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Abstract: Antimicrobial resistance and tolerance are natural phenomena that arose due to evolution-
ary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms
make the current treatment options challenging as it is increasingly difficult to treat a broad range of
infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister
cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most
promising drug targets to overcome the existing hurdles in the treatment of infectious diseases.
Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial
drugs have been introduced in the last two decades. In this review, we focus on the strategies that may
help in the development of innovative small molecules which can interfere with microbial resistance
mechanisms. We also highlight the recent advances in optimization of growth media which mimic
host conditions and genome scale molecular analyses of microbial response against antimicrobial
agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms
of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus
provides the most recent advances in host mimicking growth media for effective drug discovery and
development of antimicrobial and antibiofilm agents.

Keywords: antibiotics; antimicrobial resistance; antimicrobial tolerance; biofilm; immune response;
natural compounds; persister cells

1. Introduction

Antimicrobial agents are produced by almost all organisms, including bacteria, fungi,
and humans [1–3]. These compounds are synthesized by microorganisms since they exist,
not only as protecting agents against other microorganisms, but also as signaling molecules
as well as nutrients [4–6]. Antimicrobial resistance has only been observed to arise concomi-
tantly locally, excluding mainly resistance against clinically relevant antibiotics in major
human pathogens. The massive anthropogenic use of antimicrobial agents in different
fields, such as medicine, agriculture, and husbandry including aquafarming has, however,
promoted a global spread of resistance against those antimicrobial agents. Emergence of
resistance includes the resistance against last resort drugs, such as colistin [7]. Mimicking
nature by application of a panel of diverse antimicrobial agents targeting different essential
pathways, applied as combinatorial antimicrobial therapy, has been one way to restrict the
wider spread of antimicrobial resistance.

The massive anthropogenic use of antimicrobial agents, detergents, disinfectants,
and heavy metals in mono-application contributes significantly to the alteration of the
human microflora. Equally has their use led to the emergence of resistance and tolerance
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phenotypes, which can already arise at subinhibitory concentration of the antimicrobial
agent (Figure 1).

Figure 1. Consequences of exposure to antimicrobials. (A) Graphical representation of time-
dependent development of viability of a sensitive, resistant, persistent, manifested tolerant and
reversible tolerant microbial population to a bactericidal antimicrobial at the minimal inhibitory
concentration (MIC). A time course of a hypothetical antibiotic experiments is shown with bacterial
cells subjected to the antibiotic at MIC with cellular viability monitored over time. While the majority
of cells of a sensitive population are readily killed (>99.9% killing after 24 h; green line), cells of the
resistant population continue to grow (red line). Cells of a manifested tolerant population display
prolonged viability as compared to sensitive cells (blue line). Upon exposure of a sensitive population
with a large fraction of persister cells to the antimicrobial (yellow line), the majority of the cells are
killed, but a subpopulation remains viable for an extended period. Upon exposure of a sensitive
population to an antimicrobial, manifested tolerance can emerge (light blue line). Biofilms display a
reversible tolerance phenotype, showing apparent resistance at the MIC of the planktonic state. The
decrease in viability for a bacteriostatic antibiotic is shown for comparison (90–99% killing after 24 h;
dotted dark green line). (B) Repeated exposure to increasing concentrations of antibiotic below the
MIC followed by regrowth can lead to adaptive resistance, which is reversed upon removal of the
antibiotic. Red line, development of the minimal inhibitory concentration; blue line, development
of viability.

Tolerance is distinct from adaptive and acquired resistance that are defined as en-
hanced resistance upon exposure to gradually increasing concentrations of the antimi-
crobials and the acquisition of resistance by mutations and antibiotic resistance genes,
respectively. Both modes of resistance significantly alter the minimal inhibitory concentra-
tion (MIC) temporarily and permanently, respectively (Figure 1). Reversible tolerance can
be displayed by a distinct physiological, yet reversible, state of the organisms such as slow
growth or biofilm formation. On the other hand, slowed down killing by the antimicrobial
agent at MIC, thereby maintaining significant cell viability, is defined as a manifested mode
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of tolerance (Figure 1; ref. [8]). A bactericidal effect is only observed at higher concentration
of the antimicrobial agent (>32-fold higher as the minimal inhibitory concentration).

