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Received: 30 December 2021

Accepted: 25 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Development of Antibiofilm Therapeutics Strategies to
Overcome Antimicrobial Drug Resistance
Sahaya Nadar 1 , Tabassum Khan 2 , Simon G. Patching 3,* and Abdelwahab Omri 4,*

1 Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research,
Mumbai 400056, India; sahayan@sjipr.edu.in

2 Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of
Pharmacy, Mumbai 400056, India; tabassum.khan@bncp.ac.in

3 School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds,
Leeds LS2 9JT, UK

4 The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry,
Laurentian University, Sudbury, ON P3E 2C6, Canada

* Correspondence: s.g.patching@leeds.ac.uk or simonpatching@yahoo.co.uk (S.G.P.);
aomri@laurentian.ca (A.O.)

Abstract: A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix
produced by themselves. Many types of microorganisms that are found on living hosts or in the
environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir
for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and
emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting
antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm
inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm
formation. The strategies available to control biofilm formation include targeting the enzymes and
proteins specific to the microorganism and those involved in the adhesion pathways leading to
formation of resistant biofilms. This review primarily focuses on the recent strategies and advances
responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition,
including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing
inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present
the structure–activity relationships (SAR) of these agents, including recently discovered biofilm
inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides,
bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to
fuel interest and focus research efforts on the development of agents targeting the uniquely complex,
physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial
therapeutics for a more effective control and management of biofilms across diseases.

Keywords: biofilms; infection; inhibitors; extracellular polymeric substances; antimicrobials; small
molecules

1. Introduction

The term biofilm refers to a community of stable microorganisms encapsulated in an
extracellular matrix produced by themselves that develops in a multitude of biological
and ecological environments [1,2]. Microbial biofilms are of grave health concern world-
wide owing to their ability to be resistant to antibiotics, resist host immune response and
combat extreme environmental stress, and their association with persistent infections [3].
Morbific microbes possess the ability to form biofilms in tissues and biomaterials, inducing
chronic infections that are arduous to treat [4,5]. Common bacteria that form biofilms
include Pseudomonas aeruginosa [6], Staphylococcus epidermidis [7], Enterococcus faecalis [8–10],
Staphylococcus aureus [11–14], Klebsiella pneumoniae [15–17], Streptococcus viridans [18–21],
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Escherichia coli [22,23], and Proteus mirabilis [24,25]. Biofilm recalcitrance [26–30] is the
potential of the microbes to sustain even in high concentrations of antibiotics, which leads
to recurrence of infections and collapse of treatment. The microbes enclosed within the
biofilm have proven to be more resistant towards classic antibiotic therapy in contrast to the
planktonic cell population. This recalcitrance is revocable by disrupting the biofilm and re-
instating the microbes to the planktonic state [31]. Patients with ingrained medical devices
such as prosthetic heart valves, catheters, joint prosthesis, cardiac pacemakers, dental im-
plants and contact lenses have utmost risk of biofilm-based nosocomial infections [32–34].
Such foreign bodies provide an exemplary surface for the adhesion of bacterial cells, which
can be facilitated by non-specific factors such as shear forces, hydrophobicity and electro-
static interactions [35–37].

A common example of biofilms covering abiotic surfaces is their formation on dental
restorative and implant materials, where oral bacteria adhere to hydrophobic and hy-
drophilic abiotic surfaces and biofilms accumulate more readily on rough than on smooth
surfaces [38,39]. This can result in periimplantitis, a destructive inflammatory process that
affects the soft and hard tissues surrounding dental implants and may result in implant
failure. There is a multitude of methods for decontaminating pathogenic microorganisms
on dental implants [40].

Exposure of bacteria to concentrations of an antibiotic that are lower than the mini-
mum inhibitory concentration (MIC), known as subinhibitory concentrations, can enforce a
higher capacity for biofilm formation, which in turn can result in a decreased susceptibility
to antibiotics [41–44]. For example, subinhibitory antibiotic concentrations have recently
been shown to enhance biofilm formation of clinical Enterococcus faecalis isolates [45]. The
subinhibitory concentration may be introduced by improper dosing of an antibiotic or
could be created in difficult to reach local regions such as in a dental root canal. The
inability of antibiotic treatments to eliminate bacterial biofilms at subinhibitory concentra-
tions has hastened the quest for new antibiofilm agents and strategies. In this review we
therefore look at how biofilms are formed and how this process could be inhibited, then
consider possible antibiofilm agents and strategies in the quest to overcome antimicrobial
drug resistance.

2. Biofilm Formation

Biofilm biogenesis is a dynamic process that involves a consecutive series of steps [46,47].
The process of biofilm formation commences by the bacteria approaching to a surface. Most
bacteria have the ability to switch between two forms that are planktonic single cells and
sessile biofilms. The planktonic cells and biofilms vary remarkably in their gene expression,
morphological and physiological facets. The sessile cells are encapsulated by extracellular
polysaccharides (EPS) and demonstrate increased production of surface adherents, innate
tolerance to antibiotics, and soaring resistance towards environmental stress.

The biofilm formation process (Figure 1) involves different phases:

2.1. Reversible Attachment

Under favorable conditions, a single planktonic cell migrates and reversibly attaches
itself onto a surface initiating the first phase of the biofilm biogenesis process [48,49]. Being
reversible, this attachment involves weak interactions such as electrostatic, van der Waals
or hydrophobic interactions. Cell appendages such as pilli, flagella or fimbriae provide
robustness and adhesion to the surface of attachment. On attachment the cells become
further become encapsulated in EPS [50,51].

