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Abstract: Quorum sensing (QS) is a process of cell–cell communication for bacteria such as E. coli and
Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer
(AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in
coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-
negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that
inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we
describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for
preventing virulence gene expression through the downregulation of AI-2 production pathways and
the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity
of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic
potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs,
the design of next-generation QSIs, and how these molecules can be leveraged to provide a new
antivirulence therapy to combat diseases caused by E. coli or Salmonella.
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1. Introduction

Quorum sensing (QS) is a process of cell–cell communication for bacteria such as E. coli
and Salmonella that cause foodborne diseases, which consists of the production, release, and
detection of signaling molecules known as autoinducers (AIs) that take place in response
to changes in the bacterial population density. An increased local AI concentration causes
shifts in the bacterial gene expression. These coordinated events allow microorganisms
to respond to the bacterial environment, promoting their adaptation and ensuring their
survival [1]. In addition, a relatively new concept of QS, “socio-microbiology”, has been
introduced to explain some cooperative associations between bacteria, while others are
antagonistic, resulting in complex behaviors [2,3]. There are reports of new autoinducer
molecules and QS receptors, along with various ways to interrupt and inhibit signaling
pathways to control bacterial pathogens [2–4].

Among the bacteria associated with foodborne illnesses are Listeria monocytogenes,
E. coli, Shigella, Salmonella, and Staphylococcus; however, Salmonella and E. coli have been
associated with increased outbreaks due to the consumption of contaminated raw vegeta-
bles [5]. These bacteria are clinically relevant and multidrug-resistant and have caused
several cases of extra-intestinal diseases [6]. Several of the pathogenicity mechanisms of
E. coli and Salmonella enterica subsp. enterica, ser Enteritidis and Typhimurium, are related
to QS [7,8].

Microorganisms 2022, 10, 884. https://doi.org/10.3390/microorganisms10050884 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10050884
https://doi.org/10.3390/microorganisms10050884
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-9079-7452
https://orcid.org/0000-0002-1483-0510
https://orcid.org/0000-0001-5412-0436
https://doi.org/10.3390/microorganisms10050884
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10050884?type=check_update&version=1


Microorganisms 2022, 10, 884 2 of 15

Pathogenic E. coli bacteria possess five principal QS systems, categorized as (i) AI-2
signaling produced by the enzyme LuxS, (ii) SdiA (suppressor of cell division/inhibition)
signaling, a transcriptional regulator of the LuxR homolog receptor for homoserine lactone,
(iii) the AI-3/epinephrine/norepinephrine signaling pathway involved in host-bacteria
communication, (iv) indole signaling, mediated by the self-produced effector indole, and
(v) Extracellular Death Factor (EDF) signaling, conveyed by a self-produced peptide that
triggers the activation of toxin-antitoxin systems [9]. In general, QS in E. coli participates in
regulating of virulence genes related to biofilm production, mobility, the type III secretion
system (T3SS), toxicity, and the production of curli [10]. QS in Salmonella species is involved
in the regulation of the pathogenicity island SPI-1 (the invasion phenotype), the expression
of the flagellar genes, the pefI-srgC plasmid operon that regulates the genes rck (resistance
to complement killing), and srgE (sdiA-regulated gene E) that independently encode an
outer membrane protein RcK T3SS-1, which is involved in the Zipper invasion mechanism
and a T3SS-1-dependent effector protein of unknown function, respectively [11–13].

For more than 20 years, there have been reports of a great quantity of Quorum Sensing
Inhibitors (QSIs) as the chemically synthesized QSI derivatives of halogenated furanone, a
compound obtained from red algae Delisea pulchra, which was initially tested on pathogens
such a Vibrio and Pseudomonas. Strong inhibition of the QS mechanism has been found to
prevent the transcription of virulence genes and the synthesis of autoinducers through
the union of furanone with the QS transcriptional regulator [14,15]. Proctor et al., in
2020, reported that some halogenated furanones act as antagonists of QS and have been
studied due to their ability to inhibit the QS of Gram-negative bacteria. Moreover, crys-
tallographic and molecular docking studies have been used for the discovery of several
QSI molecules [16,17]. In all studies, the ability of QSIs to attenuate various pathogenic
microorganisms, including E. coli and Salmonella, has been highlighted [18–20].