In a wider perspective, the composition and phenotypes of microbial populations
in the environment are equally altered, which can be accompanied by the emergence of
pandemic clones and enhanced biofilm formation [9–11]. Thus, treatment of microbial
infections continues to be hampered by major challenges, such as antimicrobial resistance
and tolerance. For instance, microbial biofilms, as well as metabolically silent persister cells,
a subfraction of cells in a population found predominantly in biofilms, are examples of
metabolically altered and downregulated cells, which display extended tolerance (Figure 1;
refs. [12–15]). An immune and antibiotic protected niche for microbes inside host cells
and host-matrix embedded biofilms can further lead to recurrent and refractory infec-
tions [16–18]. Thereby, dissemination of antimicrobial resistance is facilitated by mobile
elements, including plasmids, transposons, and integrons. These mobile elements can
rapidly thrive within mixed populations consisting of multiple microbial species which
are promoted by biofilm formation [10,19]. However, to what extent mutated genomic tar-
gets of antibiotic action are horizontally transferred via extracellular matrix DNA (eDNA)
or high frequency of recombination status of isolates remains to be determined [20,21].
The formation of biofilms, the build-up of multicellular matrix embedded communities,
makes organisms reversibly tolerant towards antimicrobial agents. This tolerance triggers
chronic infections which are refractory to diverse antimicrobial treatments. Interestingly,
cells forming biofilms are seemingly susceptible to antimicrobials in conventional testing
using standard parameters which usually monitors the planktonic state of the organism
(Figure 1). Intensive research activities are currently underway to identify novel antimi-
crobial and antibiofilm agents [22–25]. These efforts already led to the approval of several
novel effective analogs of established and novel classes of antibacterial agents, as well
as novel β-lactam/β-lactamase inhibitor combinations, to treat even multi-drug resistant
bacterial infections [26,27]. We discuss in this article complementary aspects that might be
important for the identification and characterization of novel antimicrobial and antibiofilm
agents and their targets.

2. Assessment of Antimicrobial Resistance Mimicking the Host Milieu

Assessment of antimicrobial resistance is conventionally performed by using stan-
dardized antimicrobial susceptibility testing [28]. However, these assessment processes
are limited as they do not necessarily mimic the antimicrobial susceptibility under host
conditions [29]. Comparison of the results of standardized antimicrobial susceptibility
testing in vitro with the treatment outcome in patients represent different scenarios with
incongruent results, such as in vitro inactive molecules that turn out to be effective in vivo,
and vice versa [29–31]. For example overcomes a horizontally acquired folate transporter
susceptibility of group A streptococci to sulfamethoxazole in vivo due to the acquisition
of host folate. This resistance phenotype has been overlooked in conventional suscep-
tibility testing due to the low folate concentration in the growth medium [32]. On the
other hand, antibiotics were found effective against multidrug resistant bacteria in animal
studies, while no in vitro effect was observed [33]. Furthermore, human biotransformation
of clarithromycin produces more potent molecules [34,35], which cannot be predicted by
conventional antimicrobial assays. It can thus be concluded that host conditions can alter
antimicrobial resistance. Recently, it has been observed that some of these limitations in
the assessment of the antimicrobial activity can be overcome by supplementation of the
growth medium with bicarbonate which is present in host blood and tissues. Bicarbonate
is growth inhibitory towards microorganisms when applied as an individual component
at high concentrations. Furthermore, bicarbonate effectively enhanced the susceptibility
towards aminoglycoside and macrolide antibiotics at subinhibitory concentrations [36–39].
Interestingly, enhanced susceptibility was observed even in the presence of an antimicrobial
resistance cassette. In the same line, growth of Escherichia coli, resistant to the beta-lactam
mecillinam, in urine medium partially or fully reverted the antimicrobial resistance of a clin-
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ically relevant mutation in the cysB gene [40]. Moreover, testing a range of antibiotics under
standardized conditions by using Mueller–Hinton Broth versus host-like conditions demon-
strated that susceptibility can be substantially different. For example, tissue-dependent
high level of antimicrobial resistance in the gastrointestinal pathogen and model organism
for typhoid fever Salmonella typhimurium was reflected only by the host-like medium [41].

3. Assessment of Antimicrobial Tolerance Mimicking the Host Milieu

Another limitation of standardized antimicrobial susceptibility testing arises as usually
planktonic cell cultures are assessed for susceptibility. This conventional evaluation method
identifies antimicrobial susceptible isolates even if a treatment refractory biofilm infection
persists. However, the observed resistance towards treatment is based on tolerance of a
microbial biofilm which develops specifically under host conditions in vivo [42]. In order to
more closely mimic the relevant host environment, including the altered physiological and
metabolic state of microorganisms, more complex semisynthetic (also named as synthetic,
artificial, or simulated) growth media were developed (Table 1). Such growth media
enable us to assess biofilm formation and to understand the effect of individual medium
components on microbial biofilm behavior, including antimicrobial tolerance. The impact
and interactions among individual members of a microbial consortium can be investigated
in an in vitro set up using a host-simulating growth medium.

Table 1. Growth media closely simulating host conditions.

Host Condition Simulating Medium Simulated Host Condition Infection Condition Investigated Reference

Ex vivo pig lung (EVPL) Cystic fibrosis lung Chronic cystic fibrosis biofilm infections,
Klebsiella pneumoniae-triggered pneumonia [43]

Artificial Sputum Medium (ASM) Cystic fibrosis sputum

Lung infection, microcolony formation,
antimicrobial resistance, adaptation of
Pseudomonas aeruginosa and other relevant
microbes to host conditions

[44]

Synthetic cystic fibrosis sputum
medium (SCFM) Cystic fibrosis sputum

Microbial physiology, biofilm formation, and
antimicrobial resistance of P. aeruginosa and
K. pneumoniae-triggered pneumonia

[45,46]

Porcine vaginal mucosa (PVM) Human vaginal mucosa Staphylococcus aureus biofilm formation [47]

