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Abstract: The objective of this article was to combine tea polyphenols, gallic acid, and cinnamon
essential oil to construct a natural extract-complex microemulsion system (NMs) with good antibac-
terial activity, antioxidant activity, and stability, as well as low irritation. NMs were characterized
by particle size distribution, electrical conductivity, and light transmittance. The stability, as well as
the antimicrobial, antioxidant, irritation, and antimicrobial mechanisms, of NMs were also studied.
The results showed that NMs had a significant antimicrobial function against Staphylococcus aureus,
Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus brasiliensis. The minimum
inhibitory concentrations were 156 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL, and 125 µg/mL,
respectively. Through the cell membrane permeability test and growth curve test of bacteria and
fungi, we concluded that the NMs’ mechanism of action on bacteria and fungi could be interpreted
as NMs mainly altering the permeability of cell membranes to inhibit the growth of bacteria and
fungi. The results of this study have important implications for utilizing plant extracts as natural
preservatives for food and cosmetics.

Keywords: cinnamon essential oil; tea polyphenols; gallic acid; microemulsion; antimicrobial activity;
antioxidant activity; stability; irritant; antimicrobial mechanism

1. Introduction

Many compounds from natural sources have been reported to have medical, cos-
metic, and pharmaceutical applications [1]. Essential oils (EOs) are metabolic products of
secondary substances in aromatic plants, and have recently garnered plentiful attention
because of their antibiofilm and antibacterial activities [2]. EOs originate from aromatic
plants or parts of aromatic plants and include volatile components, primarily terpenes,
terpenoids, and phenylpropenes [3]. With the status of being generally recognized as safe,
the application of EOs in food preservation has become an area of focus [4]. Cinnamon
essential oil (CEO) has been used as flavoring agent, fragrance agent, and antimicrobial
agent in foodstuffs and cosmetics [5]. Combining several EOs or EOs with different antimi-
crobial properties may allow for synergistic antibacterial activity, effectively decreasing
the required usage of EOs or antimicrobials [6–9]. Besides antibacterial properties, many
EOs have been reported to have antioxidant, antitumor, antifungal, and anti-inflammatory
properties [10]. Despite their well-documented characteristics, the application of EOs is
limited in food and cosmetics due to their low water solubility, high volatility, pungent
flavor, and instability to special conditions such as light, temperature, and humidity.

Oil-in-water (O/W) emulsions, nanoemulsions, and microemulsions are commonly
prepared to disperse EOs in water systems [4]. Microemulsions are homogeneous disper-
sion systems composed of a water phase, oil phase, surfactant, and cosurfactants, and
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exhibit thermodynamic stability, transparency, or clarity [11,12]. Microemulsions are mainly
divided into three types: water-in-oil (W/O), O/W, and discontinuous [13]. In the fields
of materials, cosmetics, pharmaceuticals, food, and other industries, microemulsion tech-
nology has developed rapidly [14–16]. For example, carvacrol microemulsion can enhance
transdermal absorption and anti-inflammatory activity [17]; pharmaceuticals and cosmet-
ics can be made more effective by using microemulsion systems designed for optimal
permeability [18].

Phenolic compounds combined with various proteins have been proven to improve
antioxidant capability and stabilize the emulsion interface structure [19,20]. Gallic acid (GA)
is a typical phenolic compound widely used in the fields of food and medicine because of
its antioxidant and antibacterial properties [21–23]. Tea polyphenols (TP) are polyphenolic
mixtures distilled from green tea [24,25], with higher antioxidant potential than traditional
synthetic antioxidants (butylated hydroxy anisole, butylated hydroxytoluene, and tertbutyl
hydroquinone), as well as a natural antioxidant, vitamin E [26,27]. The addition of natural
polyphenolic compounds to the microemulsion is beneficial for improving the stability
of the microemulsion. Jiang et al. showed that GA can improve the emulsion stability
and thermal stability of microemulsions [21]. In addition, Lan et al. showed that TP can
improve the stability of microemulsions [28].

With the advancement of scientific technology, society’s research on preservatives has
become more in-depth, and many traditionally used preservatives have been confirmed
to have specific adverse effects. For example, propylparaben (PP), which is commonly
applied in the fields of food and cosmetics, is irritating to the eyes, respiratory system,
and skin. It is an inevitable new trend to develop mild, low-toxicity, efficient, and en-
vironmentally friendly natural preservatives to replace, in whole or in part, traditional
chemical preservatives. By adequately combining different plant extracts, excellent and
broad-spectrum antimicrobial activity can be obtained. Therefore, it has become a feasible
scheme to construct a safe and effective antiseptic system through the combination of natu-
ral antiseptic active components. In this paper, a microemulsion system with bacteriostatic
effect was prepared by taking CEO, TP, and GA from natural sources as active antibacte-
rial components by microemulsion technology. The present work aims to (i) construct a
stable microemulsion system composed of different active ingredients, (ii) determine the
in vitro inhibitory activity of the microemulsion against Staphylococcus aureus (S. aureus),
Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Candida albicans (C. albicans),
and Aspergillus brasiliensis (A. brasiliensis), (iii) evaluate antioxidant properties and stability
of, and irritation caused by, the microemulsion, and (iv) explore the antibacterial mecha-
nism of the microemulsion. This study was carried out to find a potential alternative to
traditional preservatives with a broader antibacterial spectrum, more stable efficacy, and
more excellent safety.