In addition, a diverse family of QSIs derived from QS molecules, such as Acyl-
Homoserine Lactone (AHL), AI-2, and AI-3, has been developed and obtained by research
phases in vitro and in vivo [10,21–24]. In this work, the studies carried out on the QSIs in a
period from 2005 to 2021 were considered.

It is also believed that QSIs target bacterial cell–cell signaling and coordinated ac-
tivities required for infections. The QSI therapies that block bacterial QS can blind the
pathogens rather than kill them. Therefore, QSI therapy can be used for treatment and
causes less selective pressure to create resistant microbes [25]. As can be seen, the study
of the possible mechanisms of evolution of these pathogens is important to determine
the bacterial resistance to QSIs. Moreover, the status of QSIs is still in its investigative
phase; pharmaceutical companies are currently developing research for the applications of
QSIs for subsequent FDA (Food and Drug Administration) approval [26]. Current studies
mention the strategy of combining antibiotics with QSIs, thus observing synergistic effects
with antimicrobials in model bacteria such as P. aeruginosa and B. cenocepacia. In other
research, the susceptibility to certain antibiotics such as tobramycin supplied with QSI has
been increased in resistant and tolerant microorganisms such as P. aeuroginosa [27]. QSIs’
use with garlic extracts has also been observed to improve their anti-inflammatory and
antimicrobial properties, while the use of QSIs with carbonates avoids the formation of
biofilm on teeth [28].

In this work, we review the types and action mechanisms of QSIs, strategies used for
their study, discuss how these molecules can be leveraged to provide a new antivirulence
therapy against bacterial pathogens such as E. coli and Salmonella, and finish by outlining
limitations such as resistance to QSIs and prospect.

2. The QS System Based on Autoinducer-2 (AI-2) in E. coli and Salmonella spp.

Biosynthesis of AI-2 occurs through the methyl activation cycle (CAM), which sev-
eral enzymes including AI-2 synthase (LuxS) participate in, which is encoded by the luxS
gene. The LuxS substrate is S-ribosyl homocysteine (SRH), which is utilized by LuxS to
produce homocysteine and DPD (4,5-dihydroxyl-2,3-pentanedione), which can be spon-
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taneously cycled to form AI-2 as a final product (Figure 1A) [10]. AI-2 is synthesized
by the 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) enzyme, ac-
cording to its function in the methyl activation cycle (CAM) in the synthesis of AI-2; the
main function of Pfs is to catalyze the irreversible cleavage of the glycosidic bond in both
5′-methylthioadenosine (MTA) and S-anhydro ribosyl-L-homocysteine (SAH) to adenine,
and the corresponding thioribose, 5′-methylthioribose, and S-ribosylhomocysteine, respec-
tively (Figure 1A, step 1) [29].

The import of AI-2 in E. coli and S. typhimurium occurs through a protein complex
(LsrACDBEFG), which shows homology with some Gram-negative sugar transporters [30].
The signaling mechanism is based on the binding of AI-2 to the periplasmic protein receptor
LsrB, initiating intracellular transport of AI-2 through two transmembrane proteins (LsrC
and LsrD) and an ATPase protein (LsrA), which provide the energy necessary for the
transport of AI-2 to the cytoplasm in the bacterial cell. In the cytoplasm, the LsrK protein
kinase phosphorylates the AI-2 molecule, converting it to AI-2-P [10]. In the absence
of AI-2-P, the expression of the lsrACDBEFG operon is repressed by the LsrR protein
regulator. Furthermore, the function of AI-2-P is to capture the LsrR regulator protein
from the promoter site to form a complex with LsrR-AI-2-P, causing the derepression of the
lsrACDBEFG operon. Finally, the role of LsrR is to regulate and control the expression of
the LsrR regulator protein and various genes in response to AI-2-P [10,31].

