altered UVB exposure [94], and reduced
exposure to microbes, which are depleting the human microbiome [95].

Interestingly, only when indigenous people moved to industrialized cities did acne
become a problem [96]. In addition, the number of chemicals and detergents found in
houses rises rapidly with increased urbanization [71], which is negatively correlated with
the biodiversity of the skin microbiome [71]. A more recent paper, summarizing its findings,
suggested that “these products might account, at least in part, for the loss of diversity in
the cutaneous bacterial communities in urban settings” [97]. Especially pertinent during
2020 and 2021 due to the SARS-CoV-2 global pandemic, regular exposure of the skin to
disinfectants on surfaces or direct application to the skin can “induce hazardous skin
conditions”, penetrate the skin, and disrupt its barrier functions [98].

Through the gut-skin axis, an altered immune response due to gut dysbiosis and loss
of biodiversity is thought to play a role in the development of common skin diseases [31].
There could also be an association between gut problems and reduced biodiversity in the
skin microbiome [28]. Thus, the gut microbiome’s reduced biodiversity in the western
world should be mentioned.

Everyday cosmetics, often containing a substantial proportion of synthetic ingredients,
have been implicated in microbiome alterations and associated health issues [76,99–104]
and can strip the skin of its essential oils and bacteria [78,105]. One reason for this could be
that they often have a pH of 5.5 or above, which can alter the skin’s natural pH, decrease
biodiversity, dry out the skin, and cause skin irritation [106–109]. A study found cosmetics
with a high synthetic chemical percentage had a pH of 6, compared to 4.5 for a 100% natural
formulation [76]. In contrast, natural, healthy skin has a pH lower than 5 [110]. A skin pH
that is too alkaline is thought to become less hostile to pathogenic microbes, disturbing
the balance of the normal microflora [111] and leaving the skin prone to infection and
disease [112]. Soaps have pH values of around 9.5–10.5, and a single wash can increase
skin pH to 7.5 [100].

However, testing the effect of cosmetics on biodiversity directly has given mixed
results; some studies show an increase or no change, suggesting the need for future
research [113]. Molecules from cosmetic products persisted on the skin for weeks af-
ter showering, which altered the skin microbiome [114], and detergents correlated with
reduced skin biodiversity [71]. Furthermore, excessive cosmetic use has been impli-
cated in the triggering or exacerbation of various skin ailments such as rosacea [115],
eczema, allergies [116], and irritation [117,118]. This effect extends beyond the skin, where
cosmetic use has been linked to an elevated risk of breast cancer and a rise in asthma
prevalence [119–121]. Ingredients in these products, like methylisothiazolinone (MI) [122],
still found in natural-labeled cosmetics in 2018 [76], and parabens, are linked to skin al-
lergies, microbiome disruption, hormonal imbalance, and reduced biodiversity [123–126].
Additionally, synthetic fragrances can trigger allergies, migraines, and hormone disrup-
tion [127,128].

3. Is Biodiversity Loss on the Skin Involved in the Chronic Disease Epidemic?
3.1. The Chronic Disease Epidemic

A chronic condition is defined as “a physical or mental health condition that lasts
more than one year and causes functional restrictions or requires ongoing monitoring or
treatment” [129]. The 1950s saw a distinct shift in the dominant health problems in the
USA; the previously more common acute diseases were replaced by chronic diseases [5].
Today, 50% of Americans are living with at least one chronic disease, which accounts for
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86% of all healthcare costs [5] and costs an estimated $3.7 trillion annually [130]. Between
2000 and 2020, chronic disease prevalence grew by around 28 million people [5].