2.2. Microcolony Formation with Quasi-Irreversible Adhesion

In this stage the planktonic cells become prominently more layered and form a sys-
tematic microcolony along with water channels making it an irreversible adhesion. Colo-
nization, a hallmark feature of biofilms, plays a vital role in its dormancy and virulence.
Once the cells securely adhere to an appropriate surface countless microbes pile up and
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secrete EPS that acts as a sealant to fix the microorganisms. After these synchronized steps
the microcolonies are formed [52–54].
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2.3. Biofilm Matrix Formation

The EPS produced by the adherent forms a matrix within which the cells build their
community and attain their maximum cell density. The EPS encapsulating the cells in
a biofilm is an amalgamation of constituents, including extracellular-DNA (e-DNA), au-
tosensing molecules, persister cells, proteins, lipids and polysaccharides [55–58]. The
polysaccharides in the matrix provide strength to the cells within the biofilm, such as adher-
ence, shielding, and structural rigidity [59,60]. Colonization is facilitated by the aggregative
polysaccharides that act as glue and also provide protection from physical stresses inflicted
by the moving fluid depriving the cells of nutrients [61–63]. Organisms inherit different
kinds of polysaccharides that exhibit key roles in biofilm integrity (Table 1). The nucleic
acids like e-DNA, extracellular-RNA (e-RNA) and ribosomal DNA interact with different
EPS granting nutrients, providing structural stratification and protection against any gene
transfer to the biofilm. The proteins present in the matrix bestow structure and stability to
the biofilm [64–66]. The persister cells contribute to a small community of dormant cells
that display utmost resistance towards antimicrobials [67–70].

2.4. Maturation of the Biofilm and Detachment

With availability of favorable conditions and nutrients the cells grow and differentiate
to form mature biofilms which have a spatial architecture. This well developed biofilm
resembles a communal group arbitrated by chemical signaling molecules liberated by
bacterial inhabitants within the biofilm. On maturation, the microcolonies of cells release
individual planktonic cells now capable of travelling to a new surface, thus leading to
outspread of the bacterial infestation [98–101].
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Table 1. Bacterial polysaccharides formed by different organisms and their functions.

Bacterial Polysaccharide Organisms Function References

Polysaccharide intercellular
adhesion (PIA)

Staphylococcus aureus,
Staphylococcus epidermidis

Adhesion and
architectural framework [71–73]

Pel Pseudomonas aeruginosa Adhesion, protection and
architectural framework [74,75]

Psl Pseudomonas aeruginosa Adhesion, protection and
architectural framework [76,77]

Alginate Pseudomonas aeruginosa,
Pseudomonas syringae

Protection and
architectural framework [78,79]

Capsular polysaccharides (CPSs)

Pasteurella multocida,
Acinetobacter baumannii,

Streptococcus pneumoniae,
Vibrio vulnificus

Protection [80–84]

Levan
Pseudomonas syringae, Erwinia

amylovora, Bacillus subtilis,
Streptococcus mutans

Adhesion and protection [85,86]

Colanic Acid Enterobacteriaceae Architectural framework [87,88]

Vibrio Vibrio cholerae Adhesion,
architectural framework [89–92]

α-Mannans and β-glucans Candida albicans Forming mannan-glucan complex
(MGC) and protection [93,94]

Glucans/fructans Streptococcus mutans, Weissella
cibaria, Lactobacillus plantarum Adhesion and protection [95–97]

3. Mode of Action of Antibiofilm Agents
3.1. Bacterial Surface Attachment Inhibition

Bacterial appendages like flagella or fimbriae aid their attachment to surfaces, so
inhibition of these appendages can be an approach to avert adhesion. Surface coating or
surface modification with agents having antibacterial properties is an emerging technique to
hostile microbial adhesion and proliferation [102–106]. Inhibition of bacterial adhesion can
be achieved by surface coating with biocidal agents or specific polymers having an ability
to inhibit the cells impending the surface. Indeed, novel polysaccharides from Antarctic
sponge-associated bacteria and lake macroalgae have recently been used to hinder the
adhesion of bacteria [107,108]. Surface topography using nanotechnology has recently been
explored to generate antibacterial surfaces [109–112].

3.2. Interfering with Quorum-Sensing

Microbial cell-to-cell communication at the molecular level, which enables the mi-
crobes to reciprocate to surrounding changes, is permitted by a mechanism called quorum-
sensing (QS). QS is reliant on the binding of an autoinducer to an analogous gene regulator,
which activates the ensuing transcriptions [113–117]. Examples of autoinducers are N-
acyl homo-serine lactones (AHLs) (1) and Pseudomonas quinoline signaling molecules (2)
present in Gram-negative species, short peptide signals present in Gram-positive species,
and autoinducer-2 (3) molecules found in both species (Figure 2). These help to control
population density, swarming motility, virulence and biofilm formation [118–120]. The
autoinducers initiate the formation of virulence factors that aid invasion and persistence
in a vulnerable host. QS systems are associated with upregulation of gene expression
through the accessory gene regulator (agr) system, forming virulence factors such as ad-
hesins, toxins, hemolysin and autolysins in Gram-positive staphylococcal infections or
siderophores, exoproteases, rhamnolipids and exotoxins in P. aeruginosa [121–124]. The
formation of biofilms and related virulence factors by infective microbes requires cell-cell
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communication, hence agents acting as QS inhibitors and specifically targeting the AHL-QS
system in bacteria have been widely explored for their efficacy using in vitro and in vivo
models [125–127].
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3.3. Nucleotide Second Messenger Signaling Modulating Molecules

The second messenger cyclic di-guanosine monophosphate (c-di-GMP) has emerged
as a signaling molecule in Gram-positive and Gram-negative bacteria governing the process
of biofilm formation, biosynthesis of EPS, virulence and suppression of cell motility. The
enzyme diguanylate cyclase is essential for synthesis of c-di-GMP, inhibition of which has
proven to terminate biofilm formation, alluding to the significance of c-di-GMP in the
bacterial signaling process [128–135].

