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Abstract: Bacillus strains are widely distributed in terrestrial and marine environments, and some of
them are used as biocontrol organisms for their biofilm-formation ability. In Bacillus subtilis, biofilm
formation is fine-tuned by a complex network, a clear understanding of which still requires study. In
bacteria, tmRNA, encoded by the ssrA gene, catalyzes trans-translation that can rescue ribosomes
stalled on mRNA transcripts lacking a functional stop codon. tmRNA also affects physiological
bioprocesses in some bacteria. In this study, we constructed a ssrA mutant in B. subtilis and found
that the biofilm formation in the ssrA mutant was largely impaired. Moreover, we isolated a biofilm-
formation suppressor of ssrA, in which the biofilm formation was restored to a level even stronger
than that in the wild type. We further performed RNAseq assays with the wild type, ssrA mutant,
and suppressor of ssrA for comparisons of their transcriptomes. By analyzing the transcriptomic
data, we predicted the possible functions of some differentially expressed genes (DEGs) in the
tmRNA regulation of biofilm formation in B. subtilis. Finally, we found that the overexpression
of two DEGs, acoA and yhjR, could restore the biofilm formation in the ssrA mutant, indicating
that AcoA and YhjR were immediate regulators involved in the tmRNA regulatory web controlling
biofilm formation in B. subtilis. Our data can improve the knowledge about the molecular network
involved in Bacillus biofilm formation and provide new targets for manipulation of Bacillus biofilms
for future investigation.

Keywords: tmRNA; biofilm formation; Bacillus subtilis; transcriptome; sporulation

1. Introduction

Biofilms are communities of surface-associated microbial cells enclosed by an ex-
tracellular matrix. Biofilms are the predominant mode of microbial growth in natural
environments. Microbial biofilms are intimately related to human life. On the one hand,
most human infections caused by microbial biofilms are notoriously challenging to treat
because the microorganisms are embedded in a protective matrix of extracellular poly-
meric substances, for instance, exopolysaccharides (EPS) [1]. Apparently, the protection of
biofilms confers multidrug resistance and immune evasion capabilities on bacteria, which
makes them highly pathogenic and difficult to eradicate [2]. Biofilms formed by bacterial
pathogens lead to prolonged infections and increased mortality rate among patients, which
has always been a hot topic in medicine, in the past several decades [3]. On the other hand,
biofilms produced by some bacteria can be beneficial to humans. They have shown great
potential in wastewater treatment and production of microbial fuels [4,5]. The ability to
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form biofilms makes some Bacillus ideal biocontrol strains. For example, biofilms in Bacillus
subtilis can protect plants from a variety of pathogens [6,7].

Given the importance of biofilm formation in B. subtilis, its molecular mechanisms
have been extensively studied [8]. Biofilm formation in B. subtilis is finetuned by a complex
network involving many regulatory factors. In general, the extracellular matrix of B. subtilis
biofilms mainly includes extracellular polysaccharide (EPS), amyloid fiber (TasA) and the
coat protein BslA, which are encoded by the epsA-O operon, tapA-sipW-tasA operon, and the
bslA gene, respectively [9,10]. Regulatory factors control biofilm formation by directly or
indirectly regulating the transcription of these matrix genes. To date, six crucial regulatory
factors have been found to be involved in B. subtilis biofilm formation, namely Spo0A, AbrB,
SinR, σH, DegU, and CcpA [11,12]. Spo0A is central to the initiation of biofilm formation via
protein phosphorylation [13,14]. The threshold level of Spo0A phosphorylation (Spo0A~P)
can directly or indirectly inhibit the transcription of abrB and sinR, thereby diminishing the
inhibition of epsA-O and tapA-sipW-tasA transcription by AbrB and SinR, and eventually
promoting biofilm formation [15,16]. Recently, many other factors, such as Veg, YpqP,
ComER, and ComX, have been described affecting biofilm formation in B. subtilis [17–20].
Despite the progres that have been made on the molecular mechanisms of B. subtilis biofilm
formation, there are still unknown pathways underneath the known mechanisms, and a
full understanding of the regulatory network requires more research.

During growth, ribosomes are stalled frequently on incomplete mRNA transcripts
lacking a functional stop codon in bacterial cells. These result in nonstop complexes com-
prised of the stalled ribosome, incomplete mRNA, and nascent problematic polypeptide,
the accumulation of which can cause the death of the cell [21]. Bacteria evolve mechanisms
to recycle stalled ribosomes with trans-translation being the most utilized one. Trans-
translation is mediated by transfer-messenger RNA (tmRNA) and SmpB. tmRNA possesses
tRNA-like and mRNA-like structures with the mRNA domain coding for a tag peptide [22].
Briefly, to catalyze trans-translation, the alanine-charged tmRNA forms a complex with
SmpB and EF-Tu·GTP, enters the vacant A site of the stalled ribosome and accepts the
nascent peptide via transpeptidation. The ribosome then resumes moving by translation
of the sequence encoded in the tmRNA, leading to the eventual release of the ribosome
and addition of a C-terminal peptide tag to the incomplete nascent protein. The tagged
polypeptide is recognized and degraded by various proteases, such as ClpXP and Lon [21].
Besides its biochemical function, tmRNA can affect bacteria physiologically. Some bacte-
ria require tmRNA to be viable, such as Shigella flexneri and Neisseria gonorrhoeae [23,24].
tmRNA also regulates the stress response in Escherichia coli, pathogenesis in Yersinia pseu-
dotuberculosis, and the cell cycle in Caulobacter crescentus [25–27]. A recent study suggests
that the genome excision of P2 prophage negatively regulates biofilm formation, partially
through trans-translation, in Shewanella putrefaciens [28]. In B. subtilis, it has been reported
that under a variety of stressful conditions, such as high or low temperature, ethanol stress,
and cadmium stress, the optimal growth of B. subtilis cells requires tmRNA [29,30]. In
addition, it has been shown that in the ssrA (gene encoding tmRNA) mutant in B. subtilis,
the activity of σK, a factor playing a role in sporulation, is inhibited. Thus, tmRNA also
affects sporulation of B. subtilis [31].