2. Materials and Methods
2.1. Materials

TP (99%), GA (98%), glycerol, Tween 80, ethanol, PP, isopropyl palmitate, vitamin E,
and bovine albumin were bought from Macklin Biochemical (Shanghai, China). CEO (85%)
was purchased from Shanghai Titan Scientific (Shanghai, China). Soybean casein agar
medium (TSA), potato dextrose agar (PDA), Luria–Bertani broth (LB), and potato liquid
medium (PLM) were procured from Qingdao Hope Bio-Technology (Qingdao, China). Eggs
were purchased from Zhejiang Lihua Agricultural Technology Co., Ltd (Zhejiang, China).

2.2. Establishment of NMs

Water dilution was used to construct pseudo-ternary phase diagrams [29]. The CEO,
TP, and GA were mixed, and the microphase domain of the NMs was observed by drawing
a pseudo-ternary phase diagram. The diameter of the inhibition zone and the area of
the microemulsion area were used as indicators to determine the proportion of active
ingredients in the system. The effect of the added amount of TP in the water phase on
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the NMs is shown in Supplementary Figure S1, Supplementary Tables S1 and S2; the
final selection of the consistency of TP in the water phase was 50 mg/mL. The effect of
different concentrations of GA on the NMs is shown in Supplementary Figure S2; the
final concentration of GA in glycerol was 100 mg/mL. The effect of the ratio of CEO to
co-emulsifier on NMs is shown in Supplementary Figure S3 and Supplementary Table S3;
the ratio of CEO to the glycerin phase was 1:1. It was finally determined that the proportion
of CEO, glycerol phase, Tween 80, and water phase in the NMs of the natural extract
complex microemulsion system constructed in this paper were 13.5%, 13.5%, 50%, and 23%.

2.3. Characterization of NMs
2.3.1. Measurement of Particle Size Distribution

The NMs were diluted 100-fold with deionized water. The average droplet size was
measured by laser particle size analyzer using a Malvern Zetasizer Nano-ZS (ZNS3600,
Malvern Instruments Ltd., Worcestershire, UK).

2.3.2. Measurement of Transmittance

The transmittance of the NMs at 200–800 nm was assessed using a microplate reader
(Multiskan Sky, Thermo Fisher Scientific, Shanghai, China).

2.3.3. Measurement of Electrical Conductivity

The electrodes of the conductivity meter (DDS-307A, Shanghai INESA Scientific In-
strument Co., Ltd., Shanghai, China) were immersed in the NMs, and the conductivity was
recorded after reaching equilibrium.

2.3.4. Measurement of pH

The electrode of the pH meter (PHS-3E, Shanghai INESA Scientific Instrument Co.,
Ltd., Shanghai, China) was dipped into the microemulsion sample, and the pH value was
recorded after reaching equilibrium.

2.4. Antimicrobial Test
2.4.1. Determination of the Inhibition Zone Diameter

The samples were tested for bacteria and fungi using the filter paper diffusion
method [30,31]. A suspension of the tested bacteria or fungi (1 × 107 or 1 × 108 CFU/mL)
was spread on the solid media plates. The paper discs (6 mm diameter) were impregnated
with 200 µL of sample and placed on the agar surface. The plates inoculated with bacterial
or fungi strains were incubated for 24 h or 48 h at 37 ◦C or 28 ◦C. Bacteria were cultured
on TSA medium and fungi were cultured on PDA medium. The inhibition zone diameter
(mm) was measured with a ruler.