3.4. Bacterial Genetic Biodiversification Inhibitors

Genetic biodiversification in bacteria leads to emergence of newer subpopulations,
which have been ascribed to be resistant to antibiotic therapies and environmental stressors.
Horizontal gene transfer with conjugation plays a crucial role in the outspread of resistance
in biofilm colonies [136–138]. The social evolution theory anticipates that inhibiting shared
traits among the subpopulations could be a viable solution for eradicating the biofilm. The
fact that the organism in a subpopulation relies on a shared EPS makes it an interesting
target to combat genetic diversification. The spatial structure and heterogeneity provided
by biofilms lead to increased genetic diversity [139].
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3.5. Biofilm Dispersal Inducers

Biofilm dispersal is initiated by the disruption of the EPS matrix to release the micro-
colonies of planktonic cells that migrate and adhere to new surfaces. Antibiofilm agents
that can abet the process of dismantling the biofilm has provided research strategies for
designing new biofilm dispersal inducers [140–142]. This dispersal process provides an
opportunity to target the microorganisms since they now exist in their viable form, a way
more susceptible form permitting the attack of standard antimicrobials comparable to cells
residing in the biofilm [143,144]. Biofilm dispersal agents have triggered the interest of
researchers to design combination treatments along with antibiotics.

4. Bacterial Resistance towards Antibiotics

When antibiotics are intended to treat biofilm infestation, they must have the ability
to cross the biofilm matrixome to target the cells embedded within. Although this is not
the case most of the time as the antibiotics fail to cross the biofilm extracellular matrix due
to surface modification of the biofilm causing decreased influx. The mechanisms by which
antibiotic resistance develops are a crucial determinant factor in the survival of biofilm
microbes. The microbes that form biofilms inherently undergo high mutation that allows
them to evolve resistant mechanisms providing fortuity for genes to develop enzymes that
inactivates the antibiotics or extrudes the antibiotics by efflux pumps [145–148].

Four major mechanisms are involved in the antibiotic resistance developed among
bacterial species (Figure 3):

i. Modifying cell permeability to restrict the influx of antibiotics into the cells.
ii. Altering the cellular targets to which the antibiotics bind, rendering them inactive.
iii. Enzymatic cleavage of the antibiotics making them ineffective.
iv. Upregulation of efflux pumps to expel the antibiotics out of the cellular membrane.
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bacterial species.

Horizontal gene transfer in plasmids and the portability of human carriers has re-
sulted in proclamation of drug resistance over a capacious microbial subdivision and
microenvironment [149–153].
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5. Emerging Antibiofilm Agents

Biofilms embrace the capability to resist and survive harsh environmental conditions
and defeat the host immune system, so there is a desire for exploring new antibiofilm
agents. Emerging biofilm control measures such as small molecule inhibitors, quorum
quenching agents, antimicrobial peptides (AMPs), efflux pump inhibitors (EPIs), quater-
nary ammonium compounds (QACs), and natural phytoconstituents are gaining acclaim
to selectively act by different mechanisms and combat the resistance. With the unfolding
knowledge of biofilm biogenesis and microenvironments, various agents and newer emerg-
ing technologies have provided novel approaches for selectively targeting the biofilm by
annihilating the biofilm or suppressing its formation.

5.1. Inhibition of Persister Cell Formation by a Synthetic Diterpene

Tkachenko et al. identified a synthetic diterpene derivative as a lead molecule proficient
in repressing resistance and annihilating the biofilm formation in Mycobacterium smegmatis. Per-
sister cell formation in Mycobacterium is highly dependent on the alarmone (p)ppGpp and
its essential Rel protein. The analogue 4-(4,7-di-methyl-1,2,3,4-tetrahydro-naphthalene-1-
yl)pentanoic acid (DMNP) (4) (Figure 4) was found to inhibit RelMsm activity of (p)ppGpp-
synthesis in a concentration-dependent manner [154]. Furthermore, docking studies sug-
gested the interaction of DMNP with RelZ and RelMsm proteins and high affinity with
their GTP binding sites, consequently impeding their (p)ppGpp-synthesizing activity [155].
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5.2. Inhibition of Sortase A by 1,2,4-Oxadiazole Topsentin Analogs

A series of seventeen 1,2,4-oxadiazole topsentin analogs was synthesized by Par-
rino et al. and assessed for their biofilm inhibition, by targeting the membrane enzyme
transpeptidase sortase A (SrtA), which attaches surface adhesive molecules to the cell wall
in Gram-positive organisms. All these compounds inhibited biofilm formation in S. aureus
species with BIC50 values less than 10 µM for the most potent derivatives (5a–c). The
potent analogues displayed BIC50 values for S. aureus in the range of 0.7 to 9.7 µM, and
additionally showed a superior enzyme inhibition with IC50 values of 2.2 to 10.4 µM. SAR
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analysis revealed the significance of the presence of the -N=C-O- group in the oxadiazoles
for dual antibacterial and biofilm inhibitory activity [156]. In a similar work by Carbone
et al., thiazole analogs of nortopsentin were synthesized of which the potent derivatives
6a–b showed BIC50 values against S. aureus of 3.9 and 1.0 µM (Figure 5 and Table 2) [157].
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Table 2. BIC50 values for 1,2,4-oxadiazole topsentin analogues.