The connection between tmRNA and biofilms in Bacillus has not been proposed
anywhere. Here, we used the CRISPER-Cas9 system to construct the ssrA mutant in the B.
subtilis NCIB 3610 strain, and the results showed that the tmRNA mutant (TM) produced
an obviously weaker biofilm than the wild-type strain (WT). Compared with WT, the
swarming motility was also substantially hampered in TM. Moreover, a suppressor mutant
strain tm3MB(MB) in the TM strain was isolated and showed an even stronger biofilm-
formation phenotype than the WT strain. Finally, we analyzed the differentially expressed
genes (DEGs) among WT, TM, and MB via RNAseq analysis. Among the DEGs, we found
two genes, acoA and yhjR, that might encode putative immediate regulators of the pathway
through which tmRNA affects biofilm formation in B. subtilis because overexpression of
these genes partially or fully restored the biofilm-formation phenotype in TM. In this
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study, we found that tmRNA was required for biofilm formation and swarming motility in
B. subtilis, which indicates that trans-translation is an important factor in the regulatory
network of biofilm formation in this organism. We investigated the possible molecular
mechanism how tmRNA affects biofilm formation, and our results shed a light on the
understanding this complex biological process in B. subtilis.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The Bacillus strains, E. coli strains and plasmids used in this study are listed in Table
S1 in the Supplemental Material. Routine growth of B. subtilis and E. coli strains was
performed in Luria–Bertani (LB) broth: 1% tryptone (Oxoid, Basingstoke, UK), 0.5% yeast
extract (Oxoid) and 0.5% NaCl (Aladdin, Dubai, United Arab Emirates). The B. subtilis
strains were grown in LBMG medium [32] (LB medium supplemented with MnCl2 and
glycerol) for observation of pellicle biofilms. Colony biofilms were assayed in MSgg agar
plates: 5 mM potassium phosphate, 100 mM MOPS [pH 7], 2 mM MgCl2, 50 µM MnCl2,
50 µM FeCl3, 700 µM CaCl2, 1 µM ZnCl2, 2 µM thiamine, 0.5% glycerol, 0.5% gutamate,
and 50 µg/mL tryptophan and phenylalanine, as previously described [33]. Antibiotics
were applied, if necessary, at the following concentrations: kanamycin, 50 µg ml−1 used
for E. coli and 5 µg ml−1 used for Bacillus strains; chloramphenicol, 12.5 µg ml−1 used for
E. coli and 5 µg ml−1 used for Bacillus strains; and streptomycin, 50 µg ml−1 used for
E. coli strains.

2.2. Construction of Strains

To delete the ssrA gene in B. subtilis strains, we used the CRISPR-Cas9 system harbored
in the plasmid vector pJOE8999, which is a shuttle plasmid containing a temperature-
sensitive replicon for B. subtilis [34]. First, we subcloned the gRNA sequence for ssrA
in pJOE8999 at the site of Bsa I, and obtained the resulting plasmid pYX101. Then, the
DNA sequences located upstream and downstream of ssrA were PCR-amplified from the
genomic DNA of strain NCIB 3610 using the primer pairs ssrA-U-F/R and ssrA-D-F/R,
respectively. These two fragments were subsequently sutured together via SOE-PCR to
construct the fragment ssrA-UD. The ssrA-UD fragment was subcloned in pYX101 at site Sfi
I, and the resulting plasmid pYX102 was then transformed into JM110, to be demethylated
as a new plasmid pYX103. Plasmid pYX103 was subsequently introduced into the target
strain requiring a ssrA deletion via transformation, and the transformants were selected as
KanR colonies. The verified KanR colonies were further grown at 45 ◦C to remove pYX103
that originated from the temperature-sensitive plasmid pJOE8999. The pYX103-free strains
were screened as KanS colonies, and whether the disruption of ssrA via double-crossover
homologous recombination occurred in these colonies during the incubation at 45 ◦C was
tested using PCR with the primer pair ssrA-verify-F/R. Mutants with deleted genes acoA,
yhjR, sinR, and skfA in B. subtilis were constructed in the same manner as that described for
the ssrA mutant. To complement the ssrA mutation, plasmid pNW33N [35], a replicative
and high-copy plasmid for Bacillus, was used as the vector carrying the wild-type ssrA gene.
The sequence of ssrA, including its promoter region, was PCR-amplified from the genomic
DNA of NCIB 3610 using the primer pairs ssrA-33N-F/R and obtained as a fragment
flanked by the sequences of Pst I and BamH I. The amplified ssrA fragment was then
subcloned in pNW33N between sites Pst I and BamH I, and the constructed plasmid was
designated as pYX201 and transformed into JM110 for demethylation. The demethylated
recombinant plasmid, pYX202, was finally transformed into the target host strains as
described earlier [34]. In addition, to overexpress genes, we subcloned the fusion of a
strong promoter pG and gene of interest in the pNW33N plasmid using the ClonExpress®

MultiS One Step Cloning Kit (Vazyme Biotech Co., Ltd., Nanjing, China), according to the
manufacturer’s instructions. All the primers used in this study are listed in Table S2.
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2.3. Biofilm Formation Assays

Strains were grown in LB to an optical density at 600 nm (OD600) of 1.0. For the colony
assay, the LB cultures were 10 times diluted with sterile deionized water and spotted on
the MSgg agar (1.5% agar), and the seeded agar plates were incubated at 30 ◦C for different
times. For the pellicle assay, 1.5 µL of the diluted culture was added to 1.5 mL LBMG
medium contained within a well of a 24-well microtiter plate, and the microtiter plates
were incubated at 30 ◦C for the indicated times.

2.4. Swarming Motility Assay

To test swarming motility, single colonies of the strains grown on regular LB plates
(1.5% agar) were picked and spotted onto the soft agar medium supplemented with LB
broth and 0.65% agar. The seeded soft agar plates were incubated at 37 ◦C for 6 h, for
observation of swarming zones.

2.5. Isolation of the Swarming Suppressors of ssrA in B. subtilis

The ssrA mutant was grown on regular LB plates and its single colonies were picked
and spotted on the soft agar plates (the same as described above). The seeded plates were
incubated at 37 ◦C till obvious swarming zones were observed. Bacteria from different
areas of the outer rings of the swarming zones were picked and streaked on regular LB
plates, for further purification of the suppressors of ssrA.