Subsequently, the AI-2 cycle is closed by the participation of three degrading pro-
teins (LsrE, LsrF, and LsrG) that prevent the accumulation of AI-2-P, converting it to
3,4,4-trihydroxy-2-pentanone-5-P (P-TPO), and finally degrading it to phosphoglycerate
and other small molecules produced in lower concentrations [32]. Figure 1B shows the
role of LsrR as a transcriptional repressor protein (tetrameric form) and the role of AI-2-P
when it binds to the transcriptional regulator protein LsrR (dimeric form). Subsequently,
the RNA polymerase is posed and assembled at the promoter site indicated by the lsr box,
propitiating the activation of the operon lsrACDBEFG, the production of biofilm, mobility,
the activation of the type III secretion system, and the production of curli in E. coli and
Salmonella species [10,33].
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3. Inhibition of Quorum Sensing

There are different strategies to silence or inhibit bacterial QS, such as (i) inhibition
of AI biosynthesis in Gram-negative bacteria by blocking AI-2 synthase, (ii) QS signal
degradation in the extracellular environment by Quorum-Quenching (QQ) enzymes such as
AHL-lactonase, oxidoreductase, and acylases, (iii) receptor blockage or interference with the
AI/receptor complex, (iv) attenuation of the QS signal due to a complex formation between
AI and molecular imprinting polymers (IMPs), or (v) degradation of enzymes that interfere
with cell–cell communication, leading to the active control of the AI-2 concentration or
availability [37–41].

4. Types of Inhibitors of QS

QSIs are natural or artificial ligands that bind to QS regulators; these molecules can be
either pure or weak agonists, which effectively compete with the autoinducer molecules by
binding with the transcriptional protein regulator of QS [42]. Recent investigations were
related to the development of synthetic inhibitors involved in the production, perception of,
and response to AI-2, and interaction with the LuxS, LsrB, LsrR, QscE, and SdiA regulator
proteins. Specifically, studies with LsrR and SdiA transcriptional regulators from E. coli
and Salmonella have been reported [43,44].

4.1. Natural Inhibitors

Important inhibitors have been found from the use of bacterial biosensors and molec-
ular techniques. The main sources of these QSIs are some fruit extracts (blackberries,
blueberries, vanilla extracts, and citrus), herbs (rosemary and turmeric), spice oils (gar-
lic, cloves, and cinnamon), and phenolic compounds from plants. The latter compounds
include benzoates, phenylpropanoids, stilbenes, flavonoids, gallotannins, proanthocyani-
dins, coumarins, and terpenes (monoterpenes, diterpenes, triterpenes, and sesquiter-
penes) [45–47]. Some naturally occurring QSIs in E. coli and Salmonella species are described
in Table 1.
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Table 1. Natural QS inhibitors in E. coli and Salmonella.

Natural QSI Microorganism Effect on QS-Regulated
Process

In Vitro/In Vivo
Experiments Reference

Grape seed extract
Reduction in AI activity

and synthesis

E. coli (STEC),
E. coli (VTEC), and

E. coli (EAEC)

Reduces the production of
the flagellum and inhibits the
production of the Shiga toxin

In vitro [8,41,48]

Extracts of Melia dubia bark E. coli (EHEC)

Hemolysin suppression,
effect on mobility-type

swarming, and prevents the
formation of biofilm

In vitro [37]

Thymol-carvacrol-chemotype
(I and II) oils from

Lippia origanoides and
Thymus vulgaris oil

E. coli Prevents the formation
of biofilm In vivo: VERO cell line [49]

Broccoli extracts, basil,
oregano, thyme, rosemary,

ginger, and turmeric
E. coli (EHEC)