This was indicative of a global trend; the prevalence of chronic human diseases in
the developed world has continued to increase at an alarming rate throughout the 20th
century and the start of the 21st [7,131,132]. As Figure 4 shows, it is now the leading
cause of death, rising from 57% of global mortalities in 1990 [133] to 74% in 2022 [4]. This
includes immune-related conditions such as allergies and multiple sclerosis and metabolic
disorders such as type 2 diabetes and obesity [134–137]. Initially limited to Western nations,
the occurrence of chronic diseases has spread to developing nations with the adoption
of Western lifestyles [7,138]. This has all occurred in an age where decades have been
added to the average human life expectancy, mortality rates have decreased by a factor of
five between 1950 and 2018, and healthcare spending has increased rapidly—all signs of
dramatic improvements in global health, as shown in Figure 5. However, the problem has
become so severe that current estimates suggest that future generations may experience a
decrease in life expectancy [139].
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Figure 4. Global causes of death from 1990 to 2016. (A) shows that 57% of global deaths in 1990
were from chronic or “communicable” diseases, compared to 33% for “communicable”, maternal,
neonatal, and nutritional diseases, and 10% for injuries. (B) shows that these percentages for the
same categories in 2016 were 72%, 19%, and 9%, respectively. (C) shows that these percentages for
the same categories in 2016 were 74% and 26% for the combined last two categories, as the data was
unclear. The data to make (A,B) was taken from Anderson and Durstine, 2019 [139], and (C) from
the 2022 report from the World Health Organization (WHO) called “Noncommunicable Diseases:
Progress Monitor 2022” [4].
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Figure 5. Health statistics graphs for the USA created from data collated in the report “Health, United
States 2019” [140]. Graph (A) shows the infant mortality rate in the USA, measured in deaths per
one thousand infants. It decreased from 29.2% in 1950 to 5.7% in 2018. Graph (B) shows the life
expectancy at birth for people living in the USA, split into male and female numbers, as well as
an overall average. It increased from 47.3% in 1900 to 78.7% in 2018. Graph (C) shows the total
healthcare expenditure per person in the USA, which increased from $2009 in 2008 to $3076 in 2018.

Contained within these statistics, the prevalence rate of allergic conditions and ail-
ments of the skin has increased and even accelerated in recent years [54,78,141–147], leading
to some calling it an “allergy epidemic” [148]. Figure 6A below shows how the UK eczema
prevalence rates in children increased by around 400% from 1946 to 2011 [141,143,149]. An
example of recent acceleration is shown in Figure 6B, where between 1997 and 2011, the
prevalence of respiratory allergies stayed the same in American children, but food and skin
allergies increased [150]. The USA National Health Interview Survey in 2021 found 31.8%
of Americans had an allergic condition, including 7.3% with eczema [151] (Figure 6C). A
further survey of eleven thousand adults from five major countries found 35.6% were living
with allergies [152].
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Figure 6. Graph (A) shows childhood reported eczema prevalence rates in the United Kingdom,
which rose from 5.1% in 1946 to 20% in 2012. Data was taken from three sources [141,143,149].
Graph (B) shows the percentage of children aged 0–17 years who reported an allergic condition
in the past 12 months from 1997–2011 in the USA. It shows a significant linear increase for food
and skin allergies; however, skin allergies seem to be accelerating at a faster rate. Graph (B) was
adapted from SOURCE: CDC/NCHS, Health Data Interactive, National Health Interview Survey,
https://www.cdc.gov/nchs/data/databriefs/db121.pdf (accessed on 26 June 2023) [150]. Graph
(C) shows the percentage of adults with a diagnosed seasonal allergy (25.7%), eczema (7.3%), food
allergy (6.2%), or any allergic condition (31.8%) in the United States in 2021 [151]. The criteria for

https://www.cdc.gov/nchs/data/databriefs/db121.pdf
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adults counted as having an allergic condition included being diagnosed with one or more of the
three conditions shown in the graph. There is some overlap between the three conditions, and the
estimated percentages are taken from interviews with a sample of the civilian population in America.

3.2. Skin Diseases Associated with Biodiversity Loss

Dysbiosis and biodiversity loss in the gut have been linked to a huge number of
chronic health problems, including systemic diseases, and the prevailing belief is that they
play an integral role in their development [6,7].