2.6. Confocal Laser Scanning Microscopy

The 48-h incubated submerged biofilms in microtiter plates were observed using
a LSM710-Meta confocal laser scanning microscope (ZEISS, Jena, Germany). For the
observation of biofilms in B. subtilis strains, cells were fluorescently stained in green with
the nucleic acid marker SYTO®9 (Invitrogen by Thermo Fisher Scientific, Waltham, MA,
USA), at the concentration of 5 µM (diluted in PBS). After a 20-min incubation in the dark at
37 ◦C to enable fluorescent labeling of the bacteria, the plate was mounted on the motorized
stage of the confocal microscope. The biofilms were scanned at excitation wavelengths of
488 nm (argon laser; 3% intensity), with emission wavelengths collected from 493 to 550 nm
for the SYTO®9 fluorescence. Three-dimensional (3D) projections of the biofilm structures
were reconstructed using the Easy 3D function of the IMARIS software (Bitplane, Zürich,
Switzerland) from the xyz image series.

2.7. Quantification of the Average Thickness and Biovolume of Biofilms

The average thickness and biovolumes of biofilms were calculated using COM-
STAT [36]. The average biovolume was measured and calculated using results from three
independent experiments, and the average thickness of biofilms was calculated using
results from three independent experiments.

2.8. RNA Isolation

In order to select a suitable sampling time point, the growth conditions of WT, TM, and
MB in the LBMG medium contained in 24-well microtiter plates were analyzed and the time
point 36 h was selected. The cells at the selected time point were collected and their total
RNA was extracted using the E.Z.N.A.® Bacterial RNA Kit (OMEGA, Norcross, GA, USA),
according to the manufacturer’s instructions. The RIN numbers and gel electropherogram
of the RNA samples are shown in the Supplementary Materials.

2.9. Transcriptome Analysis

The library construction and Illumina sequencing were performed at Novogene Bioin-
formatics Technology Co., Ltd. (Beijing, China). A total amount of 3 µg RNA per sample
was used as input material for the RNA sample preparations. mRNA was purified from
total RNA using probes to remove rRNA. The purified mRNA was fragmented and used as
templates for cDNA synthesis. The cDNA libraries were sequenced using Illumina HiSeq™
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2000. The genome of B. subtilis NCIB 3610 (NCBI Accession No. CP034484) was used as the
reference for annotation. A total of 7,225,846 reads matched to the referenced genome in the
sample of WT, 7,124,644 reads in the sample of TM, and 7,462,953 reads in the sample of MB.
The differentially expressed genes (DEGs) were determined between WT and TM, TM and
MB, and WT and MB with the standards of padj ≤0.05, and fold change |log2Ratio| > 1.
The KEGG database (http://www.genome.jp/kegg/, accessed on 1 December 2020) was
used to classify the genes with significant differential expression based on their functions.
KOBAS software was used to test the statistical enrichment of differential expression genes
in the KEGG pathways. In addition, we performed a Quantitative Real-time PCR experi-
ment (Takara.RR430B TB Green Fast qPCR Mix) for the target genes to verify the reliability
of the transcriptome data (see the Supplementary Materials).

2.10. Sporulation Assay

The sporulation assay was based on methods published in previous literature with
some modifications according to the experimental requirements [37]. The samples were
collected under the same conditions as described for the RNA isolation and serially diluted
with sterile physiological saline. The collected cultures were well resuspended, centrifuged
at 4500 rpm for 5 min, and then the supernatant was discarded. The harvested samples
were washed with 500 µL physiological saline, and finally resuspended in physiological
saline. The resuspended samples were subsequently subjected to mild sonication (20%
amplitude, 1 s on, 1 s off for 5 s total) to liberate bacterial cells from the matrix. A 10 µL
sub-sample of each cell sample was incubated for 20 min at 80 ◦C (heat-resistant) to kill
vegetative cells. Then the samples were resuspended with 300 µL physiological saline,
which was plated on LB agar plates and incubated for 12 h at 37 ◦C. The number of spores
produced was determined as the number of colonies grown on the LB agar plates, for
each sample. Meanwhile, 10 µL of each cell sample was directly resuspended with 300 µL
physiological saline and were diluted (10,000 times) for plating. These samples were used
as a control for the high-temperature treated samples.

2.11. Extraction of Extracellular Polysaccharide (EPS)

Colonies of the WT NCIB 3610 strain grown in the MSgg agar plates were crushed and
transferred into a triangular flask. Sterile water was added to the flask for dissolution of
the colonies, followed by incubation at 50 ◦C for 1.5–2 h, for extraction of the EPS. Then, the
incubated mixture was centrifuged at 8000× g for 15 min, and the supernatant of the extract
was collected. Next, 30% alcohol was added to the supernatant, which was subsequently
precipitated at 4 ◦C for overnight. The supernatant was collected via centrifugation and
further precipitated at 4 ◦C overnight, by adding 70% alcohol. The precipitate obtained was
the extracted EPS. The precooled EPS samples were freeze-dried by a vacuum freeze-drying
device for 24 h. The final white powdery substance was Bacillus crude EPS, which was
weighed and quantified.

3. Results
3.1. tmRNA Positively Affects Biofilm Formation in B. subtilis

To study the effect of tmRNA on B. subtilis physiology, the ssrA deletion mutant in
the type strain NCIB 3610 was constructed by using the CRISPR-Cas9 system (Figure S1).
The biofilm formation in the wild-type (WT) and the ssrA mutant (TM) was investigated.
The results showed that there was not a significant difference in biofilm formation between
WT and TM when the strains were grown in MSgg medium (Figure S2a). However, in LB
medium, TM produced obviously less pellicles than WT. The WT strain could form intact
biofilms in LBM, while the TM strain could not (Figure S2a). When LBMG was used, the
phenotype appeared to be stronger: WT started forming pellicles after 24-h incubation,
whereas TM formed very little; WT formed more matured biofilms with wrinkles after
48-h incubation, whereas the TM only formed smooth or even broken biofilms at the
same point (Figures S2a and 1a). Thus, the LBMG medium was selected to grow bacteria

http://www.genome.jp/kegg/
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for the following experiments required to be performed in liquid medium. The biofilm
formation of WT and TM was also tested using different media plates. WT could produce
biofilms with more wrinkled structures than TM during growth in all tested media plates
(Figure S2b). Given that the MSgg medium agar plates produced the largest differences in
biofilm-formation phenotypes, this medium was used to grow strains for observation of
biofilms on solid surfaces (Figures 1a and S2b).