Reduces AI-2 synthesis, with
effects on mobility-type
swarming and virulence

In vitro [47,50,51]

Punicalagin from a component
of pomegranate rind S. enteritidis Effect on mobility-type

swimming and swarming
In vivo: human colonic

HT-29 cell line [52]

Star anise S. typhimurium Prevents mobility and
biofilm formation In vitro [53]

Organic acids: acetic acid,
citric acid, and lactic acid

S. typhimurium and
E. coli

Decreases the production of
AI-2 and biofilm formation In vitro [18,19]

Grapefruit juice/furocoumarin S. typhimurium Inhibition of AI-2 activity In vitro [54]

4.2. Synthetic Inhibitors

Synthetic inhibitors are recognized as an alternative and attractive strategy for bacterial
control practices applied in industrial settings. Instead of eliminating bacteria with conven-
tional sanitizers, the blocking of cell–cell communication might inhibit the expression of
virulence phenotypes, with a smaller likelihood of resistance development [55]. Several syn-
thetic QSIs and their effects on bacterial infections are listed in Table 2; some inhibit E. coli
and Salmonella by blocking QS regulators such as LsrR, SdiA, and QseC [10,21,40,56–60].

Table 2. Synthetic QS inhibitors in E. coli pathogroups.

Synthetic QSI Microorganism Effect on QS
Regulated Process

In Vitro/In Vivo
Experiments Reference

Thiophene inhibitor (TF101) E. coli

Reduces virulence and
prevents the formation of

biofilm, cytotoxicity, and the
expression of fimH and lsrB

In vitro and in vivo:
Caco-2 cell line [10]

Furanone E. coli Prevents AI-2 synthesis
In vivo: mice tissues of
lung, liver, spleen, and

kidney C57BL/6 cell line
[57]

Cinnamomum verum bark
essential oil or combination

with piperacillin

E. coli
(multidrug-resistant)

Prevents the formation
of biofilm In vitro [56,58]

Chitosan E. coli (UPEC)
Reduces virulence, prevents
the formation of biofilm, and

reduces mobility
In vitro [59]

Fructose-furoic acid ester E. coli (UPEC) Decreases toxicity and
biofilm production

In vivo: kidney
carcinoma A498 cell line [40]
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Table 2. Cont.

Synthetic QSI Microorganism Effect on QS
Regulated Process

In Vitro/In Vivo
Experiments Reference

Limonene nanoemulsion E. coli (EHEC)

Reduces AI-2 synthesis,
effect on mobility-type

swimming and swarming,
and suppression of curli and
the extracellular polymeric

substance (EPS)

In vivo [56]

N-phenyl-4-phenylamino-
thioxomenthyl

amino-benzenesulfonamide

E. coli (EHEC) and
S. typhimurium

Inhibition of QseC-mediated
activation of virulence

gene expression

In vivo: mice strain
129 × 1/SvJ [21]

5. Mechanisms of QS Inhibition

Both for E. coli and Salmonella spp., the anti-virulence strategy proposed consists of the
interference with QS through different means, such as the search for and design of QSIs that
block the synthesis of AI-2, the receptor protein LsrB, the transcriptional repressor of QS
(LsrR), or the LuxR solo regulator (SdiA) [10,22,43,45,60]. The most studied mechanisms of
QS inhibition are described below.

5.1. Inhibition of AI-2 Synthesis

Blocking the main enzymes of the AI-2 synthesis pathway, methyltransferase and
5′-methylthioadenosine, has been achieved through the use of inhibitors of intermediary
molecules of the cycle of the methyl activation pathway: for example, S-anhydro ribosyl-L-
homocysteine (SAH) and S-homoribosyl-L-cysteine (SRC). In this way, some inhibitors of
the Pfs enzyme have been reported [39,45].