2.4.2. Determination of MIC

MIC is the lowest concentration of the sample which inhibits visible bacterial or fungus
growth after overnight incubation. MIC of the samples were measured by the microplate
method [32]. Two-fold serial dilution of samples (dissolved in Tween 80 (1% v/v)) were
performed in culture medium. After that, 20 µL of each bacterial or fungi suspension
was inoculated. Each well included 100 µL of sample diluted in culture medium, 80 µL
of the growth medium, and 20 µL of cell suspension (1 × 106 CFU/mL). Bacteria were
cultured on LB medium and fungi were cultured on PLM medium. Culture medium and
Tween 80 (1% v/v) were used as blank and negative controls, respectively. After culturing
at 37 ◦C or 28 ◦C with constant temperature shaking for 24 h or 48 h, the absorbance of the
microplate was measured by microplate reader (Multiskan Sky, Thermo Fisher Scientific,
Shanghai, China) at 600 nm.
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2.5. Antimicrobial Mechanism of NMs
2.5.1. Growth Curve

Bacterial and fungal growth curves were tested according to methods reported in
the literature [33,34] with some modifications. The different samples were cultured in the
medium with added P. aeruginosa (6 × 104 CFU/mL) or C. albicans (3 × 104 CFU/mL), and
the concentration of the samples was 0.5 MIC. TP, GA, and PP were dissolved in deionized
water, and CEO was dispersed with Tween 80 (1% v/v). Deionized water and Tween
80 (1% v/v) were used as solvent control. PP was a positive control, and no preservative
was added as the blank control.

At specific time intervals, the P. aeruginosa and C. albicans suspension containing
samples from the test culture were taken and serially diluted in sterile water. All plates
were then incubated for at 37 ◦C or 28 ◦C for 24 h or 48 h, and CFU were counted by plate
count method.

2.5.2. Cell Membrane Permeability
Relative Conductivity

Relative conductivity was utilized to characterize the cell membrane permeability
of bacteria and fungi in accordance with the methods from Diao et al. [35] with some
modifications. The P. aeruginosa and C. albicans were washed with 5% glucose until their
electric conductivities were near that of 5% glucose. The different samples were cultured in
the medium with added P. aeruginosa (1 × 107 CFU/mL) or C. albicans (1 × 105 CFU/mL),
and the concentration of the samples was 0.5 MIC. After being cultured at 37 ◦C or 28 ◦C
with constant temperature shaking for 4 h or 8 h, P. aeruginosa or C. albicans were centrifuged
at 10,000× g and 4 ◦C for 10 min and the conductivity of the supernatant was measured
and marked as L1. The glucose solution was measured and marked L0; the glucose solution
without bacteria and only containing preservatives was measured and marked as L3. The
conductivity of P. aeruginosa and C. albicans in 5% glucose treated in boiling water for
15 min were served as the control and marked as L2. The permeability of the intracellular
membrane can be expressed by the relative conductivity C, which is calculated as follows:

C =
L1 − L3

L0 − L2
× 100% (1)

Protein Leakage Assay

To further explore the effect of microemulsion on intracellular protein leakage,
Coomassie Brilliant Blue (CBB) was used to measure the protein content in the bacterial
and fungal suspension. The calibration curve for bovine serum albumin was established
based on Abs and concentration. The P. aeruginosa and C. albicans were washed twice with
0.067 mol/L phosphate buffer solution (PBS). The different samples were cultured in the
medium with added P. aeruginosa (1 × 107 CFU/mL) or C. albicans (1 × 105 CFU/mL),
and the concentration of the samples was 0.5 MIC. After culturing at 37 ◦C or 28 ◦C with
constant temperature shaking for 4 h or 8 h, P. aeruginosa or C. albicans were centrifuged
at 10,000× g and 4 ◦C for 10 min. The supernatant reacted with CBB solution at 25 ◦C for
10 min and the absorbance was measured by microplate reader (Multiskan Sky, Thermo
Fisher Scientific, Shanghai, China) at 595 nm.

Nucleic Acid Leakage Assay

The amount of nucleic acid leakage is often characterized by the Abs at 260 nm (Abs260)
and is used to evaluate the permeability and integrity of cell membranes. The P. aeruginosa
and C. albicans were washed twice with 0.067 mol/L phosphate buffer solution (PBS). The
different samples were cultured in the medium with added P. aeruginosa (1 × 107 CFU/mL)
or C. albicans (1 × 105 CFU/mL), and the concentration of the samples was 0.5 MIC. After
culturing at 37 ◦C or 28 ◦C with constant temperature shaking for 4 h or 8 h, P. aeruginosa
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or C. albicans were centrifuged at 10,000× g and 4 ◦C for 10 min, and the supernatant
subsequently taken to measure the Abs260.

2.6. DPPH Free-Radical-Scavenging Capacity Assay

The radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity was determined
according to the method of Lin [30] with some modifications. Vitamin E was selected as a
positive control. The following formula expresses the scavenging rate:

DPPH scavenging rate (%) =

(
1 − A1 − A2

A3 − A0

)
× 100% (2)

where A1 is the Abs after the reaction of sample with DPPH solution, A2 is the Abs of
sample mixed with ethanol, A3 is the Abs of DPPH solution mixed with ethanol and A0 is
the Abs of the solvent (ethanol).

2.7. Stability Test
2.7.1. Centrifugation Stability

The NMs were centrifuged at 5000× g (relative centrifugal force) for 30 min to as-
sess stability. The samples were observed for instability phase separation, creaming, or
flocculation [36].