Just as observed in the gut microbiome, where a loss of microbial diversity was the
most common finding in dysbiosis [7], it appears that reduced biodiversity is also a common
observation in dysbiotic, diseased skin. There have been instances where papers reported
an increase in diversity for certain diseases, which seems to go against the overall trend
for the skin and across nature [153–155]. Discrepancies could be due to differences in body
sites, sampling methods, diversity measuring methods, or large intra- and inter-personal
variation in the skin microbiome [153,156,157]. Much more in-depth research into the skin
microbiome is needed to gain a more definitive answer on the link between biodiversity
and diseased skin.

In parallel to the gut, a similar dysbiosis and reduced biodiversity of the skin’s ecosys-
tem have been observed in many skin problems, including acne [158], atopic dermatitis
and eczema [159] (including a drastic reduction during flares [142,160]), rosacea [161],
psoriasis [162,163], tinea pedis (athlete’s foot) [59], diabetic skin wounds [164], cutaneous
leishmaniasis [165], hidradenitis suppurativa [57,166], and skin cancer (in pigs) [167].

However, this does not immediately mean that it is biodiversity loss that is causing
the skin problems. Thus, in Sections 3.3 and 3.4, we will ask two main questions. Firstly, is
reduced biodiversity observed on the skin of people with more systemic diseases in areas
other than the skin? Secondly, is biodiversity loss a cause or a symptom?

3.3. Is Biodiversity Loss in the Skin Microbiome Associated with Systemic Diseases?

While research is still in its infancy, there is emerging evidence highlighting links
between biodiversity loss in the skin microbiome and systemic chronic health problems,
not just those affecting the skin.

For example, investigations have found that the lower the diversity of the skin micro-
biome and the more unbalanced the distribution of species, the more intense the systemic
lupus erythematosus symptoms experienced, and concluded that the associated dysbiosis
could be involved in the disease’s pathogenesis [168]. Additionally, changes in the abun-
dance of specific bacterial taxa, such as Staphylococcus aureus and Staphylococcus epidermidis,
have been identified as potential markers for associated skin lesions, supporting their
conclusion that addressing the shift in the skin microbiome could be a “therapeutic target”
for systemic lupus erythematosus rather than exclusively a symptom.

Research into the gut-skin axis provides more evidence. When this axis is referred to,
most of the focus is on how the gut affects the skin, not the other way around [31]. One
of many examples is that resultant internal microbiome alterations due to antibiotic use
during infancy are linked to an increased likelihood of atopic dermatitis development [7].

However, it is a two-way relationship. Exposure to certain foods through damaged
skin and a disrupted barrier is thought to contribute to the onset of food allergies [169]. In
addition, vitamin D production mechanisms in the skin due to UVB exposure were found
to significantly alter the diversity of the gut microbiome, leading authors to suggest the
“existence of a novel skin-gut axis that could be used to promote intestinal homeostasis
and health” [94]. It could transpire that reduced biodiversity on the skin could also impact
diminished biodiversity in the gut, creating a negative feedback loop that further impacts
gut issues and more systemic problems [31].

Like food allergies, it is also thought that exposure and sensitization through the
skin may be an important factor in the development of asthma [170,171]. The overlap-
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ping pathogenic mechanisms between atopic dermatitis and asthma could highlight this
connection [172].

Skin ailments associated with reduced biodiversity often coexist in individuals with
cardiovascular diseases, such as atherosclerosis and hypertension, and were traditionally
considered symptomatic of the underlying issues [173]. However, recent evidence suggests
that this may not merely be a surface manifestation but could indicate a significant role
of the skin in regulating the cardiovascular system. Mice without certain proteins in their
skin reacted drastically differently to low oxygen levels than healthy mice, significantly
affecting the body’s ability to circulate blood—a key factor in the development of heart
disease and stroke [174].

Reduced microbial diversity and microbiome imbalances have also been observed for
people with obesity [28,175], diabetes [164] (despite a contrary finding on the feet [176]),
Alzheimer’s and schizophrenia [177], Parkinson’s disease [178], systemic sclerosis [179],
IBD [180], and cirrhosis [181]. There appear to be a minimum of 27 diseases associated with
reduced biodiversity on the skin.