Compound R R’ BIC50 Values for
S. aureus (µM)

(5-floro-1-methyl-1H-indol-3-yl)[3-(5-bromo-1-methyl-1H-
indol-3-yl)-1,2,4-oxadiazol-5-yl]methanone (5a) F Br 4.4

(5-floro-1-methyl-1H-indol-3-yl)[3-(5-floro-1-methyl-1H-indol-
3-yl)-1,2,4-oxadiazol-5-yl]methanone (5b) F F 0.27

(5-methoxy-1-methyl-1H-indol-3-yl)[3-(5-methoxy-1-methyl-
1H-indol-3-yl)-1,2,4-oxadiazol-5-yl]methanone (5c) OCH3 OCH3 0.9

5-fluoro-1-(2-methoxyethyl)-3-[4-(thiophen-3-yl)-1,3-thiazol-2-
yl]-1H-indole (6a) - - 3.9

5-bromo-1-(2-methoxyethyl)-3-[4-(pyridin-3-yl)-1,3-thiazol-2-
yl]-1H-indole (6b) - - 1.0

5.3. Amide Chalcones

El-Messerya et al. synthesised a panel of amide chalcones linked with different
secondary amines and assessed them for in vitro antibacterial activity and their antibiofilm
activity. A minimum bactericidal concentration (MBC) value of 2.0 mg/mL against S. aureus
equivalent to the standard ampicillin was shown by compound 7a. Compounds 7a, 7b,
and 7c (Figure 6) displayed a significant biofilm inhibition with IC50 values in the range of
2.4 to 8.6 mg/mL against S. aureus, Micrococcus luteus and P. aeuroginosa (Table 3) [158,159].
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Table 3. IC50 values for amide chalcones.

Compound R
Bacterial Biofilm Inhibition (IC50 in µM ± SD)

S. aureus M. luteus P. aeuroginosa

(E)-N-(4-(3-(4-Chlorophenyl)acryloyl)phenyl)-3-
(piperidin-1-yl)propanamide (7a) 4-Cl 2.4 ± 0.10 4.8 ± 0.11 7.8 ± 0.24

(E)-N-(4-(3-(4-Methoxyphenyl)acryloyl)phenyl)-
3-(piperidin-1-yl)propanamide (7b) 4-OCH3 4.9 ± 0.21 5.7 ± 0.26 8.6 ± 0.22

(E)-3-(Piperidin-1-yl)-N-(4-(3-(3,4,5-
trimethoxyphenyl)acryloyl)phenyl)propanamide (7c) 3,4-di(OCH3) 2.9 ± 0.16 5.6 ± 0.22 0.84 ± 0.21

5.4. Cajaninstilbene Acid Derivatives

Chen and co-workers recently developed cajaninstilbene acid derivatives and evalu-
ated their ability to inhibit biofilm formation. Of the synthesized analogues, compounds
8a, 8b and 8c (Figure 7) exhibited promising antibiofilm activity, furthermore 8c displayed
potent biofilm inhibition with a ratio of 49.50 ± 1.35% at 50 µM (Table 4). Additionally,
compound 8c showed suppression on expression of lasB-lacZ and pqsA-lacZ involved in
the QS network pathway in P. aeruginosa. Thereby proving compound 8c as a promising
lead with inhibition of QS and associated biofilm formation in P. aeruginosa [160,161].
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Table 4. Biofilm inhibition ratios for cajaninstilbene acid derivatives.

Compound R Biofilm Inhibition Ratio (%)

2-hydroxy-4-methoxy-3-(3-methylbut-2-en-1-yl)-6-[(Z)-2-
(pyrimidin-5-yl)ethenyl]benzoic acid (8a)
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5.5. Quorum Quenching Agents

The persister cells have the ability to communicate amongst themselves leading to
virulence and the generation of resistance. Different quorum quenching agents have been
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explored in order to find adjuvant therapy. The bacterial QS inhibitory effect of subtilosin
(9), a cyclic lantibiotic formed by B. subtilis KATMIRA1933, was assessed by Algburi
et al. [162]. Subtilosin shows its effect by targeting the surface receptor and binding to the
bacterial cell membrane by electrostatic forces. The study revealed that at a concentration of
15.1 µg/mL an inhibition of 80% of L. monocytogenes and about 60% of E. coli biofilms was
seen. Moreover, subtilosin decreased the autoinducer-2 formation in Gardnerella vaginalis
at a concentration of 3–4 µg/mL [152]. Zhou et al. evaluated the QS inhibitory potential
of hordenine (10) isolated from sprouting barley towards P. aeruginosa. It was found to
inhibit the autoinducer AHLs at concentrations of 0.5 to 1.0 mg/ mL. Additionally, it also
remarkably suppressed the QS associated genes lasR, rhlR, rhlI and lasI [163]. In another
work by Zhao et al. the QS inhibitory effect of falcarindiol (11) against P. aeruginosa infesta-
tion was assessed. Biofilm formation and associated virulance factors were significantly
inhibited at subinhibitory concentrations. Also, there was appreciable downregulation of
the mRNA expression of QS associated genes lasI, lasB, rhlA, pqsA, rhlR, phzH and rhl I [164].
QS and biofilm inhibitory effects of a few hordenine derivatives towards P. aeruginosa
and Serratia marcescens was recently analysed by Liu et al. Derivatives 12a–g exhibited
superior QS inhibitory activity and biofilm inhibition towards P. aeruginosa. Additionally,
analogues 12a–c and 12g displayed remarkable QS inhibition against S. marcescens. SAR
studies revealed essential factors involved in activity like alkyl chain length, presence or
absence of amino or hydroxyl groups and unsaturation in the aromatic benzene ring [165].
A thiolactone analog of AHL covalently linked to ciprofloxacin (QS0108) (13) was devel-
oped by Ganguly et al. to assess them as inhibitors of AHL-2 in P. aeruginosa. This system
effectively disrupted dormant and mature biofilms compared to antibiotic treatment alone
(Figure 8) [166].