2.7.2. Thermal and Storage Stability

The NMs were placed at high temperature (45 ◦C), low temperature (−5 ◦C), and
normal temperature (20 ◦C) for 15 d, 30 d, 60 d, and 90 d, then centrifuged at 10,000× g
and 4 ◦C for 10 min for observation. The stability of NMs was characterized by the change
in inhibition zone, and the rate of decrease in the diameter of the inhibition zone was
calculated after 90d; the calculation formula is as follows:

Rate of decline (%) =
d0 − d90

d0
× 100% (3)

where d0 is the inhibition zone of the NMs on the 0th day, and d90 is the inhibition zone of
the NMs on the 90th day.

2.8. Irritation Assay

NMs were investigated for irritation using the hen’s egg test on the chorioallantoic
membrane (HET-CAM), which was a prospective method for evaluating the irritation
potential of samples by observing adverse changes in the chorioallantoic membrane of the
hen’s egg after exposure to the test chemicals [17,37]. HET-CAM tests were performed
according to the method provided in the literature [38]. The chorioallantoic membrane
(CAM) was exposed to 300 µL of one of each of the following substances: (1) 0.9 % w/v
sodium chloride solution (negative control), (2) 0.1 mol/L NaOH solution (positive control),
(3) deionized water and isopropyl palmitate (solvent control), (4) PP diluted to 0.05%–0.3%
with isopropyl palmitate (benchmark control), and (5) NMs diluted to 0.05%–0.3% with
deionized water.

2.9. Statistical Analysis

Data was expressed as mean ± standard deviation (n = 3). One-way analysis of
variance and Duncan’s multiple range tests were carried out to determine significant
differences (p < 0.05) between the means by SPSS 26 v.26 (International Business Ma-
chines Corporation, Armonk, NY, USA) and Origin 2022 v.9.9 (OriginLab Corporation,
Northampton, MA, USA).
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3. Results and Discussion
3.1. Characterization of Microemulsions

At 25 ◦C, the pH of NMs was 5.57 ± 0.03, and the conductivity was 32.4 ± 0.2 µS/cm.
The pH of the NMs was found to be compatible with the skin, and conductivity data
indicated that the NMs were O/W microemulsions. In addition, no phase separation was
observed in the dilution of NMs with deionized water. As shown in Figure 1A, the average
particle size of the NMs was 44.51 ± 0.83 nm, which was less than 100 nm and under the
microemulsion category. The NM was optically homogeneous, transparent, and slightly
brown. Figure 1B shows that NMs have good light-shielding properties in the ultraviolet
region and good light transmittance in the visible light area. The transmittance reaches
70.1% at 650 nm, consistent with the generally good transmittance of microemulsions.
Regardless, the NM was not hierarchical after 5000× g centrifugation for 30 min, and thus,
could be identified as a microemulsion.
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Figure 1. Particle size and light transmittance of NMs. (A) particle size distribution, (B) light
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3.2. Analysis of Antimicrobial Properties of NMs

Table 1 shows the MIC values of the bacteriostatic active ingredients TP, GA, CEO, and
NMs, with PP as a positive control. The MICs of NMs against S. aureus, E. coli, P. aeruginosa,
C. albicans, and A. brasiliensis were 156 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL, and
125 µg/mL, respectively. This result is close to the MIC value of PP, indicating that NMs
have the potential to replace PP. Notably, the inhibitory effect of NMs on C. albicans and
A. brasiliensis was remarkable, apparently related to the excellent antifungal ability of CEO.
The CEO has a strong antibacterial ability. Still, its hydrophobicity, behavior as a strong
irritant, spicy flavor, and other properties make it difficult to directly add CEO as a raw
material to cosmetic products.

Table 1. The minimum inhibitory concentration value of each active antimicrobial ingredient.

Sample
MIC (µg/mL)

S. aureus E. coli P. aeruginosa C. albicans A. brasiliensis

TP 15.60 62.50 125.00 - -
GA 31.25 2.50 15.60 - -

CEO 200 390 100 100 630
PP 125.00 125.00 125.00 500.00 31.25

NMs 156.00 62.50 125.00 250.00 125.00
Note: “-” indicates that the minimum inhibitory concentration of the substance could not be detected within the
experimental concentration range.
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3.3. Antioxidant Capacity Assay