Artificial Urine Medium (AUM) Urine Urinary tract infection [48]

Simulated Ileal Environment
Media (SIEM) Ileac environment Gut infections—small intestine [49]

Simulated Colonic Environment
Media (SCEM) Colonic environment Gut infections—large intestine [49]

Cholesterol coated surfaces Gall stones Colonization of gall stones [50]

Gallstones in bile Gall stones Colonization of gall stones [51]

Chronic wound mimicking medium Interstitial fluid Tissue infections, chronic wound infections [52–54]

Synthetic synovial fluid Synovial fluid Biofilm formation of S. aureus mimicking
infection of prosthetic joints [55]

Intracellular medium Salmonella containing vacuole Intracellular growth [56]

Mucin supplemented medium Intestinal environment Growth in small and large intestine [57]

Cystic fibrosis is a genetically inherited disease which is characterized by enhanced
lung sputum production with altered composition prone to be colonized by microbes [58].
Persistent P. aeruginosa lung infection is one of the key factors which determines morbidity
and mortality in cystic fibrosis patients. Enhanced biofilm formation of the microorganisms,
due to overproduction of the exopolysaccharide alginate, is the key determinant of persis-
tent infection. Thus, this phenotypic and/or genotypic development represents another
example of developed tolerance alternatively resistance towards antimicrobial treatment.
Growth of P. aeruginosa in artificial sputum medium resembling the cystic fibrosis lung
environment (Table 1), including the sputum components, such as mucin and host DNA,
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leads to a rapid microbial adaptation. These metabolic and physiological adaptations
include emergence of small colony variants and enhanced biofilm formation, and thus the
microbe displaying enhanced tolerance against antimicrobial agents [45,46,59–61]. Inter-
estingly, the biofilm displays mainly as tight cellular aggregates in the artificial sputum
medium with few cells attached to the abiotic surface. A similar situation is observed in
the cystic fibrosis lung [62], where the microbes reside in the sputum, but do not adhere
to the epithelial lining. Sputum components, including amino acids which are present
in high concentrations under deteriorating health conditions of the patient, contribute to
an enhanced biofilm formation. Thus, a vicious cycle between disease severity and the
difficulty to eradicate the microorganisms can be emulated in vitro, as it has been observed
in vivo [63]. Consequently, with the toolbox to modulate individual components of an artifi-
cial medium in hand, different disease stages and conditions in individual patients, sputum
composition reflecting disease severity, as well as environmental conditions, including the
contribution of the accompanying microflora, can be mimicked [61,64,65]. Furthermore, the
artificial sputum medium can help in understanding the genetic components of the bacte-
rial isolates required for growth [66,67]. Therefore, use of host-like conditions in microbial
susceptibility testing, including biofilm-related tolerance, supports in identifying specific
drug targets, as well as unraveling the bacterial physiology, along with physiological and
metabolic basis of biofilm formation [61,68]. By using this approach, growth, biofilm for-
mation, and antimicrobial tolerance have not only been assessed for P. aeruginosa, but also
for other microorganisms colonizing the cystic fibrosis lung, including Stenotrophomonas
maltophilia, Mycobacterium abscessus, and black yeast [69–71]. It is worth mentioning that the
antimetabolite oxythiamine was initially identified as an antimicrobial agent in artificial
sputum medium, showing synergistic effects in combination with tetracycline for which
P. aeruginosa is intrinsically resistant [72]. It remains to be shown whether the recent phar-
macological restoration of functionality of the cystic fibrosis transmembrane conductance
regulator CFTR, that leads to diminished growth of pathogens and re-establishment of
a conventional microflora, can be mimicked by altering the composition of the artificial
sputum medium. Artificial medium use reflecting distinctly similar host conditions can
also be applied to specifically monitor bacterial colonization in primary ciliary dyskinesia
and chronic obstructive pulmonary diseases (COPD) [73,74].