5.6. Antimicrobial Peptides

AMPs are emerging as attractive antibiofilm agents owing to various properties that
they display, such as a broad-spectrum of antimicrobial activity, decreased resistance and
synergistic effects shown with few antibiotics. Indeed, these properties mean that AMPs
could become the next generation of antimicrobials to curb the biofilm related resistance
shown by current antibiotics.

Heinonen et al. recently explored the antibiofilm effect of TAT-RasGAP317-326, an
AMP made of a TAT HIV 48–57 sequence which gives it cell permeability, and a sequence
of ten amino acids obtained from the Src homology domain of p120 RasGAP on biofilms
of P. aeruginosa, A. baumannii and S. aureus. It was observed that TAT-RasGAP317-326
attenuated biofilm formation at concentrations similar to or twice the MIC value obtained
for planktonic cells. Additionally, TAT-RasGAP317-326 curbed the growth and spread of
P. aeruginosa and A. baumannii preformed biofilms at twice the concentration. This study
proclaims TAT-RasGAP317-326 as a propitious antibiofilm AMP [167].

Wuersching et al. assessed the effect of AMPs LL-37 (also known as cathelicidin)
and human lactoferricin (LfcinH) on the growth of planktonic cells and biofilm formation
in anaerobes associated with oral pathogenesis. Suspensions of multi-species of faculta-
tive anaerobic bacteria (FAB) including Actinomyces naeslundii, Streptococcus mutans and
Streptococcus sanguinis or obligate anaerobic bacteria (OAB) including Parvimonas micra,
Veillonella parvula and Fusobacterium nucleatum were subjected to concentration ranges of
LL-37 and LfcinH. Compared to LfcinH, prominent inhibitory threshold concentrations of
LL-37 were noticed (p < 0.0001) but the biofilm mass was also decreased better by LL-37
compared to LfcinH, highlighting the scope of LL-37 as a better AMP [168,169].

Ciandrini et al. investigated the synergistic action of AMPs citropin 1.1, temporin A,
Pal-KGK-NH2 and CA(1–7)M(2–9)NH2 towards methicillin-resistant S.s aureus (MRSA)
biofilms formed on a polystyrene surface and a central venous catheter. The combination
evidently inhibited biofilm formation, although, disruption of preformed biofilms was
tedious and achieved after 24 h of contact [170,171].
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Festa et al. recently worked on the AMP 1018-K6 as an antibiofilm agent against MRSA
and enterotoxigenic S. aureus isolated from cheese. This peptide exhibited remarkable
eradication of preformed Staphylococcal biofilms within 15 min. Moreover, it prevented
further formation of biofilms and displayed bactericidal action against the planktonic
cells [172]. In a continuation of the work on 1018-K6, Colagiorgi et al. worked on the
antibiofilm ability of the food pathogen Salmonella enterica. Of the 42 strains included in the
study, 1018-K6 profoundly decreased the biofilm formation in several S. enterica strains at
subinhibitory concentrations [173].
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5.7. Antibiotics Affecting Bacterial Cell Permeability

Antibiotics affecting cell permeability target several components of the cell wall and
its synthesis. The peptidoglycan class of antibiotic vancomycin inhibits the cell wall
synthesis by complex formation with the D-Ala-D-Ala subunit at the carboxyl terminal in
a peptidoglycan chain [174–176]. AMPs like polymyxin B pile up in the outer membrane
by binding to lipid A and eventually invade the inner membrane making its way into the
cytoplasm. The resistance to this antibiotic is seen by either mutations in the governing
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systems PmrAB and PhoP/PhoQ or modification of the phosphate functional groups of
lipid A [177,178].

5.8. Enzymatic Cleavage Inhibitors

On being exposed to an antibiotic the bacterial cells inturn release enzymes which act
in a defensive way in the extracellular space, cleaving and deactivating the antibiotic. The
resistance to beta-lactam antibiotics has been associated to the enzyme beta-lactamase. A com-
bination of ceftazidime and a beta-lactamase inhibitor avibactam has been explored for its an-
tibiofilm activity towards carbapenemase-producing K. pneumoniae. Avibactum (14) was also
proven to irreversibly curb the β-lactamase enzyme from Mycobacterium tuberculosis [179–182].
7-Hydroxytropolone (15) acts as an inhibitor of the enzyme aminoglycoside-2”-O-
adenylyltransferase and was active against bacterial strains resistant to amioglycosides. The
structure of 7-hydroxytropolone, exhibits an eccentric vicinal positioning of the oxygens
which aids in the enzyme inhibition [183]. Plazomicin (ACHN-490) (16) a neamine deriva-
tive was designed by modifying the sites that displayed affinity to the resistance caused
by aminoglycoside-modifying enzymes allowing it to preserve the antimicrobial activity
towards pathogens that possess aminoglycoside resistance genes [184,185] (Figure 9).
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5.9. Efflux Pump Inhibitors