3.4. Biodiversity Loss: Cause or Symptom?

It is now emerging that biodiversity loss on the skin could play a causal role in
chronic disease instead of merely being a symptom [182]. In the gut, decreased biodiversity
precedes allergy onset [183–185] and triggers Crohn’s disease in mice [186]. On the skin,
dysbiosis and reduced microbial diversity precede atopic dermatitis (AD) onset [187], play
a critical role in its manifestation due to S. aureus overgrowth [182], predict the persistence
of eczema throughout childhood [188], and lead to epidermal barrier defects and skin
immune dysregulation, which drive AD pathogenesis [189]. Dysbiosis on the skin is now
known to be a cause of skin inflammation in AD [190]. In addition, improvement of the
AD condition was found to be directly related to an increase in the biodiversity of the skin
microbiome and not a decrease in S. aureus, as suggested [6]. Similar findings were found
by Kennedy et al. and Kong et al., who found that during AD treatment, an increase in
microbial diversity was indicative of an elevated chance of remission [74,142].

Its implication in the pathogenesis of systemic diseases adds further corroborating
evidence in support of this idea. Dysbiosis of the skin microbiome was hypothesized as
an “essential mediator” in inducing autoimmune diseases due to its role in systemic lupus
erythematosus pathogenesis, as the resultant overproduction of a type of protein is thought
to facilitate colonization by Staphylococcus aureus [14].

In addition, an indicator that a patient might develop asthma is a history of early-
onset and severe atopic dermatitis [172]. Researchers discovered what may be the cause
of this: damaged skin cells can secrete substances into the bloodstream that can induce a
heightened immune response [191]. Once the substance reaches the lungs, it can trigger an
allergic inflammation seen in asthma.

As we have already introduced, it is also thought to be contributing to the development
of systemic sclerosis, cardiovascular diseases such as atherosclerosis and hypertension, and
food allergies [192].

The skin is even implicated in neurodegenerative disease development. Ecosystem
imbalance and the resultant fungal infections increase the likelihood of Parkinson’s disease
development [178], where skin inflammation and the existence of disease-associated pro-
teins on the skin and in the central nervous system precede its onset [193,194]. A line of
thought suggests that Malassezia infections, linked to dysbiosis on the skin, could contribute
to Parkinson’s disease due to the fungi’s role in pro-inflammatory cytokine production,
which could trigger neurodegeneration in the brain [195]. Peptides released by an over-
growth of commensal skin flora have been found to speed up the accumulation of proteins
linked to the disease [196].

Further research is needed to establish clear causal relationships or determine whether
reduced biodiversity is a symptom or a mixture of both. People with severe skin diseases
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often have systemic issues too [192]. Because the body is a complex, interlinked system, it
is likely they influence each other.

3.5. Potential Mechanisms of Chronic Disease Development

A biodiverse skin microbiome has been shown to result in a more effective immune
system due to its key role in training both its innate and adaptive branches [11,197–199]. It
also forms the first line of defense against environmental stressors [200]. Consequently, skin
microbiome dysbiosis induces immune system malfunction, which can weaken colonization
resistance against disease-associated pathogenic microbes, allow the entry of toxins into
the blood, lessen the effectiveness of memory immune cells, induce chronic inflammation,
and play a role in allergic sensitization—all factors involved in the onset of diseases.

A weakened skin barrier is another effect associated with dysbiosis and biodiversity
loss, which could also be involved in allergic sensitization through a weakened epidermal
barrier for ailments such as asthma and food allergies [170]. Healthy skin is less likely to
sensitize to substances it encounters, especially non-irritants [201]. However, when the
skin is damaged and chronically inflamed, sensitization to non-irritants and weak allergens
can occur due to an altered immune T cell response [202]. Disruption of the natural
barrier function can also lead to the penetration of pathogens and environmental stressors,
potentially contributing to systemic conditions due to infiltration of the bloodstream.