Biofilms formed under conditions simulating the host environment are not only mor-
phologically different, but also follow different genetic programs [75]. Artificial urine
medium, simulated synovial fluid, chronic wound medium, and simulated colonic envi-
ronment medium form a panel of growth media developed to mimic specific infectious
disease situations more closely (Table 1; refs. [48,54,76]). For example, in chronic wound
medium, biofilms exhibit enhanced resistance to disinfectants and integrated anaerobes
have been recovered from chronic wounds [53,54]. In such a medium, the physiology of
microorganisms is significantly altered and relevant wound microbes, such as P. aerugi-
nosa and S. aureus, have been found to be less virulent [77]. These in vitro observations
are consistent with the fact that sepsis does not develop from chronic wound infections.
Growth in the chronic wound medium also demonstrated a beneficial effect of co-infection
of S. aureus and P. aeruginosa, including enhanced antimicrobial tolerance. Furthermore,
distinct disease situations such as urinary tract and cystic fibrosis lung infection, provide
particular growth conditions for the pathogen. Consequently, upon growth in different
artificial media, perhaps not surprisingly, specific mutations can be selected upon exposure
to antimicrobials. Upon selection, mutations leading to resistance towards fosfomycin, an
epoxid-based cell wall inhibiting antibiotic, could be distinct in S. maltophilia grown either
in urine or synthetic sputum medium [78]. Undoubtedly, the growth of microbial isolates
in urine, sputum, saliva, or synovial fluid, derived directly from patients or animals, is an
excellent approach [79–81]. The use of synthetic media has, however, the advantage that
the effect of individual components in the medium on biofilm formation and antimicrobial
tolerance can be assessed and correlated with different patients’ conditions. Besides the
alteration of the growth medium, the properties of the biotic and abiotic surfaces can be
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determinants of the type of biofilm formed. For example, initial bacterial adhesion as a first
step to develop dental plaque biofilm on a biological apatite surface is not affected by elec-
trostatic repulsive forces [82]. Biofilm formation in osteomyelitis has been mimicked using
bone blocks from bovine femur [83]. Multiple microbes adhere to central venous and uri-
nary catheters made of silicone to develop a biofilm that eventually contains pathogens [84].
Dentures made of acrylic resins select for Candida albicans biofilm formation [85]. Surface
roughness was identified as one parameter which is a determinant of initiation of biofilm
formation [86]. Furthermore, static and dynamic (continuous flow with constant renewal
of the medium) biofilm models have also been developed to reflect differential access to
nutrients and the removal of waste products in different systems [87].

4. Innovative Strategies to Overcome Antimicrobial Resistance

Many of the established antimicrobials target core functions essential for viability, such
as DNA (quinolones), RNA, and protein (aminoglycosides) synthesis, cell wall biosynthesis
(β-lactams, fosfomycin and vancomycin), and outer membrane integrity, whereas a few
are targeting central metabolism. In order to overcome antimicrobial resistance, effective
antibiotics are isolated from natural resources [88,89]. This approach is complemented by
the discovery of novel antimicrobial agents based on metabolic or virulence targets, host-
adapted screening approaches, biotransformation, as well as machine learning approaches,
along with genetic information of biosynthesis modules that can be edited to synthesize
novel compound [90–96]. Additional strategies include the combinatorial screening of
existing drugs in order to enhance the efficiency of antimicrobial agents through synergistic
effects [97]. The discovery of intrinsic antimicrobial resistance components [98,99] might
help in the identification of novel drug targets [100,101]. Such sensitizes specifically the loss
of the muramyl endopeptidase Spr the Gram-negative bacterium Salmonella typhimurium
against vancomycin [102]. Alternatively, upon already underlying multidrug resistance,
the identification of novel therapeutic targets can be achieved, for example, by identifi-
cation of components required for virulence or persistence. Candidate compounds can
then be identified by molecular docking, virtual prediction of small molecule binding sites,
to the protein’s crystal structure or to its structural model.- More unbiased approaches
include binding studies using cell extracts or a compound library screening in vitro, follow-
ing expression and purification of validated protein targets [103]. Alternatively, already
addressed targets can be employed to develop new drugs, through approaches such as
modulation of existing antimicrobial agents in case of altered or homologous targets [94].
This is an especially useful approach as multidrug resistant microbes can persist in the
environment and do not readily reverse even upon discontinuation of the treatment [104].
For example, N-thiol substituted monocyclic β-lactams covalently inhibits abundant L-D
transpeptidase 2 which performs 3,3-diaminopimelic acid crosslinks in peptidoglycan of
Mycobacterium tuberculosis thereby being effective against dormant and multidrug resistant
isolates [105]. It has also been observed that the frequency of horizontal plasmid transfer
increases in the presence of subinhibitory concentrations of antibiotics [106]. Thus, targeting
of plasmid maintenance or their conjugation can be novel strategies to lower the frequency
of antimicrobial resistance, as exemplified with an IncFIA plasmid [107]. Such strategies, if
sufficiently specific for multidrug resistance plasmids, might also be appropriate to remove
resistance plasmids or to prevent their transfer from and between the commensal flora.

5. Innovative Strategies to Overcome Antimicrobial Tolerance in Biofilms

Biofilm formation is a major cause of tolerance against antimicrobial treatment [12,14].
Thereby, multiple characteristics of biofilms have been identified which contribute to an-
timicrobial tolerance. For instance, production of the extracellular matrix serves as physical
and chemical barriers [108], induction of reactive oxygen species by antibiotic treatment
is less efficient [109], and the metabolism of biofilms is significantly altered and slowed
down in chronic infections [110], including the presence of a substantial fraction of metabol-
ically silent persister cells [111]. As such, depletion of the extracellular biofilm matrix by
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nucleases and/or proteases can enhance the efficiency of antimicrobial treatment [108]. The
degradation of the extracellular biofilm matrix by hydrolyzing enzymes is highly efficient.
Indeed, production of extracellular matrix components can positively affect P. aeruginosa
biofilm formation, and the synthesis of the second messenger cyclic di-GMP, a ubiquitous
activator of biofilm formation [112]. Thus, the degradation of the biofilm matrix is not only
a simple removal of physical and chemical barriers, but also involves the downregulation
of biofilm physiology and metabolism, and hence contributes to the success of removal of
the extracellular biofilm matrix as a therapeutic strategy.