The interaction between AI-2-P and the LsrR regulator protein is described by molecu-
lar docking in E. coli, where the hydrogen bridging interactions of the amino acids from
the catalytic site of LsrR (PDB: 4L51), and the natural ligand, are also shown (Figure 2A).
The principal interactions between AI-2-P and LsrR are found in the cyclopentane ring
of AI-2, which interacts with the amino acids Gly 209, Asp 243, and Leu 245 of LsrR. The
PO4

−2 group of AI-2-P can interact with the amino acids Lys 288, Ala 127, Thr 220, and
Glu 126 of LsrR (Figure 2B) [39]. On the other hand, using molecular-docking studies
and bioinformatics tools, we can represent the interactions of the synthetic inhibitor 2S-
2,3,3-trihydroxy-4-isopentyl dihydrogen phosphate (D5P) (PDB: 4L4Z) with the amino
acids Glu 126, Thr 220, Lys 288, Ala 127, and Asp 243 of LsrR (Figure 2C,D). Meanwhile,
the interaction of another synthetic inhibitor, 2S-2,3,3-trihydroxy-6-methyl-4-oxoheptyl
dihydrogen phosphate (D8P), with LsrR (PDB: 4L50) involves amino acids Ala 127, Lys 288,
Glu 126, Thr 220, Asp 243, and Phe 124 (Figure 2E,F) [39]. In this way, the QSIs simulate the
competence with the signaling molecule for receptor binding [39]. This demonstrates that
the use of molecular docking is a tool for in silico selection and experimental validation of
FDA-approved drugs as anti-quorum sensing agents [26].

5.2. Inhibitors of the Incomplete QS System

The inhibitors of transcription of the SdiA regulator protein in E. coli and Salmonella
species attenuate the expression of virulence factors by blocking the binding of AHLs
to transcriptional regulator SdiA (Figure 3A,B). A detailed example of the interaction of
the natural ligand C8-AHL with the amino acids Ser 43, Tyr 63, Trp 67, and Asp 80 from
SdiA (PDB: AY17) is described in E. coli. Meanwhile, the inhibitor 7-(1-bromoetil)-3, 3-
dimetil-bicyclo [4.1.0] heptan-2-one (BL39R1) interacts through hydrogen bridges with
different SdiA amino acids (Phe 63, Tyr 75, Tyr 67, and Val 86) (Figure 3C,D). In addition,
the interaction of the inhibitor fructose-furoic acid ester with the amino acids Ser 43, Tyr
63, Trp 67, Tyr 71, and Asp 80 from the protein regulator of SdiA showed a π-π interaction
with Trp 95, as can be observed in Figure 3E,F [37,38,40].
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6. Strategies Used for the Study of QSIs

Certain methodologies used to analyze the QSIs are as follows: (1) The study of homol-
ogous LuxI/R genes that participate in the QS of E. coli and Salmonella, (2) purification of
natural extracts or the design of libraries of QSI synthetics, (3) use of QS biosensors to detect
possible inhibitors of autoinducer molecules, (4) determination of the average inhibitory
concentration (IC50) with anti-QS compounds (organic or synthetic), (5) observations on the
inhibition of some phenotypes related to virulence in pathogenic bacteria, (6) confirmation
of the in vitro effect of QSI through the cloning transcriptional regulator of QS in a bacteria
model, and (7) use of molecular docking for the analysis of possible mechanisms of QS
inhibition, through the interaction of the organic or synthetic compounds with the tran-
scriptional regulator or repressor of QS. These tools allow us to understand the inhibition
mechanisms of QS and subsequently propose anti-QS therapies [61–65].

7. Studies of QSI Uses

Currently, several inhibitors have been approved by the FDA which have been used
as antivirulence agents targeting the QS detection system of bacterial pathogens [66].
Some inhibitors have also been approved with pharmacological activity for use in clinical
trials in vitro, using biosensor screening in silico experiments, and in vivo by a mouse
model [26,67,68].

