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An important current focus in microbiome science is the biotransformation and degra-
dation of cholesterol, steroids, and bile acids [1]. In vertebrates, cholesterol is the precursor
to all steroids, including bile salts. Roughly 1g of cholesterol is excreted into feces daily,
originating from a combination of diet, bile, and sloughed host cells. Biotransformations
of cholesterol by anaerobic gut bacteria yields a non-absorbable product known as co-
prostanol. Coprostanoligenic bacteria have important potential to regulate cholesterol
levels in the blood and, thus, impact cardiovascular health [2]. Progress in this area has
been slow, due largely to the great difficulty working with coprostanoligenic bacteria. An
excellent review in this Special Issue by Catherine Juste and Philippe Gérard, entitled
“Cholesterol-to-Coprostanol Conversion by the Gut Microbiota: What We Know, Suspect,
and Ignore”, provides historical analysis and critical evaluation of current knowledge in
microbial cholesterol metabolism by leading experts [3].

Bile acid synthesis is a major route of cholesterol removal from the body. The multistep
conversion of cholesterol to bile acids in the liver removes 500–800 mg cholesterol from
the body daily. The daily amount of bile acid synthesis maintains the bile salt pool in a
steady state, coinciding with the amount of bile salts that escape enterohepatic circulation
and are excreted in feces [4]. The metabolism of bile salts begins with a “gateway reaction”
in which conjugated bile salts are deconjugated by bile salt hydrolase enzymes releasing
either taurine or glycine and unconjugated primary or secondary bile acids [5]. Two
articles focus on gut microbial bile salt hydrolase enzymes. A primary research article
by Déjean et al. entitled, “Identifying a Novel Bile Salt Hydrolase from the Keystone
Gut Bacterium Christensenella minuta” describes BSH activity and phylogenetic position
of the C. minuta enzyme [6]. An expert review by Daly et al. entitled, “Functional and
Phylogenetic Diversity of BSH and PVA Enzymes” places BSH enzymes in their wider
phylogenetic context of the choloylglycine hydrolase family, which also includes penicillin V
acylases [7]. Further diversification of bile salts includes the interconversion of steroid ring
hydroxyl groups from α-hydroxyl ↔ oxo-group ↔ β-hydroxyl by microbial hydroxysteroid
dehydrogenases (HSDHs) [8,9]. Recent advances in understanding of microbial HSDHs
is presented by Doden and Ridlon in “Microbial Hydroxysteroid Dehydrogenases: From
Alpha to Omega” [10].

Bile salts are important nutrient signaling hormones, and the physiological and patho-
physiological effects of the diversification of bile salts by host-associated bacteria are
becoming established and accumulating [11]. Kiriyama and Nochi provide a detailed
review of the formation of hydrophobic secondary bile acids, the signaling pathways acti-
vated by bile acids, and the implications for host health in their article, “Physiological Role
of Bile Acids Modified by the Gut Microbiome” [12]. The diversification of bile salts by
bacteria also shapes the structure and function of host-associated microbes. In their article,
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“Functional Characterisation of Bile Metagenome: Study of Metagenomic Dark Matter”,
Sabater et al. provide potentially novel enzymes involved in tolerance to the high bile salt
concentrations in the gallbladder of humans [13]. By contrast, the use of bile acid binding
resins to reduce the bioavailability of bile salts offer therapeutic options [14]. In their article,
“Bile Acid Sequestrant, Sevelamer Ameliorates Hepatic Fibrosis with Reduced Overload of
Endogenous Lipopolysaccharide in Experimental Nonalcoholic Steatohepatitis”, Tsuji et al.
provide evidence that the bile acid sequestrant, sevelamer, reduced bile acid absorption and
increased LPS excretion, inhibiting the development of murine hepatic steatohepatitis [15].

Bile salt metabolism extends far beyond the gastrointestinal tract of vertebrates. The
American microbiologist, Stanley Falkow, is said to have been fond of telling his students,
“The world is covered in a fine patina of feces” [16]. This is certainly true of our collective
agricultural efforts. Manuring soils creates a rich source of carbon, including bile salts,
and it is thus no surprise that microbes have evolved complex biochemical pathways to
mineralize bile salts to CO2. One consequence of this process is the formation of endocrine-
disrupting steroid intermediates that negatively affect soil nematodes [17]. Bodo Philipp’s
research group organizes the complexity of bile salt mineralization by environmental
microbes into a highly accessible review entitled, “Degradation of Bile Acids by Soil and
Water Bacteria” [18].

Altogether, this Special Issue represents valuable expertise and insights from across
the world on important topics in the field of cholesterol and bile salt metabolism by host-
associated and environmental microbes, and the consequences thereof.
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