A few clinically relevant antimicrobial agents, rifampin and fluoroquinolones, have
shown to be effective against Gram-positive and Gram-negative biofilm infections, re-
spectively [113]. Antibiofilm agents, including compounds that even disperse already
established biofilms, are widespread in nature and have been developed into effective
antibiofilm agents (Table 2; refs. [114–116]). For example, sensing of the innate immune
agent nitric oxide (NO) at subinhibitory concentration disperses biofilms in a broad range
of bacterial species, including human pathogens (Table 2; refs. [117,118]). Biofilm dispersal
seems to be affected through downregulation of the second messenger cyclic di-GMP by
distinct protein members of conceptually similar signaling pathways. In representative
isolates belonging to different species, NO binds to an N-terminal or free-standing sig-
naling domain that subsequently activates a cyclic di-GMP specific phosphodiesterase.
With several clinical trials under way (NCT02498535; refs. [119,120]), success in the appli-
cation of NO as an antibiofilm agent might be based on a combination of antimicrobial,
antibiofilm, and host physiological effects [121]. The antimicrobial peptide LL-37 has been
shown to possess a potent antibiofilm, rather than antimicrobial activity against various
pathogens, such as P. aeruginosa and Escherichia coli (Table 2; refs. [122,123]). A recently
developed antimicrobial peptide–vancomycin conjugate combined the antibiofilm with
antimicrobial and immunostimulatory effects to reduce bacterial load in an in vivo ab-
scess model [124]. The human hormones brain natriuretic peptide (hBNP) and C-type
natriuretic peptide (hCNP) equally efficiently inhibit biofilm formation of P. aeruginosa at
concentrations over 1000-fold lower than their antimicrobial concentration (Table 2). On
the other hand, a highly differential temperature-dependent effect on biofilm formation of
Gram-positive pathogens has been observed with human atrial natriuretic peptide (hANP)
and hCNP to inhibit biofilm formation of S. aureus at body temperature. Various established
antimicrobial agents, such as macrolides, have been reported to affect biofilm formation
at subinhibitory concentrations, although not necessarily through the same mechanism
or extent in different microbial species (Table 2; ref. [125]). While macrolides selectively
affect the translation of messenger RNA into proteins by interacting with the 23S RNA of
ribosomes, and prevent 50S ribosomal subunit assembly [126], transcriptional profiling
of the response against subinhibitory concentrations of the semi-synthetic macrolide clar-
ithromycin to prevent ancient rdar biofilm formation of Salmonella typhimurium, a biofilm
directed by the transcriptional regulator CsgD via the expression of amyloid curli fimbriae
and the exopolysaccharide cellulose, indicated selective upregulation of ribosomal subunit
genes with their gene products potentially interacting with clarithromycin. Upregulation
of the heat shock stress response with folding and holding chaperons is also indicative of
impaired protein homeostasis [127]. Transcriptional analysis further indicated the redirec-
tion of microbial metabolism towards an oxygen- and energy-depleted status where energy
is derived from L-arginine catabolism and propane-1,2-diol and ethanolamine degrada-
tion rather than by oxidative phosphorylation. This defined response might not only be
explained by the macrolide clarithromycin to differentially inhibit ribosome assembly or
translation, but also indicate an off-target activity of the macrolide antimicrobial agent.



Microorganisms 2023, 11, 16 8 of 20

Table 2. Selected identified anti-biofilm agents and their major physiological effects on the targeted
microbes and the host.

S. No Antibiofilm Agent Source of
Compound Active against Effect on

Biofilm/Mechanism
Alternative
Physiological Activities

Natural compounds

1. Ellagic acid glycosides

Plant (Rubus
ulmifolius Schott;
Euphorbia humifusa,
Punica granatum,
Fragaria)

S. aureus Inhibits cellular
adhesion [128] -

2. Carolacton Microbe (Sorangium
cellulosum) Streptococcus mutans Decreases cell viability in

biofilm [128]

Inhibits human cancer
cell lines MTHFD 1 and
MTHFD 2 [128]

3. Promysalin Microbe
(Pseudomonas putida) P. aeruginosa

Growth inhibitory
against MDR
Pseudomonas spp.; affects
succinate dehydrogenase
[128]

Can enhance biofilms;
inhibits pyoverdine
production in
Pseudomonas spp. [128]

4. Flustramine C and its
derivatives

Marine colonial
animal
(Flustra foliacea)

Acinetobacter
baumannii, E. coli, and
MRSA S. aureus

Inhibition of biofilm
formation, potentially
through indole
pathways [128]

-

5. Meridianin D and
derivatives

Marine tunicate
(Aplidium
meridianum)

MRSA S. aureus Inhibits and disperses
biofilms [128]

Inhibits some kinases
[128]; Synergistic with
colicin in colicin sensitive
and resistant Acinetobacter
baumanii, E. coli, and
K. pneumoniae

6. Artemisin Plant (Artemisia
annua) M. tuberculosis Inhibition of dormancy of

M. tuberculosis [129]
Effective against malaria
[130]

7. Quercetin Plant (such as
red onion)

E. coli; Vibrio
parahaemolyticus;
Listeria monocytogenes

Biofilm inhibition [131] Inhibitor of ROS
production [132]

8. N-(Heptylsulfanylacetyl)-l-
homoserine lactone Plant (garlic extract) P. aeruginosa AHL antagonist [132]

Decreased elaboration of
virulence factors and
reduced production of
quorum sensing
signals [133]

9. Nitric oxide (NO)

Human, chemical
source: Sodium
nitroprusside (SNP)
S-Nitroso-L-
glutathione (GSNO)
S-nitroso-N-
acetylpenicillamine
(SNAP)

P. aeruginosa and
other pathogens

Dispersal of cells in the
biofilm [134]

Vasodilation [135]
Signaling molecule
(reduction of cGMP) [134]

10.