Many of the risk factors and mechanisms for chronic disease development overlap;
for example, the immune and inflammatory mechanisms involved in psoriasis and other
issues such as depression and cardiovascular disease [203,204]. It is extremely hard to say
why a disease develops, but we can look for universal markers, one of which appears to be
dysbiosis, or a loss of biodiversity. This could lead to a range of alterations to the skin, which
may have cascading knock-on effects on the body. The underlying mechanisms connecting
the skin microbiome to disease pathogenesis are undoubtedly complex and require further
investigation, especially in an intricate ecological network containing millions of interacting
components [205].

We have already introduced some disease-specific mechanisms, but broadly speaking,
it appears that a major factor is the induction of chronic inflammation. It has now been
proven that damaged skin can induce not just local but systemic inflammation [32,195],
thought to be a key driver of diseases such as stroke, cancer, chronic kidney disease, eczema,
autoimmune and neurodegenerative conditions, ischemic heart disease, and diabetes mel-
litus, which make up 50% of global deaths [206]. An imbalance and biodiversity loss on
the skin alter the skin’s natural biochemical conditions [195] and allow proinflammatory
chemicals to enter the blood stream, thickening arteries, enlarging the heart, and dam-
aging tissues and other systemic organs often thought unrelated [192]. They could also
deposit fungal matter in the central nervous system, leading to a reduction in cognitive
function [193].

Healthy, biodiverse skin possesses inherent defense mechanisms, such as the secretion
of substances like sebum and dermcidin, which exhibit innate antibiotic effects [207–210]
and prevent microbial dispersal, thereby guarding against pathogenic microbial
growth [79,110,211]. Disturbances in this balance and a decrease in biodiversity may
compromise their effectiveness.

The amplification of bacterial infections and autoimmunity in lupus patients could
point to a potential negative feedback loop between loss of biodiversity in the skin micro-
biome and chronic diseases [212]. Lastly, the gut-skin axis, being a part of the interconnected
ecosystem within the body, implicates the skin microbiome in the broader chronic disease
epidemic, considering the well-established connection between the gut microbiome and
most chronic diseases [7].

Figure 7 below summarizes the diseases and mechanisms in this section.
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Figure 7. (A) shows a simplified version of the potential outcomes associated with biodiversity loss
in the skin microbiome. It is important to note that more work needs to be conducted to establish
causality and that many outcomes may affect each other. (B) shows a map of the diseases associated
with reduced biodiversity in the skin microbiome, along with the potential mechanisms of disease
development, and finally the diseases in which the literature describes the skin microbiome as
potentially playing an active role in their development.

4. Biodiversity: The Link to Entropy and Ecosystem Health

The UN Convention on Biological Diversity formally defined biodiversity as “the
variability among living organisms from all sources, including, inter alia, terrestrial, marine,
and other aquatic ecosystems and the ecological complexes of which they are part; this
includes diversity within species, between species, and of ecosystems” [213]. It is widely
accepted in biology and ecology that high biodiversity corresponds to increased healthiness
and functionality within an ecosystem [7,214–218]. It also increases stability, resilience, and
invasion resistance [219] and promotes equilibrium [220,221]. The presence of a diverse
array of species provides a greater pool of organisms capable of fulfilling the roles necessary
to support a healthy ecosystem [55].

While the correlation between biodiversity and ecosystem health is widely accepted
by ecologists across various natural ecosystems, including increasingly in the gut micro-
biome, the same level of certainty has not yet been established for the skin microbiome.
Approaching this problem from a physics perspective offers an alternative insight, which
is often overlooked, into why biodiversity is crucial for ecosystem health. It could help
researchers in the field understand the enormity of the adverse effects caused by biodiver-
sity loss on the skin. Biodiversity is quantified using various indices, such as the popular
Shannon Diversity Index, a widely used metric for characterizing biodiversity for decades,
represented in Equation (1) below, which is formally identical to the measures of Shannon’s
entropy of a system in physics [222]:

H = −
s

∑
i=1

pilog pi (1)

where p is the probability of finding the species i.