To further confirm the effect of tmRNA on biofilm formation, the complementary strain
(C∆ssrA) was constructed and the biofilm-production defect was largely restored in C∆ssrA
(Figures 1a and S2c,d). Moreover, the biofilm architectures were analyzed using Confocal
Laser Scanning Microscope (CLSM). Focusing on the sheets of cells attached to the surface,
there were obviously a larger number of cells observed for WT than that for TM (Figure 1b).
The reconstructed images and 3D models of the confocal series showed that the biofilms
produced by TM were much weaker and contained less protruded structures than those
produced by WT (Figure 1b). The phenotypes in the surface-attached cells and biofilm
formation observed for C∆ssrA resembled those of WT (Figure 1b). Furthermore, the
thickness and biovolume of biofilms formed by the strains described above was quantified.
The average thicknesses of biofilms produced by WT, TM, and C∆ssrA were 101 µm, 60 µm,
and 104 µm, respectively. The average biovolume calculated for WT, TM, and C∆ssrA were
4.834 × 103 µm3, 2.478 × 103 µm3, and 4.875 × 103 µm3, respectively (Figure 1c). All these
results suggest that tmRNA plays an important role in biofilm initiation and maturation in
B. subtilis.
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Figure 1. Comparison of the biofilm formation among WT, TM, and C∆ssrA. (a) The WT, TM, and
C∆ssrA strains were grown in the MSgg agar plates for 3 days (left) and in 24-well microtiter plates
supplied with the LBMG liquid medium for 48 h (right), and biofilms produced by the strains were
observed. The images shown are the representatives of three independent experiments. The two scale
bars both represent 5 mm. (b) Biofilms formed in the microtiter plates described in (A) were stained
with STYO®9 and investigated using CLSM. Images of cells attached to the surface were shown in
Lane 1. The confocal series were reconstructed through the software IMARIS and a representative
image (left) with virtual shadow projection (right) is shown for each strain in Lane 2. The three-
dimensional (3D) models of biofilms formed by these three strains are shown in Lane 3. The scale
bars represent 200 µm and 50 µm, from left to right, respectively. (c) Quantification of the thickness
and biovolume of the submerged biofilms produced by WT, TM, and C∆ssrA. The biovolume (purple)
and the thickness (pink) were calculated as average ± S.D. of six image series for each strain.

3.2. Isolation of a Suppressor of ssrA That Cured the TM Biofilm-Formation Defect

In view of the association of biofilm formation with swarming motility in B. subtilis [38],
in this study, the swarming motility in colonies of the WT strain showed obvious swarming
zones, and yet colonies of the TM strain showed almost no swarming zones (Figure 2a). This
result indicates that lacking tmRNA caused dramatically diminished swarming motility
in B. subtilis. It is likely that certain factors involved in the tmRNA regulation of biofilm
formation also affect swarming motility in B. subtilis.

It has been described that swarming suppressor mutants for low-motile B. subtilis
strains can be isolated via prolonged incubation of the bacteria on soft agar plates [39].
Here, one of the strains obtained (designated as tm3MB (MB)) had a not only restored
but reinforced biofilm-formation phenotype (Figures 2b and S3). The biofilms of MB were
much thicker than those of WT, the average thickness of biofilms was 153 µm (MB) and
101 µm (WT) and the average biovolume calculated was 6.185 × 103 µm3 (MB) and
4.834 × 103 µm3 (WT) (Figure 2b,c). All these results indicated that the suppressor mutant
(MB) cured the TM biofilm-formation defect. However, what mutations led to the enhanced
biofilm formation in MB and are there novel unknown factors involved in biofilm formation
in B. subtilis? To answer these questions, more in-depth experiments are required.
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Figure 2. Screening for the suppressor(s) of ssrA that possesses restored biofilm formation ability.
(a) To test the swarming motility, WT and TM were grown in soft agar plates (0.65% agar) for
6 h at 37 ◦C. The scale bar represents 1 cm. The images shown are the representatives of three
independent experiments. (b) The WT and MB strains were grown in the MSgg agar plates for
3 days (Lane 1) and in 24-well microtiter plates supplied with the LBMG liquid medium for 48 h
(Lane 2), and biofilms produced by the strains were observed. The images shown in Lane 1 and
Lane 2 are the representatives of three independent experiments. Biofilms formed in the microtiter
plates were stained with SYTO®9 and investigated using CLSM. Images of cells attached to the
surface were shown in Lane 3. The confocal series were reconstructed through the software IMARIS
and a representative image (left) with virtual shadow projection (right) is shown for each strain in
Lane 4. The 3D models of biofilms formed by these two strains are shown in Lane 5. The scale bars in
Lane 1–4 represent 5 mm, 5 mm, 200 µm, and 50 µm, respectively. (c) Quantification of the thickness
and biovolume of the submerged biofilms produced by WT and MB. The biovolume (purple) and
the average thickness (pink) were calculated as the average and ±S.D. of a six-image series for
each strain.

3.3. Transcriptome Analysis among the WT, TM, and MB Strain

To investigate whether the tmRNA mutation and suppressor mutation(s) in MB caused
any altered gene expression in the parent strain, an RNAseq analysis of WT, TM, and MB
was performed. The quality of the RNA samples is shown in Figure S4. The results
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show that nearly 40% of the genes across the genome were differentially expressed in TM,
compared with WT (Figure 3a), suggesting a major role of tmRNA in genetic regulation
in B. subtilis. Furthermore, compared with TM, there are 1537 genes which had altered
expression in MB (Figure 4a), indicating that the spontaneous suppressor mutation(s) in
MB resulted in great reprogramming of gene expression in TM. Out of these 1537 genes,
there are 1234 whose expression was also altered when comparing TM with WT, suggesting
that most of the gene-expression differences found in MB were tmRNA related (Figure S5).
In addition, 178 genes were found differentially expressed in all the three comparisons
(Figure S5). Further study of the differentially expressed genes (DEGs) found in TM and
MB might provide us valuable information regarding the effect of tmRNA on B. subtilis
physiology, especially biofilm formation.
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Figure 3. Analysis of the gene-expression differences between TM and WT. (a) A volcano plot showing
the DEGs found in TM compared with WT. DEGs were defined as the genes whose expression was
up-regulated (pink dots) or down-regulated (blue dots) with a fold change of two or more (p ≤ 0.05),
when TM was compared with WT. Black dots represent genes without a significant change in
expression. (b) Profiling of the DEGs via using the annotation of KEGG. (c) Grouping the DEGs by
the indicated metabolic pathways. (d) Changes in the expression of the known biofilm−formation
genes found as DEGs.
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Figure 4. Analysis of the gene-expression differences between TM and MB. (a) A volcano plot showing
the DEGs found in MB, compared with TM. DEGs were defined as the genes whose expression was
up-regulated (pink dots) or down-regulated (blue dots) with a fold change of two or more (p ≤ 0.05),
when MB was compared with TM. Black dots represent genes without a significant change in
expression. (b) Profiling of the DEGs via using the annotation of KEGG. (c) Grouping the DEGs by
the indicated metabolic pathways. (d) Changes in the expression of the known biofilm-formation
genes found as DEGs.