Human Atrial Natriuretic
Peptide (hANP), human
Brain Natriuretic Peptide
(hBNP), human C-type
Natriuretic Peptide (hCNP)

Human
P. aeruginosa;
S. aureus;
Cutibacterium. acnes

Biofilm inhibition; biofilm
dispersion;
S. aureus biofilm
inhibition and
Staphylococcus epidermidis
biofilm stimulation at
37 ◦C [136]

Opposite effect on S.
aureus biofilm formation
at 33 ◦C; Regulates blood
pressure [137]

11. Furanones
Brominated furanones

Marine seaweed
(Delisea pulchra)

P. aeruginosa
Salmonella enterica

Targets quorum sensing
systems;
Inhibits certain virulence
factors [138]
Inhibition of quorum
sensing [128]

Derivatives used in flavor
and perfume industry
[138]

Cytotoxic
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Table 2. Cont.

S. No Antibiofilm Agent Source of
Compound Active against Effect on

Biofilm/Mechanism
Alternative
Physiological Activities

12.

Cis-2-decenoic acid
Trans-2-decenoic acid
Cis-11-methyl-2-
dodecenoic acid

P. aeruginosa

P. aeruginosa biofilm dispersal [139]

Autoinducer
Agrobacterium
tumefaciens [140]

S. aureus [141]

C. albicans [142]

13. LL-37 Human P. aeruginosa
E. coli

Prevents biofilm
formation; inhibits curli
biosynthesis of E. coli
[122,123]

Immunostimmulatory
effects

14. Alkaloids Aspergillus restrictus C. albicans

Inhibits growth of
hyphae and production
of extracellular polymeric
substances [143]

Anticancer,
anti-inflammatory, and
analgesic properties

15. Indolocidin
Isolated from bovine
neutrophil
cytoplasmic granules

S. maltophilia,
P. aeruginosa

Inhibits biofilm formation
[144] -

synthetic compounds

16. 1037
Antimicrobial
peptide
LL-37

aeruginosa,
L.monocytogenes
Escherichia coli

Biofilm inhibition/
eradication [145]
Antibiofilm
properties [123]

Stimulation of twitching
motility [146]
Contributes to innate
immunity [122]

17. 1018 Antimicrobial
peptide Bactenecin

P aeruginosa, E. coli, A.
baumannii, Klebsiella
pneumoniae, S. enterica
and MRSA

Biofilm inhibition/
eradication [145]

Antibacterial properties
(MIC > 256 µg/mL)

18. AS10

Cathelicidin-Related
Anti-Microbial
Peptide CRAMP:
LL37 analog

C. albicans Biofilm inhibition [145] -

19. BMAP27-melittin Peptide Melittin S. aureus, P.aeruginosa Biofilm inhibition/
eradication [145] ATP synthesis [146]

20. NRC-16 Antimicrobial
peptide Pleurocidin P. aeruginosa Biofilm inhibition [145]

Antibacterial properties
MIC > 256 µg/mL and
lowers hemolysis [147]

21. Battacin Lipopeptides P. aeruginosa, P.
syringae, S. aureus

Biofilm
inhibition/eradication
[145]

Antibacterial activity by
depolarization of cell
membrane [148]

22. Complestatin (structural
analog of vancomycin) Streptomyces spp P. aeruginosa

Inhibition of biofilm
formation; upregulation
of NO production; and
reduction of cyclic
di-GMP [149]

Antibacterial activity
(analog of vancomycin)
[149]

23. Hydrazonodiaminopyrazole
H6-335

3-Fluoroaniline
(Precursor) P. aeruginosa

Depletes cyclic
di-GMP/disperses
biofilm [150]

-

24. Temporin PTa and
Hp-MAP1 and Hp-MAP2

Animal (Hylarana
picturata)

K. pneumoniae, A.
baumanii, S. aereus,
E. coli

Antibiofilm activity of
analogs Hp-MAP1 and
Hp-MAP2 [151]

Antimicrobial activity

25. Clarithromycin Macrolide
erythromycin

P. aeruginosa
Other bacteria

Prevents biofilm
formation [81]

Antibacterial activity,
immunomodulatory
activity
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Table 2. Cont.

S. No Antibiofilm Agent Source of
Compound Active against Effect on

Biofilm/Mechanism
Alternative
Physiological Activities

26.