• H = biodiversity index
• S = number of species encountered
• i = species
• pi = ni/N and describes “relative abundance”—the probability that a randomly chosen

organism is of the ith species
• ni = total number of organisms of a particular species
• N = total number of organisms of all species
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This is not a coincidence; entropy is a measure of “disorder” and is used to describe
many different systems, including in thermodynamics, ecology, and information theory.
Complex systems, if left undisturbed, tend to move towards a state of higher entropy. It
describes the distribution of individuals (here individual organisms or microbes on the
skin) across different, distinct “states”. In biological applications, “states” are types of
organisms, such as species of microbes in the microbiome. Therefore, the Shannon diversity
index evaluates not only the “richness” (i.e., the number of “states”, here different types
of organisms), but also the “evenness” of an ecosystem (i.e., a measure of the similarity
of the abundance of different “states”, here how similar the abundance is between each
type of organism) [223]. As a result, the highest biodiversity is predicted when the “spread”
between organisms is the greatest [224].

Thus, the higher the biodiversity of an ecosystem, the higher the entropy. This rela-
tionship also explains the strong correlation between biodiversity and stability in ecological
literature. The movement towards the highest entropy state is the most likely outcome, as
systems become more stable when their components are spread out in a more disordered
state. A stable system exhibits resilience against external influences or changes. To explain
this, researchers often use the example of a chemical reaction—the more stable an element
is, the more energy is needed to trigger a reaction. An element’s stability is determined by
the “potential well” in which its electrons reside. The higher the potential well, the more
energy is needed for the element to undergo a reaction (Figure 8). Relating this back to
ecosystems, this implies that the bigger the biodiversity increase, the more stable they could
become, and the more “interference” is needed to destabilize the system towards dysbiosis.
The link between entropy and ecosystem stability is often discussed in the literature [225].
Thus, it implies that a decrease in biodiversity and therefore entropy may decrease stability
and resilience, potentially leading to dysbiotic outcomes.
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Figure 8. The stable system shown in (a) (here representing an ecosystem with increased biodiversity)
needs a much larger energy input to move from its current state. Stability refers to the resilience of a
system against external factors and changes that impact the system. For the unstable system shown
in (b) (here representing an ecosystem with reduced biodiversity), a smaller external energy input is
needed for it to be able to move from its current state to another state.

How Biodiversity Loss Negatively Affects Ecosystems

A decrease in biodiversity can have profound negative repercussions on both macro-
and micro-ecosystems, undermining their functionality, efficiency, and capacity to sustain a
healthy environment [23,216,226]. It also causes a lack of resilience and stability and affects
the ecosystem’s ability to rebuild and rebalance after adverse events [227].

Such a decline also diminishes an ecosystem’s resilience in the face of environmental
changes [221]. Once the delicate balance is disturbed and biodiversity diminishes, detri-
mental effects affect various organisms and can manifest themselves in numerous ways.
For example, human interventions in macro-ecosystems can impair the ability of land to
perform crucial functions [17].
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Biodiversity loss in macro-ecosystems can affect humans, especially those in poorer
parts of the world. It can decrease protection against infectious diseases [228], reduce crop
yields [229,230], and reduce access to good-quality air and water [231].

5. How Do We Regain the Lost Biodiversity?

If biodiversity loss within the human microbiome proves to be a significant factor in
the chronic disease epidemic, it may become imperative to explore potential solutions for
restoring biodiversity to levels observed in our ancestors.

Similar to the gut microbiome, the use of topical probiotics holds the potential to
revolutionize therapeutic treatments, but research has not been fully conclusive [7,232,233].
Although positive study outcomes have been observed [234–236], cautionary findings
indicate that incorrect implementation of probiotics could lead to damage and reduced
biodiversity [232,237], especially for the immunocompromised [238]. It is currently thought
to be difficult to meet criteria for safe and effective use of probiotics, and solutions may
accidentally introduce incorrect numbers and potentially harmful non-native species [232].
An idea to remedy this is the introduction of “bacterial predators” that are correctly identi-
fied and introduced in precise amounts [7,239], mirroring the success of the re-introduction
of the wolves to Yellowstone Park [240].