Efflux of antibiotics, by overexpression of efflux pumps, leads to their extrusion out of
the cell, making them inactive. EPIs are a recent class of compounds which specifically aim
to prevent the efflux of antibiotics out of the cell, which is a determinant of the resistance
shown toward antibiotics. A peptidomimetic efflux pump inhibitor MC-207,110 (17a),
also known as phenylalanyl arginyl β-naphthylamide, and its analogue MC-04124 (17b)
(Figure 10) enhanced the antimicrobial activity of erythromycin and levofloxacin against
clinical strains of P. aeruginosa overexpressing MexAB-OprM [186,187]. A synthetic small
molecule IITR08027 (18) (Figure 10) showed reversal of resistance towards fluoroquinolones
in clinical strains of A. baumannii overexpressing multidrug and toxic compound extrusion
(MATE) efflux pumps and the recombinant strains of E. coli. IITR08027 disrupts the proton
gradient important for activating the efflux pump [188]. MBX2319 (19) a pyrazolopyridine
analogue displayed inhibition of AcrAB-TolC-overexpressing in E. coli and potentiated the
efficacy of antibiotics like levofloxacin, ciprofloxacin, and piperacillin [189] (Figure 10).

5.10. Quaternary Ammonium Compounds

QACs represent a class of broad-spectrum antimicrobials possessing a central am-
phiphilic core and a lipophilic alkyl side chain linked to a hydrophilic quaternary ammo-
nium framework. Although QACs imitate the action of the AMPs they have a comparatively
simplified structure. The mode of action of these agents as antimicrobials is by cleavage
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of the cell membrane, which consequently leads to nutrient leakage followed by cell lysis
and death. Although, this class of compounds have already been established as disin-
fectants, antiseptics and preservatives their role as antibiofilm agents has only recently
been recognised.
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In a study by Kumar Tiwari et al. two quaternary ammonium methacrylate (QAM)
derivatives, dimethylaminododecyl methacrylate (DMADDM) (20) and dimethylamino-
hexadecyl methacrylate (DMAHDM) (21), were designed and evaluated for their efficacy
as antibiofilm agents against E. faecalis, Streptococcus gordonii, Actinomyces naeslundii, and
Lactobacillus acidophilus using chlorhexidine and sodium hypochlorite as standards. In par-
ticular, the minimal biofilm inhibitory concentration (MBIC) for DMADDM and DMAHDM
against a combination of four endodontic bacteria was 25 µg/mL and 6.25 µg/mL, respec-
tively [190]. Daood et al. investigated quaternary ammonium silanes (QASs) (22) as biofilm
disruptors by exposing them to S. mutans and L. acidophilus preformed biofilms over dentine
disks, at different concentrations. Inhibition of enzyme SrtA, responsible for the adhesion
of proteins onto the cell membrane and connecting the proteins to form pili, was studied at
a concentration of 2% QAS dilution and exhibited significant reduction with an IC50 value
of 3.3 ± 2.7 µM, a more potent value as compared to polyhexamethylene biguanide taken
as positive control, IC50 = 24.5 ± 4.1 µM [191].

In a study conducted by Ooi et al., two distinct QACs having a dicationic porphyrin
core, XF-70 (23a) and XF-73 (23b), were evaluated for their disruption of S. aureus biofilms.
Both analogues entirely disrupted preformed S. aureus biofilms at a concentration of
2.6 µM [192,193]. The analogue XF-73 is currently being developed as a topical prepa-
ration by Destiny Pharma (Brighton, UK) and has started with a phase-II trial to assess its
effect on patients with post surgical Staphylococcal nasal infestation. A phase–I trial of XF-
73 has shown noteworthy positive results [194]. Murakami et al. evaluated the effectiveness
of 4,4′-(α,ω-hexamethylenedithio) bis (1-octylpyridinium bromide) (4DTBP-6,8) commonly
known as gemini QACs a seventh generation BisQACs as an antibacterial and antibiofilm
agent towards P. aeruginosa. A susceptibility assay for biofilm cells was performed which



Microorganisms 2022, 10, 303 14 of 28

showed the numbers of surviving cells with cetylpyridinium chloride and benzalkonium
chloride used as reference was 984- and 186- fold higher compared to cells treated with
4DTBP-6,8 (24) (Figure 11) [195].
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5.11. Natural Compounds

Dong et al. evaluated resveratrol as a biofilm inhibitor against Aeromonas hydrophila.
The significant reduction in biofilm formation using resveratrol (25) was noted at con-
centrations higher than 0.25 µg/mL and a 49.11% reduction in biofilm biogenesis was
observed with 4 µg/mL [196]. Oh et al. investigated Raffinose (26), which is a α-galactosyl
derivatives of sucrose, and their isolate from ginger extract and evaluated for their abil-
ity to prevent biofouling in membrane bioreactors involved in membrane filtration and
treatment of waste water. It was observed that the extract significantly reduced 25–52% of
the P. aeruginosa and S. aureus co-culture biofilms at a concentration range of 0–1000 µM.
In addition, Raffinose also decreased the transmembrane pressure in lab-scale membrane
bioreactors compared to furanone C-30 used as control [197].

In a study by Husain et al., Pseudomonas species producing metallo-b-lactamase
(MbLs) enzymes from camel meat were isolated and evaluated for their ability to form
biofilms. Additionally, the effect of the flavone naringin (27) on the biogenesis of biofilm
against the isolated Pseudomonas species was assessed by in silico and in vitro studies. A
total of 55% isolates were found to produce MbLs. Naringin attenuated up to 57% of the
biofilm formation in the isolated Pseudomonas species. Naringin remarkably turned down
biofilms EPS and alginate density. Disruption of preformed biofilms from 32–60% was seen
at respective 0.50 MICs. Naringin can thus be explored as a promising food preservative
against foodborne Pseudomonas species forming biofilms [198].