Free-radical-scavenging activity is considered to be one of the primary mechanisms
exhibited by antioxidants to delay oxidative processes [32]. According to the data in
Table 1, when the MIC of NMs was 250 µg/mL, it had broad-spectrum antimicrobial
capacity. Therefore, it was reasonable to select this concentration for antioxidant testing.
The antioxidant effect of NMs was shown in Figure 2. Compared with the control group, the
DPPH scavenging activity of NMs was significantly different (p < 0.05). At the concentration
of 250 µg/mL, the DPPH radical-scavenging activity of NMs was comparable to that of
vitamin E. Compared with TP, GA, and CEO, the scavenging activities were improved by
45.45%, 26.42%, and 88.88% for DPPH with significant differences (p < 0.01). This meant
that the potent antioxidant capacity of NMs was mainly related to TP and GA. Jiang et al.
reported that PV–GA complexes could significantly increase the antioxidant capacity of
PV–GA/CLA microemulsions [21]. Therefore, the enhancement of free-radical-scavenging
activity in our NMs could be mainly due to the combined antioxidant effect of TP and
GA. The smaller particle size and the increase in chemical reaction interface could partly
contribute to the improved free-scavenging activity of NMs [19].
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3.4. NMs Stability Analysis

The stability of microemulsions is usually characterized by high- and low-temperature
storage, centrifugation, freeze–thaw cycling, and thermal–cold cycling. After centrifugation
at 5000× g for 30 min, NMs maintained the same clear and transparent appearance without
phase separation. This demonstrated that a layer of surfactant and cosurfactant is strong
enough to protect the oil droplets from phase separation due to centrifugal force, and that
the formulation is very stable [39].

Rate of decline is strong enough to protect the oil droplets from phase separation
due to centrifugal force, and the formulation is very stable [39]. The NMs were stored at
45 ◦C, 20 ◦C, and −5 ◦C for a three-month bacteriostatic stability study. At the end of the
storage test, the microemulsions at different temperatures still had good light transmittance.
The color of NMs stored at high temperature has obvious signs of deepening, the color of
NMs stored at room temperature is slightly darkened, and the color of NMs stored at low
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temperature has no obvious change. The oxidation of TP may cause the color change in
NMs during storage. Figure 3 shows the diameter changes of the inhibition zone of NMs at
45 ◦C, 20 ◦C, and −5 ◦C for 0–90 days. It can be seen from Figure 3 that low temperature
(−5 ◦C) has a minor effect on the antibacterial activity of NMs, and high temperature (45 ◦C)
has the most significant effect on the antibacterial activity of NMs. Furthermore, the NMs
under the three temperature conditions were centrifuged at 10,000× g, 4 ◦C, and 10 min
without delamination. Although the inhibition zone diameter reduction rate changed
significantly with the temperature at the end of the storage test, especially for S. aureus
and P. aeruginosa, the NMs still had good bacteriostatic activity. Notably, the bacteriostatic
activity of NMs against C. albicans was minimally affected by temperature. This may be
because the oxidative decomposition of the bacteriostatic active components (CEO, TP, and
GA) in NMs is promoted under the condition of higher temperature, resulting in NMs’
decreased inhibition of S. aureus, E. coli, P. aeruginosa, C. albicans, and A. brasiliensis. In
addition, NMs are O/W microemulsions, and the TP in the water phase and the GA in the
glycerol phase will be oxidized first, which will protect the CEO from oxidation. According
to Table 1, both TP and GA have inhibitory effects on S. aureus, E. coli, and P. aeruginosa.
With the oxidation of TP and GA, the antibacterial ability of NMs against P. aeruginosa and
S. aureus was significantly reduced. This result is in line with a study which observed that
the addition of TP can effectively retard oxidation in the three edible oils (corn, soybean, and
sunflower) [28]. In addition, adding antioxidants to the emulsion can improve its storage
stability of the emulsion. For example, Yang et al. reported that the addition of appropriate
antioxidants (β-carotene, tanshinone, and black tea extract) into the citral-encapsulated
emulsion could significantly improve the antioxidant properties, resulting in NMs with
good stability [13]. Briefly, this study simulated changes in the stability of microemulsions
in the refrigerator, at room temperature, and in high-temperature storage or transportation
conditions by testing metrics at −5 ◦C, 20 ◦C, and 45 ◦C, which are significant temperatures
in the food, pharmaceutical, and cosmetic fields.
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3.5. NM Irritation Analysis

The irritation of skin caused by microemulsions is a critical issue, and the irritation
potential of microemulsions were determined using the HET-CAM assay [17]. Compared
with the positive control, where lysis of blood vessels occurred within 30 s, 0.9% (w/v)
NaCl, deionized water, and isopropyl palmitate were found to be non-irritant. The com-
parative analysis of Figure 4 showed that PP was mildly irritating when its concentration
was 0.2%–0.3% and the NMs was non-irritating when the concentration was 0.05%–0.3%.
Based on the safety assessment result of PP and considering the concerns related to po-
tential endocrine-disrupting properties, the Scientific Committee on Consumer Safety has
concluded that PP is safe for use as a preservative in cosmetic products up to a maxi-
mum dosage of 0.14% [40]. A concentration of 0.3% of NMs was the efficient antibacterial
concentration determined by the challenge of the anti-corrosion experiment. In addition,
when the concentration of NMs was 0.3%, the NMs’ components, including TP, GA, CEO
and Tween 80, were shown to be non-irritant. The results indicated that the formulation
of antibacterial microemulsion studied was safe and effective. It has been reported that
both microemulsions and essential oil solutions may induce irritation [17]. Therefore, it is
necessary to study the safety of the formulation of essential oil microemulsions.
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3.6. Antimicrobial Mechanism Analysis of NMs