Just as our ancestors enriched soils in the Amazon rainforest to aid plant growth [241],
a potential path is to cultivate optimal conditions for skin biodiversity to thrive. Initial steps
could entail minimizing exposure to harmful Western environmental factors (Section 2)
and recreating the skin’s natural environment through techniques like pH and electrolyte
balance [11,110,242,243].

Pre- and postbiotics, inspired by studies on the gut microbiome, require further
investigation for their application on the skin. Both have great potential, and neither deals
with the risks of applying live microbes, but because they do not colonize the skin, their
transient effects may need to be topped up [244].

Given the gut-skin axis, simultaneous restoration and rebuilding of the gut and
skin microbiomes may exert a more profound influence on overall health than the sum
of their individual effects [28–31]. Diet and exercise are known to modulate the gut
microbiota, which could apply to the skin too [245]. Adopting a “whole-body” approach
that addresses various aspects of health could yield the most promising outcomes in
restoring lost biodiversity and safeguarding against chronic diseases.

6. Future Perspectives: Non-Linearity in Ecosystems and the Butterfly Effect
6.1. Could the Non-Linearity of Ecosystems Mean We Have Underestimated the Negative Effects of
Biodiversity Loss?

The literature highlights the alarming negative effects of biodiversity loss, both in
the human microbiome and macro-ecosystems. However, approaching it from a physics
perspective could indicate that we may be prone to underestimating the adverse effects.

This is due to the dependence of complex systems on non-linear physics princi-
ples [246]. Very simply, linear systems can be described by simple graphs with a constant
gradient and predictable outcomes, which are only altered in proportion to the size of
variations in the initial conditions (Appendix A).

In contrast, non-linear systems are represented by equations with variable gradients.
The outcomes are disproportionately affected by small changes in the initial conditions. This
effect can become even more pronounced when applied to a complex system of millions
of interacting components. Nearly every complex system in nature displays non-linearity
and, therefore, can behave in ways that are sometimes impossible to predict.

Therefore, could small changes in the biodiversity of the skin have widespread ef-
fects on the overall health of the human body? This could further implicate the skin
as an important part of the body’s interlinked ecosystem and, as a result, the chronic
disease epidemic.
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A high-profile example of this phenomenon in an ecosystem is the re-introduction
of the wolves to Yellowstone Park, which has been linked to dramatic and deep-rooted
changes in the landscape that transformed the health of the system [240]. Just as described
by extreme non-linearity, many of the changes were not thought to be possible; rivers
changed direction, animal populations rebalanced, plants flourished, and animal habitats
were restored. The addition of just one species is a seemingly small change compared to
the trillions of interactions within the ecosystem.

6.2. Could Chaos Theory and the Butterfly Effect Mean We Have Underestimated the
Interconnectedness of the Human Microbiome and Macro-Ecosystems?

The human-caused loss of biodiversity in macro-ecosystems is increasingly associated
with the rising disease burden, in part through its impact on the human microbiome [247].

But could this effect go the other way? Could increasing the biodiversity of the
human microbiome benefit not just our personal health but also the health of global macro-
ecosystems? Despite our efforts to separate ourselves from the global ecosystem, humans
and our coexisting microbes are thought to be integral components, as postulated by the
Gaia hypothesis [248].

As we have discussed, even tiny changes can disrupt the delicate balance of the
ecosystem, potentially leading to disproportionate effects on its health. Complex systems
of millions of interacting components can exhibit extreme manifestations of this “non-
linearity”, often referred to as “chaos”. Appendix A provides an example of this. This is
included in a branch of mathematics called “Chaos Theory”, which describes how complex,
dynamical systems are so sensitive that even small variances in the initial conditions could
produce widespread and unpredictable changes in the system’s outcomes [249]. It was
launched into the mainstream in 1972 by the professor of meteorology at Massachusetts
Institute of Technology, Edward Lorenz, when he asked, “Does the flap of a butterfly’s
wings in Brazil set off a tornado in Texas?” [250].