In recent work by Lyu et al. the biofilm inhibition ability of ursolic acid (28) was
evaluated towards oral Streptococci species. Ursolic acid being a natural product can be
derived from plant parts such as privet leaves, berries, loquat leaf, paulownia leaves and
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iron holly. It was observed that ursolic acid inhibits multi-species biofilms of S. mutans,
S. gordonii and S. sanguinis at a concentration of 7.80 µg/mL. Moreover they inhibited
specifically glucosyltransferases the prime cariogenic component of oral biofilms and
displayed relatively less cytotoxicity towards human oral cells [199]. Wei et al. and
Pun et al. recently investigated the outcome of phloretin (29) on Listeria monocytogenes
biofilm formation. Phloretin in sub-MIC levels was used at different temperatures of
37 ◦C and 4 ◦C to treat the biofilm. It showed maximum inhibition of the biofilm up to
60% with a concentration of 20 µg/mL. Moreover, the amount of biofilm aggregation and
adhesion in L. monocytogenes was subsequently diminished. The thickness of the biofilm
was lessened by 2 µm at a concentration of 20 µg/mL. The mode of biofilm inhibition study
revealed the role of phloretin reducing the QS related gene agr by 50% with 20 µg/mL
phloretin [200,201].

Wang et al. investigated Baicalin (30), a natural compound derived from the roots of
Scutellaria baicalensis, and evaluated its ability to inhibit biofilm formation in Staphylococcus
saprophyticus and its QS by selectively inhibiting the MsrA drug efflux pump. The study
displayed promising results with baicalin decreasing biofilm biogenesis, and bacterial
aggregation by downstreaming the mRNA transcription proportion of the QS regulators
agrA, agrC, sarA and RNAIII [202,203].

Reis et al. evaluated three flavonoids from Brosimum acutifolium, 4′-hydroxy-7,8(2′′,2′′-
dimethylpyran) flavan (31), brosimine b (32) and 4-hydroxy-lonchocarpin (33), as an-
tibiofilm agents. A and B decreased the viability in preformed S. aureus biofilms upto
73% at a concentration of 50 µM. Additionally, B decreased the biofilm biomass upto 48%
at a concentration of 100 µM whereas C was unable to reduce the biofilm biomass. B at
a concentration of 100 µM curbed 70–98% of planktonic cells in a 24-old MRSA biofilm
(Figure 12) [204].Microorganisms 2022, 10, x FOR PEER REVIEW 16 of 28 
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6. Investigative Strategies to Eradicate Biofilms

The emergence of resistance to existing clinical antimicrobials and the high dose regime
required to curb biofilm associated infection conditions, and the paucity of a consummate
antibiofilm therapy necessitates the need for novel strategies to thoroughly eradicate
biofilms. Some burgeoning strategies are highlighted in this review (Figure 13).
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6.1. Photodynamic Therapy

Photodynamic therapy (PDT) has prospective use in elimination of biofilm infections
associated with surface wounds. In PDT mild visible light of specific wavelength is used
along with innocuous photosensitizers to form cytotoxic reactive oxygen species (ROS)
thus killing the bacteria. In a study conducted by Ronqui et al., synergistic therapy of
PDT followed by ciprofloxacin treatment exhibited a remarkable reduction of biofilms,
with a 5.4 and 7 log reduction for S. aureus and E. coli biofilms, respectively. Hypericin-
loaded nanoparticles combined with PDT has been investigated, the study showed that
PDT treatment offered quick wound healing and formation of collagen fibers in rats. In
PDT appropriate care should be taken to avoid exposure of a patient’s eyes to the laser
light [205–208].

6.2. Antibodies and Macrophages

Antibodies targeted towards bacterial surface attachment, if used prophylactically,
can prevent biofilm biogenesis [209,210]. A human monoclonal antibody mAb 3H3, was
assessed by Tursi et al. for its pan-amyloid binding ability. The antibody disrupted
biofilms formed by S. typhimurium and eventually enhanced the efficacy of antibiotic
treatment in vivo. In mice, a 3H3 injection showed antibiotic conciliated clearance of
S. typhimurium biofilms in catheters [211–214]. Sun et al. used a mixture of two MAbs,
12C6/12A1 and 3C1/12A1, which synergistically reduced the attachment and accumulation
of S. epidermidis up to 87% [215]. A cocktail of macrophages has the ability to avert
Proteus mirabilis biofilms formed on catheters [216]. Additionally, macrophages could
eliminate P. aeruginosa biofilms in murine model lungs and eradicate biofilms formed
in wounds associated to S. aureus [217]. A phage lysin has proven to be efficacious in
eradicating biofilms by fundamentally cleaving the bacterial cell and also effective towards



Microorganisms 2022, 10, 303 17 of 28

persister cells. Recombinant exebacase (Lysin CF-301) for treatment of MRSA endocarditis
and bacteraemia in synergism with some antibiotics is now in clinical trials [218–220].
The stumbling block with macrophage treatment is the resistance formed and their swift
clearance by the host immune response. The spatially architectural community of the
biofilm allows the dwelling of phage-sensitive bacteria.