Although some microemulsions and nanoemulsions containing CEO have been pre-
pared by different methods and their antibacterial activities and stability studied, the
antibacterial mechanisms of microemulsions and nanoemulsions have not been studied
in detail [36,41–44]. It can be seen from Table 1 that TP and GA have potent inhibitory
effects on bacteria and weaker inhibitory effects on fungi. In contrast, CEO has a better
antifungal effect. This paper studied the NMs’ antibacterial mechanism with P. aeruginosa
and C. albicans. The currently recognized antibacterial mechanisms may be increased cell
membrane permeability, enzyme activity inhibition, and genetic material destruction or
inactivation [45,46]. Based on the preliminary research, the antimicrobial mechanism of
microemulsions were studied and were found to be involved in the growth inhibition
curve, relative conductivity, protein, and nucleic acid leakage.

3.6.1. Growth Curve Analysis

The growth inhibition curve could explore the effect of preservatives on the bacterial
or fungal growth cycle to gain a preliminary understanding of their inhibitory effect. The
antimicrobial activity of the microemulsion was assessed by counting viable microbes in
suspensions of P. aeruginosa and C. albicans at various time intervals after contact with the
samples. The effects of NMs on the growth of P. aeruginosa and C. albicans are shown in
Figure 5A,B. Compared with the blank control, NMs and the antimicrobial active ingredi-
ents have a specific inhibitory effect on P. aeruginosa and C. albicans. Compared with the
positive control, the antimicrobial effect of NMs was basically the same as that of PP. This
result was consistent with the MIC values shown in Table 1. Specifically, TP, PP, and NMs
had the same MIC value against P. aeruginosa. The characteristic reflected in the growth
curve was that their growth curves had the same trend (Figure 5A). The MIC value of NMs
against C. albicans was smaller than that of PP. The characteristic reflected in the growth
curve was that the fungistatic effect of NMs was better than that of PP (Figure 5B). Neither
deionized water nor Tween 80 (1% v/v) exhibited any inhibitory effect, which indicated
that it was TP, GA, and CEO (rather than dispersal medium) that had antimicrobial activity.
However, the growth curve of C. albicans showed that the fungistatic activity of NMs was
not as good as that of CEO after 10 h. This may be influenced by surfactants (Tween 80)
and co-surfactants (glycerol). Ma et al. showed that Tween 80 and soybean oil reduced
the antibacterial activity of cinnamon bark oil [44,47]. Furthermore, all treatments with
antimicrobial ingredients had initial reductions in the counts of P. aeruginosa and C. albicans,
whereas NM-treated P. aeruginosa and C. albicans took longer to recover to initial colony
counts. It may be that the microemulsion and antimicrobial ingredients have killed some
of the original bacteria or fungi at the tested concentrations and then affected the cellular
structure or biochemical reactions of the growing bacteria or fungi. Once the bacteria and
fungi overcome the inhibition, they will multiply rapidly [45]. The above results showed
that NMs may have stable broad-spectrum antimicrobial activity; its inhibitory effect was
comparable to that of PP, and could potentially replace PP.



Microorganisms 2023, 11, 2 11 of 16

Microorganisms 2022, 10, x FOR PEER REVIEW 11 of 17 
 

 

with the positive control, the antimicrobial effect of NMs was basically the same as that of 
PP. This result was consistent with the MIC values shown in Table 1. Specifically, TP, PP, 
and NMs had the same MIC value against P. aeruginosa. The characteristic reflected in the 
growth curve was that their growth curves had the same trend (Figure 5A). The MIC value 
of NMs against C. albicans was smaller than that of PP. The characteristic reflected in the 
growth curve was that the fungistatic effect of NMs was better than that of PP (Figure 5B). 
Neither deionized water nor Tween 80 (1% v/v) exhibited any inhibitory effect, which in-
dicated that it was TP, GA, and CEO (rather than dispersal medium) that had antimicro-
bial activity. However, the growth curve of C. albicans showed that the fungistatic activity 
of NMs was not as good as that of CEO after 10 h. This may be influenced by surfactants 
(Tween 80) and co-surfactants (glycerol). Ma et al. showed that Tween 80 and soybean oil 
reduced the antibacterial activity of cinnamon bark oil [44,47]. Furthermore, all treatments 
with antimicrobial ingredients had initial reductions in the counts of P. aeruginosa and C. 
albicans, whereas NM-treated P. aeruginosa and C. albicans took longer to recover to initial 
colony counts. It may be that the microemulsion and antimicrobial ingredients have killed 
some of the original bacteria or fungi at the tested concentrations and then affected the 
cellular structure or biochemical reactions of the growing bacteria or fungi. Once the bac-
teria and fungi overcome the inhibition, they will multiply rapidly [45]. The above results 
showed that NMs may have stable broad-spectrum antimicrobial activity; its inhibitory 
effect was comparable to that of PP, and could potentially replace PP. 