QSIs represent a new generation of antimicrobial agents with applications in human
and veterinary medicine, agriculture, aquaculture, and biotechnology. Several QSIs are
produced by companies such as QSI Pharma A/S, LEO Pharma microbia, and 4SC AG,
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all of them interested in developing anti-QS molecules [45,69,70]. Studies are focused on
inhibiting the communication between bacteria and reducing bacterial pathogenesis. The
results are very promising and these molecules can be industrially synthesized [41].

There are few studies in E. coli and Salmonella sp. about the action of QSIs on the
participation of the LsrB, LsrR, and SdiA proteins. However, the synthetic inhibitor known
as thiophenone (TF101) is a good competitive AI-2 inhibitor that antagonizes the AI-2
receptor protein (LsrB); this relationship has been verified by in silico studies [10,37,44].

Other studies of QS inhibition through in vivo models carried out with Caenorhabditis
elegans and Galleria mellonella have allowed the exploration of the inhibitory activity of
baicalin hydrate, cinnamaldehyde, hamamelitannin, tobramycin, vancomycin, and clin-
damycin, which causes a decrease in the formation of biofilm, enhances the sensitivity
of Gram-negative pathogens to antibiotics, and increases the host survival rate after in-
fection [22]. Other studies have confirmed that synthetic inhibitors like the furanone
derivatives have useful pharmacological activities as anti-inflammatory, anti-cancer, and
anti-microbial agents that are effective in the reduction of the AI-2 synthesis pathway and
for bacterial biofilm formation in animal models [64,71,72]. Rui et al., in 2012, reported that
the inhibitor (4S, 5R)-DHD presented biological activity at low concentrations, showing a
strong antagonistic effect with the LsrR receptor of E. coli, concluding that the use of this
inhibitor is a new way to manipulate the QS. Moreover, QSI furanone types have been
used in different medical materials like catheters, coatings, urinary catheters, and medical
devices for the inhibition of bacterial QS [67,73]. An example is furanone, which is used in
combination with other compounds for coated catheters, being effective against pathogenic
bacteria and controlling the infection for two months [74]. In specific cases of uropathogenic
E. coli (UPEC), the use of furanone decreases the establishment of catheter-associated uri-
nary tract infections, which may be considered for future research on the design of new
drugs based on the furanone structure for evaluation as anti-biofilm catheter-coating agents
in combination with other natural inhibitors, to test the synergistic effect, and evaluate
the activation and inactivation of genes regulated by QS [75]. For the Salmonella genus,
the use of QSIs such as as furanone and derivatives has been considered by food micro-
biologists to inhibit the virulence related to QS; it has been demonstrated during in vitro
experimentation that there is a decreasing effect on the biofilm, some virulence factors,
and AI-2 production [76]. These results are of interest to the food industry to resolve the
contamination of food contact surfaces, such as tables, kitchen utensils, walls, floors, and
machinery, highlighting QSIs’ possible applications in the formulation of disinfectants that
help to preserve human health [77,78].

In other cases, resistance to certain natural or synthetic QSIs has been demonstrated in
Gram-negative strains through the adaptation of bacterial strains, by activating resistance
mechanisms, and promoting conjugative transfer and mutation. This effect has been
confirmed in some QSIs, facilitating plasmid RP4 conjugative transfer, achieved by binding
with the SdiA protein to regulate pilus expression and by interacting with the LsrR protein
to increase the SOS gene expression and induce gene mutation [75,79,80]. In addition,
certain compounds have been proposed as QSIs that can influence the expression of
virulence genes acting as mimicking compounds to the autoinducer molecules, causing an
effect contrary to the inhibition of QS mechanisms. The consequences are to influence or
trigger gastrointestinal diseases or urinary infections in susceptible patients [75].