(Z)-4-(2-(3-
Fluorophenyl)hydrazine
ylidene)-5-imino-4,5-
dihydro-1H-pyrazol-3-
amine

Hydrazono-
diaminopyrazole
derivative

P. aeruginosa

Leads to biofilm dispersal
by stimulation of a cyclic
di-GMP
phosphodiesterase [150]

-

27. Benzophenone
semicarbazone

Benzophenone
semicarbazone
derivative

Candida parapsilosis

Prevents biofilm
formation (Nadeem,
Shafeeq et al., manuscript
in preparation)

-

The second messenger cyclic di-GMP signaling network is a major determinant of
tolerance against antimicrobials and detergents [152,153]. Alternative strategies to combat
biofilm formation by mimicking natural situations include direct targeting of the cyclic di-
GMP signaling molecules by complexing peptides with high affinity binding sites of protein
receptors [154]. Although small molecule compounds can interfere with a variety of regula-
tory or biosynthetic biofilm pathways, screening identified a hydrazonodiaminopyrazole
derivative, (Z)-4-(2-(3-fluorophenyl)hydrazineylidene)-5-imino-4,5-dihydro-1H-pyrazol-3-
amine, that activates the breakdown of the cyclic di-GMP biofilm activator by activation of
a cyclic di-GMP specific phosphodiesterase, leading to biofilm dispersal [150]. Furthermore,
high spider-like biofilms, formed by clinical isolates of the yeast Candida parapsilosis, can
be selectively targeted with a benzophenone semicarbazone derivative to elicit a defined
transcriptional response (Nadeem, Shafeeq et al., manuscript in preparation). Similar anal-
yses explaining the antibiofilm effect on a molecular level will help in the identification of
novel antimicrobial and antibiofilm targets. These strategies combined with transcriptional
profiles of alternative antibiofilm and antimicrobial agents can lead to the development of
rationalized combinatorial strategies against biofilm infections [155].

An additional challenge during chronic infections is the presence of so-called small
colony variants, comprised of mutated cells with metabolic downregulation, and enhanced
antimicrobial resistance, and biofilm formation [156–159]. Mutations that lead to the emer-
gence of small colony variants can occur in the heme and menaquinone biosynthesis
pathways, which leads to impairment of functionality of the respiratory chain, in carbonic
anhydrases (that fix inorganic CO2), and in the de novo pyrimidine biosynthesis path-
way [160]. Targeting small colony variants might require novel experimental approaches
as their metabolism and physiology, including elevated biofilm formation, is substantially
different. Metabolic downregulation leading to antimicrobial tolerance is also displayed
by some slow growing microorganisms. Such organisms can be resensitized by metabolic
stimulation through nutrients [129]. Induction of dormancy can also be prevented by
pharmacological interference [129] to stimulate metabolism and respiration and to increase
the proton motif force required for the uptake of some classes of antimicrobial agents.

6. Holistic Assessment of Antimicrobial Tolerance

Although effective against microbial cells, several conventionally used antibiotics, such
as beta-lactam antibiotics or the aminoglycoside gentamicin, do not penetrate into host cells,
and thus fail to reach to intracellular bacteria (Figure 2; ref. [161]). A long-overlooked niche
leading to recurrent infections is the intracellular presence of microbes which are evolution-
arily not considered to possess an intracellular lifestyle. For example, uropathogenic E. coli
survives antimicrobial treatment as an intracellular biofilm in bladder epithelial cells [16],
while Staphylococcus aureus invades and survives in phagocytic and non-phagocytic host
cells [162]. Antimicrobial agents, such as the fluoroquinolone enrofloxacin, might be poorly
effective against intracellular microbes due to insufficient intracellular accumulation. They
may also be less effective against microbes which reside in immunologically favorable
niches in the host tissues [163,164]. Thus, besides being an effective antimicrobial agent
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against free-living planktonic and/or biofilm-forming microbes and non-cytotoxic against
host cells, accumulation of antimicrobial agents in host cells, their tissue penetration, and
immunomodulatory characteristics might add to the success of antimicrobial therapies.

Figure 2. Biofilm related treatment challenges: (a) Small colony variants are mutants arising during
chronic infections due to, for example, a defect in the heme biosynthesis pathway. Small colony vari-
ants possess increased antibiotic resistance. (b) Growth rate is not uniform inside biofilm as persister
cells are non-growing cells, and antibiotics may be inactive against these cells with low metabolic
activity. (c) Antimicrobials fail to penetrate into the surface layer of biofilms or might be inactivated by
extracellular matrix components, which decreases the effectiveness of antimicrobials. An increasing
dose of the antimicrobial may lead to a cytotoxic effect on host cells [165]. (d) Antibiotics can be
degraded or destroyed by enzymes which are secreted into the biofilm matrix. (e) Biofilm formation
increases the effectiveness of genes transfer among the microbes constituting the biofilm [166]. Biofilm
formation thus facilitates the transfer of antibiotic-resistant genes from resistant microbial strains
to susceptible microbial strains. (f) pH and oxygen levels are different in different microenviron-
ments of the biofilm which aid the defensive mechanisms of biofilm and can prevent uptake of
antimicrobial agents. (g) Microbial cells communicate through quorum sensing which can trigger
increased virulence and biofilm formation by altered gene expression, and accelerating the process of
antibiotic tolerance [167]. This mechanism can stimulate biofilm formation, but also disperse biofilms
depending on the autoinducer molecule. (h) Intracellular biofilm as, for example, observed in the
murine cystitis model. After microbial invasion, these biofilm-like intracellular bacterial communities
replicate and persist in host cells, protected from antimicrobial action and can subsequently disperse
to other host cells [168].