3.3.1. Gene-Expression Differences between TM and WT

There were 756 genes up-regulated and 992 genes down-regulated with a fold change
of two or more comparing TM with WT (Figure 3a). These genes were classified into
20 major cellular processes based on the annotation of KEGG (Figure 3b), and further
grouped into three major metabolic pathways related to biofilm formation, including
chemotaxis, flagellar assembly and quorum sensing (Figure 3c). Overall, the results showed
that tmRNA mediated the expression of genes involved in many cellular processes with
biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and
ABC transporters being the most mediated ones (Figure 3b). Surprisingly, the expression
of known genes required for chemotaxis and flagellar assembly was either not altered or
even increased in TM (Figure 3c), indicating that tmRNA affected B. subtilis swarming
motility and biofilm formation without repressing the transcription of flagellar genes or
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through flagellar-independent mechanism(s). Moreover, tmRNA could either positively or
negatively regulate the expression of some genes involved in quorum sensing (Figure 3b,c).
According to the DEGs, tmRNA regulated the transcription of genes encoding for known
factors controlling biofilm formation in a highly unusual way (Figure 3d). For instance,
tmRNA could not only repress the transcription of some known activators, such as SigX,
Abh, EpsA, and EpsE, but also some repressors, such as AbrB, of B. subtilis biofilm formation
(Figure 3d). In addition, tmRNA was required for the expression of comER, the product of
which is an activator for both biofilm formation and sporulation in B. subtilis (Figure 3d).
All these data suggest that tmRNA functions as an important regulator controlling many
cellular processes in B. subtills, possibly via a highly complex network.

Among these DEGs, the genes whose expression was greatly affected (top 20) by
tmRNA were analyzed (Tables S3 and S4). The genes with an expression pattern that was
either consistent with or opposite to the pattern of biofilm formation in WT, TM, and MB
were focused on. For instance, the expression of gene ytcB and acoA was decreased in
TM and yet elevated in MB, compared with the WT (Table S4), which was regulated in
a similar manner as that found for biofilm formation. These data suggested that AcoA
and YtcB are potential intermediate activators within the tmRNA regulatory cascade(s)
of biofilm formation in B. subtilis. It has been described that during biofilm development,
the acetoin utilization genes (acoABCL operon) expression was among the most significant
upregulation [40]. In addition, acoA and acoB can be coregulated by interconnected webs
of transcriptional factors, including Fnr, AcoR, SigL, and CcpA [41]. On the other hand,
the product of ytcB is a putative UDP-glucose epimerase, which is expressed late during
sporulation in the mother cell, and its expression can be inhibited by GerE and σK [42].
These results indicated the tmRNA has effects on acetoin metabolism and UDP-glucose
modification, the study of which might provide important information elucidating the
mechanism(s) for the tmRNA regulation of biofilm formation in B. subtilis.

3.3.2. Gene-Expression Differences between MB and TM

Comparing MB with TM, there were 974 genes up-regulated whereas 563 genes
were down-regulated with a fold change of two or more (Figure 4a). In addition, these
genes were classified into 20 major cellular processes based on the annotation of KEGG
(Figure 4b), and further grouped into three major metabolic pathways related to biofilm
formation (Figure 4c). These data showed that compared with TM, the most affected cellular
processes in MB were the biosynthesis of secondary metabolites, microbial metabolism
in diverse environments, and ABC transporters, which was the same as that found in the
comparison between TM and WT (Figure 4b). In addition, the distribution of up-regulated
and down-regulated genes in the shown bioprocesses comparing MB with TM was almost
opposite to that in the TM with WT comparison (Figures 3b and 4b), suggesting that the
gene-expression difference caused by tmRNA could be largely restored via the suppressor
mutation(s) in the MB strain. Still, the DEGs involved in metabolisms of chemotaxis,
flagellar biosynthesis, quorum sensing, and biofilm formation did not provide us sufficient
information to unveil the mechanisms underneath the physiological phenotypes found in
MB and TM (Figure 4c,d).

We also analyzed the most up-regulated genes (Table S5) and down-regulated genes
(Table S6) in the MB with TM comparison. The data showed that all the genes up-regulated
in TM, compared with WT, were down-regulated in MB, compared with TM, and vice versa
(Tables S5 and S6). This result further confirmed the tight connection between tmRNA and
the suppressor mutation(s) in MB. Moreover, the genes of acoA, ytcB, acoL, gerPA, yngJ, and
ydgA were down-regulated in TM and yet overexpressed in MB, compared with WT, the
expression pattern of which resembled the biofilm-formation pattern observed in these
three strains (Table S5). In contrast, hxlB and rocA were expressed totally in a reverse
manner, in WT, TM, and MB (Table S6). Among these genes, acoA and ytcB have been
described above, and acoL belongs to the acoABCL operon. gerPA encodes a germination
protein GerPA, and this gene is expressed during sporulation in the mother cell. Expression
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of the σK-dependent gerP operon is repressed by GerE [43,44]. The yngJ gene is located
in the yngJIHGFE gene cluster in B. subtilis, which is expressed during sporulation in the
mother cell. According to the profiling based on Swiss-Prot, YngJ is a homologue of acyl-
CoA dehydrogenase [45]. The ydgA gene encodes a conserved hypothetical protein, and
the expression of this gene is regulated by σK [46]. In addition to AcoA and YtcB, AcoL,
GerPA, YngJ, and YdgA could be potential activators of biofilm formation, involved in the
regulatory cascade(s) of tmRNA. On the other hand, gene products of hxlB and rocA are
also noteworthy because they could be potential repressors of biofilm formation within the
tmRNA regulatory web. HxlB is a 6-phospho-3-hexuloisomerase involved in the ribulose
monophosphate pathway in B. subtilis [47]. RocA is a L-glutamate gamma-semialdehyde
dehydrogenase involved in proline metabolism [48]. Clearly, all these results provided us
more information about how tmRNA might affect B. subtilis physiology.