At the same time, many in vitro studies on QSIs have been performed in several
cell lines such as Caco-2, kidney carcinoma cell line A498, and human colonic cell line
HT-29, and in animal models such as mice (tissues of lung, liver, spleen, and kidney cell
line C57BL/6), with good results in blocking the QS mechanism [10,40,52,57]. Studies
on cell lines help evaluate the effect of a QSI before carrying out a study on humans for
its subsequent validation by the FDA during the clinical phases at scale to confirm its
therapeutic relevance in the future [26].

Finally, the inhibition of QS using FDA-approved drugs available on the market is a
promising strategy for inhibiting virulence factors without affecting the normal microbiota,
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which could be used as a therapeutic alternative to traditional antibiotics. These QSIs can
be used as a bacterial control method and provide useful information for the design of new
QS modulators [68,73].

8. Resistance to QSIs

Unlike antibiotics, QSIs can have an antimicrobial effect without generating microbial
resistance; as an example, Chromobacterium violaceum was evaluated with natural extracts
obtained from vanillin [81,82]. Current efforts in QQ research are dedicated to expanding
the discovery of new extracts and molecules with anti-virulence properties that are useful
against important multidrug-resistant Gram-negative bacteria. Additionally, the synergistic
activity of some QSIs with conventional antibiotics has been reported [83,84]. Initially,
antibiotics were reused, causing an effect on bacterial QS; in some cases the antibacterial
activity decreased growth, and QS inhibition was demonstrated. An important difference
between antibiotics and QSIs observed by other authors in this field of research denotes
that, unlike classical antimicrobials, QSIs inhibit virulence rather than bacterial growth,
thus minimizing the possibility of generating resistance [24,81,85]. In addition, there was
rigorous research about the synergistic effect of antibiotics and QSIs on biofilm-producer
bacteria under in vitro and in vivo conditions in a mouse model; reduction of the bacterial
load, increased bacterial susceptibility, and survival of the host were observed [86].

On the other hand, studies about the effect of thiolactone analogs have been evaluated
with transcriptional regulator homologs of QS such as LuxR, LasR, and TraR, which showed
antagonistic activity in the QS of some bacterial pathogens [87]. Similarly, other QSIs de-
rived from AI-2 have been implemented in pathogens such as E. coli and Salmonella species,
demonstrating a decrease in virulence [73,88,89]. All this provides valuable information for
the design of the next generation of chemical tools to study and manipulate QS systems in
bacterial pathogens [90].

E. coli and Salmonella have mechanisms that evade the action of QSIs because these
bacterial species can recognize different autoinducer signals from QS by several regulation
circuits, thus maintaining the regulation of transcription of virulence genes related to
biofilm production or toxicity. These virulence genes are regulated by different QS systems,
such as a complete system of QS (LuxS/LsrR), an incomplete system of QS (SdiA), and
indole signaling [37,40]. System secretion type III (SST3) is regulated by the membrane-
bound sensor kinase (QseC), which is activated by three optional QS molecules (AI-3,
epinephrine, and norepinephrine), demonstrating the variability of detection systems by
different QS molecules and the strategies of competence by other inhibitors of QseC to
become a resistant strain to QSI [91]. Moreover, the QS system that responds to indole in
E. coli and Salmonella regulates the plasmid stability, the expression of virulence factors, the
resistance to antibiotics, and the adaptation of bacterial cells when there is a nutrient-poor
environment. At the same time, there is competition between the indole and autoinducer
molecules for the AHL domain-binding of the SdiA transcriptional regulator [51,92]. In
this way, indole reduces bacterial virulence and competes with other inhibitors, causing
bacterial resistance [51,92]. The bacteria under environmental stresses can evade the QSIs
by retarding QS signal synthesis, depending on growth phases [93]. Moreover, the bacteria
present selective pressure to the QSIs, decreasing with it the risk of developing resistance to
these components, but in this regard, opinions vary according to observations with several
bacterial models and QSIs [61].