Antimicrobial agents often have additional biological effects, besides their bacteri-
cidal or bacteriostatic effect on the targeted microbes [169]. Such antibiotics can show
cross-effectiveness against highly homologous structures present in alternative microbes,
fungi, parasites, and helminths and can also exert a substantial toxicity against host cells.
This prevents their systemic use for the treatment of infections in humans [170–173]. Ad-
ditional adverse effects, such as antibiotic allergy [174] or the selection for alternative
pathogens [175], might be experienced upon long-term use. For example, M. abscessus
emerged as an opportunistic pathogen in chronic lung infection in immunocompromised
individuals [176].

The aminoglycoside antibiotic, nourseothricin, a natural product of the streptothricin
class, is composed of a streptolidine, carbamyolated gulosamine, and variable number
of β-lysine moieties. This antibiotic causes miscoding by a potentially unique binding
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mechanism to the ribosome [177,178]. Nourseothricin is effective not only against bacteria,
but also against other microorganisms, such as archaea, fungi, protozoa, and microalgae.
However, its toxicity against eukaryotic cells prevents its clinical use [179–181]. The
effect of antimicrobial agents not only on pathogens but on the commensal microflora
might increase the risk of viral [182,183] and fungal infections [184]. Besides cytotoxic
and cytostatic effects beyond the primarily targeted microbes, antimicrobial agents can
have a substantial modulating effect on host metabolism and physiology. Furthermore,
antibiotics can affect immune responses, which might substantially alter the outcome of
the antimicrobial treatment. For example, some antimicrobial agents, such as the macrolide
clarithromycin, accumulate in host cells and provoke an immunomodulatory effect which
contributes towards improved conditions [185]. Intriguingly, it has recently been shown
that treatment success can be enhanced by stimulation of the immune system, especially
in immune compromised host niches [163]. Similar strategies, in combination with strong
antibiofilm agents, might also enhance the success of antimicrobial therapies against biofilm
infections [107].

7. Discussion and Conclusions

The discovery of antimicrobial agents and their extensive use in the treatment of acute
infections has been a major milestone in medical sciences. However, their broad spectrum
uses from therapeutics to agriculture and including poultry, cosmetics, and aquaculture
have led to the emergence of multidrug resistance in targeted pathogens. As a result, this
major therapeutic achievement might be lost with consequences beyond the eradication
of acute infections. Not only does immediate effective antimicrobial therapy target acute
infections, but also follow-up diseases such as autoimmune diseases, e.g., rheumatic heart
disease, can be alleviated or even prevented. Subclinical microbial infections also cause or
are associated with lifestyle diseases, such as atherosclerotic cardiovascular disease due to
enhanced gut permeability and poor dental health. There are indications that antimicrobial
treatment leads to improvement in such situations. Similarly, treatment of chronic infec-
tions, often associated with biofilm formation as a major virulence factor, is increasingly
challenging as the raise in medical care that requires indwelling devices becomes more fre-
quent. Equally difficult is the treatment of infections in immunocompromised individuals
including individuals with diabetes and cancer patients undergoing chemotherapy who are
prone to a diversity of microbial infections, more frequently and with more severe outcomes.
Antimicrobial agents to treat immunocompromised individuals ideally are bactericidal
to kill microbes fast and effectively as the immune system cannot aid in the eradication
of the organisms. Tailor-suited immunostimulatory therapies might be able to support
eradication and prevent reinfection. An additional challenge is the evolution of tolerant
microorganisms manifested by specific mutations to subsequently promote the develop-
ment of resistance and recurrent infections [8,186] equally as the emergence of reversibly
tolerant microorganisms that display enhanced biofilm formation [11]. Thereby, manifested
tolerance resembles the phenotype observed with a bacteriostatic antibiotic. Whether either
of these two modes of tolerance is increasing among the various pathogens requires further
investigation and clinical studies. Thus, multiple strategies need to be deployed in order to
develop novel and effective treatment approaches. Antibiofilm approaches might, however,
be challenging to develop due to the complexity of biofilm regulation in combination
with tolerance. As such, small molecular compounds might have a differential and even
opposite effect on biofilm formation of different species of the human microbiome. Among
the most promising approaches, molecular genome wide approaches help to identify novel
targets of intrinsic antimicrobial resistance. This can aid in identifying species or even
strain-specific antimicrobial targets and antibiofilm approaches which can target ubiquitous
second messenger pathways mediating biofilm formation, small colony variants, and/or
persister cell formation. Genome mining of human and microbial resources, on the other
hand, has already provided novel opportunities to discover novel classes of antimicrobial
and antibiofilm agents [187,188].
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