 
Figure 5. Bacteriostatic mechanism data of NMs. (A) Growth curve of P. aeruginosa, (B) growth curve 
of C. albicans, (C) cell membrane permeability of P. aeruginosa, (D) cell membrane permeability of C. 
Figure 5. Bacteriostatic mechanism data of NMs. (A) Growth curve of P. aeruginosa, (B) growth curve
of C. albicans, (C) cell membrane permeability of P. aeruginosa, (D) cell membrane permeability of
C. albicans. PP was selected as a positive control, and no bacteriostatic agent was selected as a blank
control. Each value represents means ± SD (n = 3). *** indicates statistical difference at p < 0.001 level
compared with blank group.

3.6.2. Cell Membrane Permeability Analysis

The growth curve macroscopically reflected the growth-inhibitory effect of the mi-
croemulsion on P. aeruginosa and C. albicans, while cell membrane permeability experiments
may reveal the microemulsion’s antimicrobial mechanism from the microscopic level. The
extracellular relative conductivities of P. aeruginosa and C. albicans treated with different
samples are shown in Figure 5C,D. The relative conductivity of the blank control group
did not change much, all within 10%. This may be due to the normal lysis and death of
bacteria and fungi, resulting in an increase in the relative conductivity [35]. Compared
with the blank control, the relative conductivities of P. aeruginosa and C. albicans bacterial
suspensions changed significantly after adding samples. It is intended that the addition
of antimicrobial active ingredients will increase the permeability of the cell membrane,
resulting in the loss of electrolytes, including K+, Ca2+, Na+, and so on [35]. Compared
with the positive control, the relative conductivities of the NM-treated suspensions of
P. aeruginosa and C. albicans were basically at the same level as PP. It was shown that the
effect of NMs on the cell membrane was comparable to that of PP. This result is consistent
with the trend reflected in the above growth curves.
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The standard curve of bovine serum albumin was y = 0.0101x + 0.0244 (R2 = 0.9998),
and the curve had a good linear relationship, which was used to measure the protein
content in the bacterial or fungal suspension. The results of the extracellular protein
concentration of P. aeruginosa and C. albicans treated with different samples are shown in
Figure 5C,D. The protein content of the blank control group was relatively low, all within
15 µg/mL. This may be due to the normal lysis of cells and transmembrane transport of
proteins. Compared to the blank control, the protein content of P. aeruginosa and C. albicans
suspensions changed significantly after adding samples. It is intended that the addition of
bacteriostatic or fungistatic active ingredients disrupts the integrity of the cell membrane,
resulting in a massive loss of intracellular proteins. Compared with the positive control,
the protein content of NM-treated suspensions of P. aeruginosa and C. albicans was slightly
higher than that of PP. The results showed that NMs had slightly more damaging effects
on cell membranes than PP. This result was basically consistent with the trend reflected
by the relative conductivity. In addition, the protein content of NM-treated P. aeruginosa
suspension was significantly higher than that of TP and GA; the protein content of NM-
treated C. albicans suspension was also higher than that of CEO.

The results of extracellular nucleic acid leakage of P. aeruginosa and C. albicans treated
with different samples are shown in Figure 5C,D. The results of Abs260 were basically
consistent with the results of relative conductivity and protein content. Notably, the
Abs260 values of NM-treated P. aeruginosa and C. albicans suspensions were slightly lower
than those of parabens. This result did not correspond to the trend reflected by relative
conductivity and protein content. This was because the maximum absorption peak of PP
was also near 260 nm, which interfered with the determination of the amount of nucleic
acid leakage.