The multiplicity of QS systems is likely to provide bacteria with opportunities to
evolve and develop resistance to QSIs. Thus, bacteria can switch pathways to evade the
action of QSIs [93]. In other cases, bacteria manifest resistance to antibiotics, toxins, heavy
metals, and biocides by exploiting their efflux pumps. Some antibiotics can alter membrane
permeability, which can also be instrumental in disturbing the efflux of QS signals [93].

There are few examples in the literature, but some provide valuable information such
as the QSIs that block the transcriptional regulator LuxR and their homologs, such as the
transcriptional regulator LsrR, in bacterial strains of clinical interest that are resistant to
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furanone C-30. No significant effect on growth has been observed; the main effects were
that bacteria survived and developed resistance to the inhibitor [24]. At the same time,
some amino acid residue mutations of the LuxR protein regulator in Gram-negative bacteria
have been reported, increasing the affinity to the inhibitor and causing resistance [24,94,95].
There is additional evidence of bacterial resistance to treatments with QSIs through the
inhibition of the transcriptional regulator LuxR that binds to AI-1. Furthermore, it has been
found that the LuxO inhibitor acts through an uncompetitive mechanism by binding to
the LuxO-ATP binding site and thus forming a complex to inhibit ATP hydrolysis. This
was validated by mutational studies of the Walker B motif (ATP-binding box) of the LuxO
protein. Each of the three mutants in LuxO was found to be resistant to synthetic inhibitors
based on the structure of the autoinducer CAI-1 [96].

At the same time, the QS system based on the transcriptional regulator LsrR and
two promiscuous receptor proteins (LsrK and LsrB) exhibits a response to treatment with
QSIs. This has been verified with several alkyl inhibitors based on the DPD molecule when
investigating the effect on Gram-negative bacteria of different chain lengths of the inhibitory
molecule. It has been discovered that incorporation of the DPD analog inhibitor increases
the repression of the lsrACDBFG operon (which encodes for AI-2 transport proteins in
the cellular membrane) and the lsrK (which encodes for an AI-2 kinase in the cytoplasm)
and lsrR (which encodes for the regulator of QS in the cytoplasm) genes by employing
phosphorylation kinetics [43].

Bacteria become resistant to QSIs through regulation of their QS system to promote
the expression of resilience to environmental and enhanced production of QS signals,
which enable bacteria to produce virulence factors [15]. One treatment used is to modify
the microenvironmental conditions during QSI protocol therapy to combat the resistance
phenomenon. A supplementary investigation brought up valuable information through
an in silico study of QSI-based therapies, focused on EPS, showing that bacterial spread
decreases and demonstrating that it is a good option to continue within new research
phases [97].

9. Conclusions and Perspectives

Even though information on the impact of QSIs has been obtained through the use of
synthetic and natural inhibitors, we are assured this is an adequate anti-infective strategy
against bacterial pathogens such as E. coli and Salmonella spp. In addition, the information
in this review is novel due to the representations of crystallization studies in a graphic form
designed in PyMOL, using molecular docking models of QSIs in E. coli (transcriptional re-
pressor LsrR and A1-2 interactions) and Salmonella (LsrR and SdiA interactions), according
to the information reported in the Protein Data Bank (PDB). The models are very useful for
future studies in which QSI and microorganisms could be proposed and selected. Conse-
quently, it can be considered a promising alternative to the use of traditional antibiotics for
the attenuation of bacterial virulence, thus allowing the creation of new anti-QS strategies.
Knowledge of the different alternatives of action of QSIs has been used by different studies
and research projects carried out by biotechnology companies, confirming how to decrease
or attenuate the virulence of bacterial pathogens. These will allow scientists in the future
to create more complete and effective anti-QS strategies through molecular tools and, in
turn, to propose inhibitors to be used for virulence phenotypes in E. coli and Salmonella spp.
Finally, the mechanisms and genes involved in QSI resistance are not yet known, so it will
be interesting to investigate them in the future. Today, the clinical application of QSIs is a
novel proposal, and the recommended anti-QS therapies hold challenges and limitations.
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