3.3.3. Gene-Expression Differences between MB and WT

Comparing MB with WT, there were 179 genes up-regulated and 307 genes down-
regulated with a fold change of two or more (Figure 5a). These genes were classified into
20 major cellular processes based on the annotation of KEGG (Figure 5b). Clearly, the
number of DEGs found in this comparison was much smaller than that found in the other
two comparisons described above (Figures 3a and 4a). This might be because most of
the gene-expression differences resulted from the tmRNA deletion were restored to a WT
level in the MB strain. In fact, more than half of the DEGs shown in Figure 5 were also
found in the comparison between TM and WT. Thus, the profiling results for the DEGs
in the MB vs. WT comparison were similar to those found in the TM vs. WT comparison
(Figures 3b and 5b). Notably, there are bioprocesses, such as ribosome metabolism, which
seemed to be uniquely caused by the suppressor mutation(s) in MB rather than the tmRNA
deletion (Figure 5b). Grouping the DEGs in the MB vs. WT comparison into biofilm-
related metabolic pathways did not provide sufficiently precise information (Figure 5c). Yet,
profiling of these DEGs based on known biofilm-formation genes showed that, in addition
to tapA, the other two genes sipW and tasA included in the same operon were up-regulated
in MB, which was not observed in the TM vs. WT comparison. Further study of this operon
might provide information elucidating the mechanism of the over-produced biofilms in
MB (Figure 2).

Again, we analyzed the most up-regulated genes (Table S7) and down-regulated genes
(Table S8) in MB, compared with WT. We still focused on the genes with an expression
pattern that was similar to acoA or hxlB, as described in the comparison between TM and
MB. Two more genes, yhjR and yxbB, possessed an acoA-similar expression pattern in
strains of WT, TM, and MB. The gene yhjR encodes a spore coat protein with the function
of protecting the spores, and its localization depends on SafA [49]. The yxbB gene encodes
a putative S-adenosyl-L-methionine-dependent methyltransferase, whose function has not
been studied, according to the information based on the SubtiWiki database [50]. Gene
yxbB is located in the asnH operon comprising yxbB, yxbA, yxnB, asnH, and yxaM, which is
induced dramatically during the transition from exponential to stationary phase when the
cells are grown in rich sporulation medium [51]. These data suggest that YhjR and YxbB
might also be intermediates of the tmRNA regulatory pathway(s) for biofilm formation in
B. subtilis.
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Figure 5. Analysis of the gene-expression differences between MB and WT. (a) A volcano plot showing
the DEGs found in MB, compared with WT. DEGs were defined as the genes whose expression was
up-regulated (pink dots) or down−regulated (blue dots) with a fold change of two or more (p ≤ 0.05),
when MB was compared with WT. Black dots represent genes without a significant change in
expression. (b) Profiling of the DEGs via using the annotation of KEGG. (c) Grouping the DEGs by
the indicated metabolic pathways. (d) Changes in the expression of the known biofilm-formation
genes found as DEGs.

3.4. Elucidating the Roles of Known Biofilm-Formation Factors in the tmRNA Regulation of
Biofilm in B. subtilis

Given that the extracellular matrix is an important structure for biofilm complexes, we
extracted the EPS from WT, and added the obtained EPS into TM cultures. As shown in
Figure 6, the biofilm-formation ability of TM was restored almost to the WT level, when
100 µg mL−1 EPS was added to the cultures. This result indicates that tmRNA affects
biofilm formation through positively regulating EPS production in B. subtilis. The tran-
scriptome results regarding EPS production were then checked precisely. Unfortunately,
as described earlier for Figure 3d, the known EPS-related genes were regulated in an
unclear manner. For instance, both the structure genes, such as epsA and epsE, and the
repressor gene abrB were up-regulated in TM (Figure 3d and Table S9), which appeared to
be paradoxical and not consistent with the biofilm-formation phenotypes we found here.
In MB, the epsA expression was restored to a WT level, whereas the epsE expression was
not altered significantly, and the epsB expression was increased obviously, compared with
TM (Table S9), which contributed nothing to explain the tmRNA effect on EPS production.
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Moreover, some other extracellular-matrix activator genes such as tapA, sigX, and abh were
also up-regulated in TM (Figure 3d and Table S9), making the tmRNA regulatory network
more complex. Interestingly, the whole operon of tapA-sipW-tasA was overexpressed in MB,
compared with WT, which was not observed when comparing TM with WT (Figure 5d
and Table S9). Given that the tapA-sipW-tasA operon encodes the amyloid fiber of the
extracellular matrix, it is worth investigating whether the over-produced biofilms were
(partially) related to the overexpression of this operon in MB. However, this phenotype
specifically found in MB is likely to be tmRNA-independent. All these data suggested
that tmRNA might affect the known EPS-related genes at post-transcriptional levels or it
controlled unknown pathway(s) producing the extracellular matrix in B. subtilis.
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Figure 6. The effect of EPS on TM biofilm formation. The strains of WT and TM were grown in the
LBMG liquid medium, supplemented with or without 100 µg mL−1 EPS, and observed for biofilm
formation. The scale represents 5 mm.

It is known that SinR represses the expression of matrix genes in B. subtilis [52]. Here,
the transcriptome results show that, compared with WT, expression of sinR was increased
by approximately 50% in TM and decreased by approximately 45% in MB. which was
consistent with the biofilm-formation pattern in these three strains. Subsequently, we
deleted the sinR gene in TM to test whether the biofilm-formation phenotype could be
restored. Unfortunately, our results show that the deletion of sinR did not rescue the
biofilm defect in TM (Figure S6), suggesting the existence of other pathways involved in
the tmRNA regulation of biofilm formation in B. subtilis.