The research results on the antimicrobial mechanism of microemulsion in this paper
shown that the compounded microemulsion achieves the inhibitory effect by changing
the permeability of the cell membrane and destroying the integrity of the membrane. The
schematic diagram of the antimicrobial activity mechanism of NMs is shown in Figure 6.
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The interaction between NMs and the cell membrane changed the permeability and in-
tegrity of the cell membrane, leading to the loss of intracellular ions, proteins, nucleic acids,
and other substances and accelerating the cell death. The growth curve reflected the growth-
inhibition effect of the microemulsion on bacteria and fungi from a macroscopic perspective.
The relative conductivity, protein leakage, and nucleic acid leakage reflected the destructive
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impact of the microemulsion on bacterial and fungal cell membranes from a microscopic
perspective. Moreover, relative conductivity, leakage of proteins, and nucleic acids have all
confirmed that the antimicrobial effect of the microemulsion was more advantageous than
that of a single antimicrobial component. Razdan et al. reported that levofloxacin could
enhance the antibacterial activity of clove oil nano-emulsions and the stronger disrupting
effect of the nano-emulsion on the biofilm of P. aeruginosa [48]. Moreover, Almasi et al.
demonstrated that a microemulsion of thyme essential oil and propionic or acetic acid may
have synergistic effects [49]. This showed that it is effective to formulate the antimicrobial
active ingredients into a microemulsion with broad-spectrum antimicrobial activity. The
dramatic changes in relative conductivity, protein, and nucleic acid leakage were the result
of the interaction of the microemulsion with cell membrane components. Nano-scale mi-
croemulsions have a large surface area, which facilitates the dissolution of cell membranes
and penetrates better than antibacterial active ingredients, thereby disrupting the integrity
of cell membranes [50,51]. The results of this study were consistent with the antibacterial
mechanism reported in the literature previously. The interaction of bacteriostatic sub-
stances with bacterial cell membranes will increase membrane permeability. The change in
bacterial membrane permeability was always be accompanied by the loss of intracellular
substances, especially the loss of some ions and 260-nm-absorbing materials [52,53]. The
leakage of intracellular ions led to changes in the relative conductivity of extracellular
solutions, which indirectly reflected changes in cell membrane permeability. Diao et al.
studied the mechanism of inhibition of fennel seed essential oil against S. dysenteriae, de-
scribing it as the essential oil first breaking through the permeability of the cell membrane,
which is associated with the disruption of integrity of the generalized membrane, resulting
in leakage of electrolytes as well as proteins, reducing sugars and nucleic acids [35]. In
addition, Bajpai et al. also showed that essential oils exert their inhibitory effects through
cell membrane permeability associated with a general membrane-disrupting effect, mainly
manifested as a reduction in the number of viable bacteria, loss of absorbing materials
at 260 nm, and leakage of potassium ions [54]. Although the antimicrobial mechanism
of essential oil microemulsion has been reported in this paper and other literature, some
issues still need to be revealed in follow-up scientific research. For example, studying the
bacteriostatic or fungistatic components of essential oils and the proteins leaked by bacteria
or fungi is necessary.

4. Conclusions

This study used TP, GA, and CEO as antibacterial active ingredients. NMs with broad-
spectrum antimicrobial activity, high antioxidant activity, high stability, and non-irritant
qualities were successfully constructed. The optimal ratio of CEO, glycerin, Tween 80, and
water in NMs was 13.5%:13.5%:50%:23%, in which the concentration of TP was 50 mg/mL
and GA was 100 mg/mL. The antimicrobial test results showed that NMs had significant
inhibitory capacity against S. aureus, P. aeruginosa, E. coli, C. albicans, and A. brasiliensis,
with MIC values of 156 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL, and 125 µg/mL,
respectively. The bacteriostatic and fungistatic effect were basically equivalent to that
of PP. Antioxidative test results showed that NMs had superior antioxidative properties
against DPPH free radicals comparable to those of vitamin E and the microemulsion was
more effective than a single component. NMs still showed good antimicrobial activity
after 90 days of storage at different temperatures. Except for S. aureus, the inhibitory zone
decreased within 20%.

Furthermore, the irritation of NMs was lower than that of PP, which is relatively
safe. It was proven that NMs might achieve their antimicrobial effect by changing the
permeability of the cell membrane and destroying the integrity of the cell membrane.
Moreover, the cell membrane permeability test confirmed a synergistic effect between
the active components of the microemulsion, which provides a theoretical basis for the
compounding of natural antimicrobial components in microemulsions or nano-emulsions.
Since NMs are composed of multiple active ingredients, there may be more than one
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mechanism of antimicrobial action. Further work is required to fully understand the
mechanisms involved to demonstrate the viability of NMs as natural antimicrobial agents
in food, drugs, and cosmetics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11010002/s1, Figure S1: The effect of different
concentrations of TP on the NMs; Figure S2: The effect of different concentrations of GA on the NMs;
Figure S3. Diagram of the effect of different ratios of co-surfactant phase and oil phase on NMs;
Table S1: The effect of different concentrations of TP on the antibacterial effect of NMs (the highest
content of CEO); Table S2: The effect of different concentrations of TP on the antibacterial effect of
NMs (the content of CEO is 1.5%); Table S3: Influence of the ratio of CEO to glycerin phase on the
antibacterial effect of NMs (the highest content of CEO).
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