Therefore, could the large biodiversity loss seen in the microbiome of humans in
the developed world be having a more substantial influence on global ecosystems than
currently recognized? Despite our seemingly miniscule role within a vast system, could the
daily actions we undertake for our health have larger implications for global health than is
currently believed?

7. Conclusions

We have shown that there has been a biodiversity loss of up to 84% on the skin of
humans in the developed world, mirroring the gut and the ongoing global biodiversity
crisis. Chronic diseases are now responsible for 74% of worldwide deaths and afflict 50%
of Americans. Moreover, this chronic disease epidemic has already been linked to “mass
extinction” in the gut. However, despite being an integral part of the body’s interlinked
system, the skin is consistently overlooked in discussions on the topic.

Biodiversity loss on the skin microbiome has been linked to a multitude of skin
diseases as well as whole-body diseases. We highlight that biodiversity loss is not only a
common finding in dysbiotic ecosystems but also a type of dysbiosis. As a result, we make
the case that biodiversity loss on the skin microbiome could be a significant contributor to
the chronic disease epidemic. This link between biodiversity loss and dysbiosis is the basis
of the paper’s focus on the subject.

Disease development is complex and multifactorial, but research has also shown how
dysbiotic skin could play an active role, not only in the development of common chronic
skin ailments but in a growing number of whole-body health problems too. These include
food allergies, asthma, cardiovascular diseases, Parkinson’s disease, and systemic lupus
erythematosus. Damaged skin is now known to cause systemic inflammation, which is
thought to be a key driver of many chronic health issues. Other potential mechanisms
include the release of toxic proinflammatory chemicals into the bloodstream, immune
dysregulation, and allergic sensitization through a weakened barrier.
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More evidence for a link between biodiversity loss and chronic diseases could lie
in complex physics. We introduce entropy to help evaluate why biodiversity is tied
to ecosystem health and stability. Meanwhile, we also introduce ecosystems as being
governed by “non-linear physics” principles—including chaos theory—which shows how
every individual part of any system is intrinsically linked and implies any disruption to
even a small part of the system (here the skin) could have a significant and unknown effect
on the overall health of the system (here whole-body health).

Recognizing the inexorable link between ecosystem health and human health allows
us to fully understand how crucial it could be to maintain biodiversity across systems
everywhere, from the macro-environment we inhabit right down to our body’s microbiome.
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Appendix A

A linear system is one that is described by a straight-line graph, meaning it has a
constant gradient. It follows a simple equation (or a sum of these equations). Here, x and y
are variables, m is the gradient, and c is the constant.

y = mx + c

In contrast, a nonlinear system is one that is not represented by a straight line, has a
variable gradient, and is curved. As an example, a general form of a non-linear equation
can be:

ax2 + by2 = c

It is therefore harder to solve non-linear equations. Nearly every system encountered
in nature is non-linear and can behave in ways that make them hard to solve, some even
impossible to predict due to an extreme dependency on initial conditions and the large
number of components all interacting with each other in different ways.

Issues such as bifurcation and chaos mean that small changes in the initial conditions
of a system can cause drastic differences in solutions down the line. This is in contrast to
linear systems, where small changes in initial conditions result in proportionately small
changes in the solutions. A simple example of an equation that generates chaos is one that
describes how the population of an ecosystem of living creatures changes:

xt+1 = kxt(1 − xt)

where xt+1 is the population size of the next generation, k is a constant, and xt is the
population size now. If one were to “iterate” this equation to see how the population
would change, a staggering observation would emerge: abnormal, previously unseen
behavior presenting itself as chaos and bifurcation. This behavior seems random but can
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have a hidden order. The population size is extremely sensitive to initial conditions and
unpredictability.
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