3.5. Initial Characterization of the Unknown Pathways Involved in the tmRNA Regulation of
Biofilm Formation in B. subtilis

To better understand how tmRNA functions in the complex regulatory network
for biofilm formation in B. subtilis, the effects of several genes (acoA, acoL, gerPA, ydgA,
yhjR, yngJ, ytcB, and yxbB) whose transcription was highly regulated by tmRNA were
investigated. Here, all these genes are over-expressed in TM, but only overexpression
of acoA and yhjR could cause restored phenotypes in biofilm formation in the TM strain
(Figures 7a and S7).
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Figure 7. Comparison of the biofilm formation among WT/33N, TM/33N, TM/acoA+, and TM/yhjR+.
(a) The strains of WT/33N, TM/33N, TM/acoA+, and TM/yhjR+ were grown on the MSgg agar plates
for 3 days (Lane 1) and in 24-well microtiter plates supplied with the LBMG liquid medium for 48 h
(Lane 2), and biofilms produced by the strains were observed. The images shown in Lane 1 and Lane
2 are the representatives of three independent experiments. Biofilms formed in the microtiter plates
were stained with STYO®9 and investigated using CLSM. Images of cells attached to the surface
are shown in Lane 3. The confocal series were reconstructed through the software IMARIS and a
representative image (left) with virtual shadow projection (right) is shown for each strain in Lane 4.
The 3D models of biofilms formed by these two strains are shown in Lane 5. The scale bars in Lane
1–4 represent 5 mm, 5 mm, 200 µm, and 50 µm, respectively. (b) Quantification of the thickness and
biovolume of the submerged biofilms produced by these four strains. The biovolume (purple) and the
thickness (pink) were calculated as the average and ±S.D. of a serious of six images for each strain.

As shown in Figure 7a, the strain of TM/acoA+ possessed stronger biofilm formation
in liquid cultures, and this phenotype was not obvious on agar plates. However, biofilms
produced by the TM/acoA+ strain were still weaker than WT. The reconstruction of confocal
images showed that the overexpressed acoA enabled TM to produce intact biofilms rather
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than broken biofilms (Figure 7a). In addition, the thickness and biomass of the TM/acoA+

pellicles were similar to that of the WT pellicles (Figure 7b). These data indicate that the
overexpression of acoA could partially restore the biofilm formation in TM. To further verify
the role of AcoA in biofilm formation, the acoA gene was deleted in WT and MB. It is found
that when grown in the liquid medium, the ∆acoA mutants in both WT and MB showed
weaker biofilm production than the parent strains, after incubation for 24 h. However, this
phenotype was not observed for the ∆acoA mutants after incubation for 48 h (Figure S8a).
These results suggest that the ∆acoA mutation could cause delayed biofilm formation in B.
subtilis grown in the LBMG liquid medium. No obvious phenotypes in biofilm formation
were found when the strains were grown on the MSgg agar plates (Figure S8b).

The overexpression of yhjR appeared to restore the biofilm production in TM more
efficiently. As shown in Figure 7a, on the MSgg agar plate, the recovery of the biofilm
formation in TM/yhjR+ was quite obvious, and in the LBMG liquid medium, the pellicles
formed by strain TM/yhjR+ were comparable to those of the WT strain. The reconstruction
of confocal images showed that the yhjR overexpression enabled TM to fully restore the
biofilm formation (Figure 7a), and the thickness and biomass of the TM/yhjR+ pellicles were
similar to that of the WT pellicles (Figure 7b). These data indicate that the overexpression of
yhjR could largely complement the biofilm formation in TM. However, we failed to describe
the biofilm-formation phenotypes in the yhjR mutants because different isolates, which were
supposed to be genetically identical, of the yhjR mutant in WT showed various phenotypes
in biofilm formation. More experiments are required to explain and resolve this problem
in our future studies. In summary, all these data suggest that the tmRNA regulation of
biofilm might involve pathways of acetoin metabolism (AcoA) and sporulation (YhjR) in
B. subtilis. More experiments in the future are needed to explain the AcoA and YhjR
functions in the same or independent regulatory cascade originated from tmRNA.

3.6. Sporulation in WT, TM, and TM Derivates

Given sporulation is highly related to biofilm formation in B. subtilis [53], sporulation
assays with the strains of WT, TM, MB, TM/acoA+ and TM/yhjR+ were performed. As
shown in Figure 8, TM produced dramatically fewer spores than WT, after high-temperature
treatments at 80 ◦C. In contrast, MB produced more spores than WT after treatments at 80 ◦C
(Figure 8). These phenotypes in sporulation were reminiscent of those in biofilm formation
found in TM and MB, compared with WT. Moreover, we found that the overexpression of
acoA could not restore the sporulation defect in TM, whereas the overexpression of yhjR
could increase the sporulation in TM even to the MB level (Figure 8), which confirmed
the physiological function of YhjR in sporulation. Our data indicated that YhjR might be
a key factor connecting tmRNA and sporulation and might be used as a checkpoint for
functional sporulation affecting the downstream bioprocesses such as biofilm formation in
B. subtilis. The transcriptome data also supported the tight relationship between tmRNA
and sporulation, given that most of the known sporulation-related genes were differentially
expressed in TM compared with WT, and most of these DEGs showed restored expression
in MB (Table S10). Obviously, studies in the molecular mechanism by which tmRNA
mediates sporulation in B. subtilis will shed light on how tmRNA affects the physiology in
this organism.
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4. Discussion

In this study, we investigated the effect of tmRNA on biofilm formation in B. subtilis,
which has not been described in Bacillus before. First, we constructed the ssrA-clean-deletion
mutant (TM), using the CRISPR-Cas9 system in B. subtilis NCIB 3610. The results showed
that TM produced remarkably less biofilms than WT (Figure 1), and showed a severe defect
in swarming compared with WT (Figure 2a). We then isolated swarming suppressors of ssrA
and found that one of these suppressors, tm3MB (MB), possessed not only a restored but
even a reinforced biofilm-formation phenotype compared with WT (Figures S3 and 2b,c).
Thus, we considered the MB strain as a biofilm-formation suppressor of ssrA and performed
various assays with these strains, to elucidate the possible mechanism(s) underlying the
tmRNA regulation of biofilm formation in B. subtilis.