6.3. Surface Coating or Modification

The multipurpose surface topography and coating on implants are considered as an
innovative way to fight against biofilm formation and with the recent emergence in the field
of surface engineering new hopes are seen in this arena. The newer techniques like nanoim-
print lithography, electron beam and colloidal lithography are utilized for fabrication of
textured biomaterial nanosurfaces [221,222]. Coating the implants superficially helps attain
the desired outcome without altering the original materials characteristics. Preventing
bacterial adhesion, interfering with biofilm formation, and inactivation of the biofilm are
the major strategies used in the design of antibacterial coatings. Electrophoretic, chemical
vapor and physical vapor deposition are widely used to form uniform thin films on different
implants. Recently, AMPs have exhibited inhibition of biofilms and have been used to coat
silicon, stainless steel, titanium, glass surfaces, and polystyrene [223–225]. Also, antibiotic
coating with different classes of antimicrobials like beta-lactam antibiotics, aminoglyco-
sides, rifamycins, and quinolones are explored. Enzymes inhibiting QS are used for coating
which includes enzymes such as acylase, oxidase, and lactonase [226–228]. Methacrylic
copolymer films loaded with a combination of the antibiotics rifampin, clarithromycin and
doxycycline efficiently released the drugs for 21 days and prevented formation of biofilms
of MRSA, and a combination of clarithromycin with rifampin was able to kill more than
99.9 % of MRSA strains. Combinatory antibiotic therapy provides a good opportunity to
bridle the antimicrobial resistance observed with single antibiotics [229,230]. A drawback
in the coating strategy is the expeditious eroding of the coating material with time.

6.4. Nanoparticle Systems

Owing to the poor permeability concerns coupled with the available drugs towards
the persister cells, nanoparticle (NP) delivery systems can be explored for localized
drug delivery of antimicrobial agents into biofilms. As evident by several reports, sil-
ver nanoparticles (AgNPs) have intrinsic bacteriocidal property and are proven to eradicate
biofilms. Siddique et al. studied AgNPs and evaluated their biofilm inhibition against
two strains of K. pneumoniae. The percent biofilm inhibition was found to be 64% and 86%
for K. pneumoniae MF953600 and MF953599, respectively at 100µg/mL concentration [231].
Additionally, the formation of EPS was reduced on treatment with AgNPs and caused cel-
lular membrane disruption. In a similar work by Hetta et al. the biofilm inhibitory activity
and antivirulence ability of AgNPs was assessed towards multidrug-resistant A. baumannii.
The results showed a downregulation in expression of virulence and biofilm-related genes
like afa/draBC, kpsMII, ompA, bap, and csuA/B by AgNPs [232]. Recently, Singh et al. studied
synthesis of Ag and Au NPs from Cannabis sativa and explored their biofilm inhibitory
effect towards P. aeruginosa and E. coli at a concentration range of 1.6–100 µg/mL. AgNPs
displayed superior inhibition of biofilm formation even at sub-MIC level [233].

Gounani et al. recently designed tailor-made mesoporous silica NPs as a carrier for the
antibiotic vancomycin using surface functionality like amine, carboxyl or aromatic groups.
The cellular affinity and attachment with mesoporous silica NP suspensions 0.25 mg/mL
was related to a decrease in growth of MRSA biofilm cells [234,235].

A new nanohybrid complex of Ag and iron oxide was designed and subjected to a
magnetic field by Sangili et al. These magnetically responsive NPs responded remark-
ably well compared to bare nanohybrid complexes in disrupting biofilms of E. coli and
P. aeruginosa with inhibitions of 88% and 90%, respectively [236,237]. Abenojar et al. de-
signed a thermoresponsive glycol chitin-based nanocomposite composed of iron oxide
nanoparticles and D-amino acids, which transformed from a solution to a gel at physiologi-
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cal temperature with release of D-amino acids. Following the initial disruption by D-amino
acids, the nanocomposites combined with thermal treatment were actuated by an external
magnetic field to achieve complete disruption of S. aureus biofilms [238,239]].

The intricacy in the structure of the biofilms makes the antibiotics difficult to target
the bacteria and emergence of resistance to them. Unlike traditional antibiotics, NPs have
peculiar dimensions of <100 nm, making them an apt carrier for the antibiotics. These
NPs due to their size, help to selectively target the antibiotics to the infestation site thereby
lowering the detrimental systemic adverse effects. The NPs exhibit their antimicrobial
activity fundamentally by following mechanisms like disrupting the cell membrane and
generating ROS. The ROS sequentially initiate intracellular effects by interacting with DNA,
ribosomes, enzyme causing oxidative stress associated protein denaturation, DNA damage,
ribosomal disassembly and inhibiting cell-to-cell communication within the cell (Figure 14).
AgNPs have been shown to induce neutralization of the bacterial membrane surface charges
thereby altering its penetrability, eventually leading to cell apoptosis [240,241].
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7. Conclusions and Future Perspectives

A majority of bacteria found in the environment dwell in the form of sessile biofilms.
A careful insight about the complex biofilm biology, its formation process and mode of
action aids the design of new antibiofilm agents and strategies. Owing to the hallmark
inherent recalcitrance shown by biofilms towards clinically used antimicrobials and the fact
that biofilm associated infestations are extremely difficult to treat, there is need for newer
antibiofilm agents. Understanding the mode of action of antibiofilm agents provides a
roadmap to fill the opportunities in the field. Small-molecule chemical agents hold “drug”-
like characteristics and have proven to act against several strains of bacteria resistant to
existing antibiotics. QS inhibitors can curb pathogenic infection by blocking cell-to-cell
communication and opening up an arsenal for treating biofilm related infections. AMPs
have gained interest for their multimodal mechanism of action and reduced the chances
of developing resistance. The major pitfall in the use of AMPs is their quick deterioration
by several bacterial proteases. QACs have gained notoriety for mimicking the role of the
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AMPs without undergoing degradation and their inherently small structure comparative to
AMPs. The use of naturally derived bioactives have gained immense popularity as biofilm
inhibitors owing to their associated safety. Natural phytochemicals in combination with
commercial antimicrobials needs to be explored as an alternate strategy to win over the
ongoing war against AMR by biofilms. Several novel techniques have been explored for
dismantling the biofilm and its related infections.
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