We analyzed the gene-expression differences among WT, TM, and MB by comparing
the transcriptome-sequencing results of these strains. Compared with WT, a large number
of genes were differentially expressed in TM, and the DEGs covers many cellular processes
including biofilm-related ones (Figure 3). Compared with TM, the spontaneous suppressor
mutation(s) in MB caused differential expression of many genes in this strain (Figure 4).
Most of the DEGs found in the TM vs. WT comparison had restored expression to the
WT level in the MB strain, indicating that the suppressor mutation(s) in MB were highly
related to tmRNA in B. subtilis. Compared with WT, MB possessed fewer DEGs than
TM (Figure 5a), and most of the DEGs were the ones resulting from the tmRNA deletion
(Figure 5b). However, there were DEGs that appeared to be MB-specific, such as the
genes grouped into the ribosome metabolism and amyloid fiber biosynthesis (Figure 5b,d).
Unfortunately, simply grouping the DEGs based on KEGG annotation and biofilm-related
bioprocesses did not provide sufficiently precise information to target pathway(s) mediating
the tmRNA regulation of biofilm formation. Thus, we focused on particular DEGs that
were most regulated in the comparisons. Finally, two sets of DEGs with special expression
patterns were found in WT, TM, and MB. The first set includes acoA, acoL, gerPA, ydgA, yhjR,
yngJ, ytcB, and yxbB, whose expression is regulated in a similar manner by which biofilm
formation is regulated based on the comparison of WT, TM, and MB (Tables S4, S5 and S7).
The second set includes hxlB and rocA, whose expression is regulated in the opposite
manner by which biofilm formation is regulated based on the comparison of WT, TM,
and MB (Tables S3 and S6). These genes could be considered as potential intermediate
activators and repressors of biofilm formation in the tmRNA regulatory cascade(s) in
B. subtilis.

Furthermore, the roles of known biofilm-related factors EPS and SinR were tested.
The results showed that addition of EPS could restore the biofilm formation in TM to a
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WT level (Figure 6), suggesting that tmRNA regulated biofilm formation by affecting EPS
production. However, the genes involved in EPS or other extracellular matrix structures
were regulated in an unclear manner that could not explain the phenotypes found for the
biofilm formation and EPS production in TM, compared with WT (Table S9). This might be
because the EPS-related genes were differentially expressed at post-transcriptional levels
or that there were unknown tmRNA-controlled processes dedicated to EPS production
in B. subtilis. In addition, our data showed that even the expression of sinR was slightly
up-regulated in TM and down-regulated in MB, compared with WT. Knocking out the sinR
gene in TM did not restore its biofilm-formation defect (Figure S6), which indicates that the
tmRNA regulation of biofilm formation in B. subtilis is SinR-independent. Thus, studies
seeking for novel pathways involved in the tmRNA regulatory network mediating biofilm
formation are essential.

To elucidate the unknown factors connecting tmRNA and biofilm formation in
B. subtilis, we tested the effects of several genes (acoA, acoL, gerPA, ydgA, yhjR, yngJ, ytcB,
and yxbB) whose special expression pattern has been described above. The data show that
overexpressing acoA could partially restore the biofilm defect in TM (Figure 7), and the acoA
mutants showed delayed biofilm formation compared with the parent strains (Figure S8),
confirming the role of AcoA in the tmRNA regulation of biofilm formation. Moreover,
the overexpression of yhjR largely restored the biofilm-formation defect in TM (Figure 7),
indicating its role in connecting tmRNA and biofilm formation in B. subtilis. The acoABCL
operon encodes the acetoin dehydrogenase complex, and the yhjR gene encodes spore
coat protein. Thus, tmRNA might control biofilm formation through different pathways
including acetoin metabolism and sporulation. In fact, we observed that sporulation was
obviously affected in TM and MB, compared with WT, in a similar manner to that observed
for biofilm formation (Figure 8). The overexpression of yhjR caused greatly restored sporu-
lation in TM (Figure 8), which further confirmed the role of YhjR in the tmRNA regulatory
network. It is possible that YhjR was used as a checkpoint for successful sporulation
which positively affected biofilm formation in B. subtilis. However, unveiling the full web
comprising tmRNA, acetoin metabolism, sporulation, and biofilm formation definitely
requires more investigation in our future studies.

Despite the initial findings for the molecular mechanism by which tmRNA regulates
biofilm formation in B. subtilis, we are far from a clear understanding of the whole tm-
RNA regulatory network in this bacterium. To accomplish this, we can use the following
strategies in the future studies: (1) Given that tmRNA catalyzes trans-translation that is
dedicated to rescuing stalled ribosomes, it might affect the proteome more directly than
the transcriptome in bacteria. Thus, we can investigate the proteome patterns in WT, TM,
MB, and other TM derivates, which might provide us more precise information about the
tmRNA regulation. (2) We have identified the suppressor mutations in MB, which were
listed in Figure S9 and Table S11, and further analyses of these mutations are required be-
cause the existence of them restored the biofilm-formation defect resulting from the tmRNA
deletion. In addition, isolation and characterization of more biofilm suppressors of ssrA
could be useful. (3) We should continue investigating the transcriptome results obtained in
this study, especially the DEGs with an expression pattern similar or opposite to that for
acoA and yhjR in WT, TM, and MB (Figure S10), because these findings about the roles of
AcoA and YhjR in the tmRNA effect on biofilm formation provided us insights into tmRNA
and its regulation in B. subtilis. (4) It has been reported that some compounds, such as sur-
factin, bacillomycin D, and bacillaene, can promote biofilm formation in B. subtilis [54–56],
and we found that there were some compound-related genes, such as the ones encoding
sporulation killing factor, bacillaene, bacilysin, plipastatin, and CDPS, down-regulated in
TM, compared with WT, and the expression of most of these genes was restored in MB to a
WT level (Table S12 and Figure S11). These results indicate that the reduction of biofilm
formation in TM might be related to compound production, but that the enhancement of
biofilm formation in MB might not be related to compound production. Furthermore, we
found that the deletion of skfA that encodes a sporulation killing factor caused impaired
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biofilm formation in WT and MB (Figure S12), which partially supported our hypothesis
about the relationship between compound production and biofilm formation, which were
both regulated by tmRNA. Thus, investigation of the functions of particular compounds in
the tmRNA regulation of biofilm formation will also be a promising research direction.

5. Conclusions

In conclusion, we demonstrated that the tmRNA deletion caused a biofilm-formation
defect in B. subtills NCIB 3610. We successfully isolated a biofilm suppressor of ssrA,
designated as MB, that could form thicker and more complex biofilms even than the WT
strain. By analyzing the transcriptome data for WT, TM, and MB, we finally located two
genes, acoA and yhjR, that could positively affect biofilm formation in B. subtilis, given
that the overexpression of these genes caused restored phenotypes in biofilm formation in
TM. We also conducted an initial characterization of the close relationship among tmRNA,
sporulation, and biofilm formation in B. subtilis. Our data contribute more knowledge to
the molecular regulatory network of biofilm formation in B. subtilis and may provide novel
targets for better utilizing and modifying biofilm formation in Bacillus strains.
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