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Abstract: Dietary fiber is fermented by the human gut microbiota, producing beneficial microbial
metabolites, such as short-chain fatty acids. Over the last few centuries, dietary fiber intake has
decreased tremendously, leading to detrimental alternations in the gut microbiota. Such changes in
dietary fiber consumption have contributed to the global epidemic of obesity, type 2 diabetes, and
other metabolic disorders. The responses of the gut microbiota to the dietary changes are specific to
the type, amount, and duration of dietary fiber intake. The intricate interplay between dietary fiber
and the gut microbiota may provide clues for optimal intervention strategies for patients with type 2
diabetes and other noncommunicable diseases. In this review, we summarize current evidence regard-
ing dietary fiber intake, gut microbiota modulation, and modification in human health, highlighting
the type-specific cutoff thresholds of dietary fiber for gut microbiota and metabolic outcomes.
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1. Introduction

Dietary fiber is a carbohydrate in plant foods, such as whole grains, vegetables, fruit,
and legumes, which have been dominant in human diets for millions of years. From
the Paleolithic era, when the hunter-gatherers mainly ate fruit and wild grains, to the
agricultural era, when crops began to be cultivated, the ancients consumed more than 100 g
of various digestible and indigestible dietary fiber from plants per day [1,2]. During the
million years, the human gut microbiota has provided vital nutritional services through
digesting lactose and cellulose, degrading toxins, and biosynthesizing vitamins, signal
molecules, and other essential substances [3].

In the industrialization age, however, people consumed much less fiber from diets,
posing a big challenge for humans to adapt to the profoundly altered dietary pattern and
environments. Relative to the highly conserved human genomes, the flexibility of gut
microbes enabled their rapid responses to the changed dietary behaviors and guaranteed
the establishment of a new symbiosis with humans [3]. Although the alterations in the
gut microbiome may facilitate human adaptation to the changing environment from the
perspective of evolution, the new human–microbiome symbiosis, much different from that
maintained for millions of years, may elicit profound impacts on human health [4]. Alter-
ations in the human gut microbiome have been implicated in a wide range of complex and
chronic conditions, including obesity, diabetes, cancers, and cardiovascular disease [5–8],
and may account for the increasing burden of noncommunicable diseases globally.

To better understand the intricate interplay of dietary fiber intake with gut microbiota
in human health, we reviewed the bacterial fermentation of dietary fiber in humans and
its role in health maintenance. Aspects considered include the type and intake levels of
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dietary fiber, the fermentation of dietary fiber by the gut microbiota, the impacts of dietary
fiber on the gut microbiota, particularly the fiber type-specific effects and respective cutoff
thresholds, and the modulations of dietary fiber on gut microbiota and metabolic outcomes
of diabetes patients.

2. Dietary Fiber and Its Main Types

The proper definition of dietary fiber was highly debated during the last few decades.
The controversy focused on oligosaccharides, a type of resistant carbohydrate with 3 to
9 monomeric units (MU). According to the officially published Guidelines on Nutrition La-
belling (amended in 2009), dietary fiber refers to “carbohydrate polymers with ten or more
MUs, which are resistant to hydrolysis by endogenous enzymes and absorption in the small
intestine of humans” [9]. However, subsequent investigations observed homogeneous fer-
mentation and physiological activities of indigestible oligosaccharides and polysaccharides
that contain similar monosaccharides, providing supportive evidence for oligosaccha-
rides as one type of dietary fiber [10]. Many countries, including China, Japan, the US,
Canada, Brazil, and France, and the European Union have accepted the inclusiveness of
oligosaccharides as dietary fiber in their official guidelines or standards [11,12].

Dietary fiber can be obtained from diets as edible carbohydrate polymers naturally
occurring in the food, or carbohydrate polymers extracted from food raw material by
physical, enzymatic or chemical means, or synthetic carbohydrate polymers having a
physiological effect of benefit to health [9]. As shown in Figure 1, dietary fiber can be
classified into three types based on the physiological properties of their MU polymerization:
1) nonstarch polysaccharides (NSPs) (MU ≥ 10); 2) resistant starches (RS) (MU ≥ 10), and
3) resistant/nondigestible oligosaccharides (ROS) (MU: 3–9) [13,14]. The NSPs mainly
include cellulose, hemicellulose, pectins, inulin, and various hydrocolloids [15,16]. Inulin
is a fructan containing 2–60 fructose units. When MU <10, inulin is also recognized as
fructo-oligosaccharides (FOS) [17], well-documented prebiotics [14]. RS can be further
classified into RS 1 to RS 5, which can be derived from milled grains and seeds (RS 1),
raw potatoes, maize and green bananas (RS 2), cooked and cooled potatoes and cornflakes
(RS 3), bakery products (RS 4) and fried rice chips (RS 5) [18]. ROS consist of 3–9 MUs, many
of which were named after polymerized monosaccharides, such as galacto-oligosaccharides
(GOS), xylo-oligosaccharides (XOS), and galactosides [19].
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The unified recognition of oligosaccharides as dietary fiber greatly broadens the range
of healthy indigestible carbohydrates available to humans. This may help to improve the
accuracy of measurements in sustainable nutritional surveillance [20] and promote intake
of foods rich in fiber naturally or artificially for filling up on fiber for health [10,21].

3. Average Levels and Recommended Amounts of Dietary Fiber Intake

Table 1 summarizes the updated average levels and recommended amounts of dietary
fiber intake worldwide. Generally, the global average levels range from 15 to 26 g/day,
lower than the recommended 20 to 35 g/day in most countries. As shown in Table 1, the
highest levels of dietary fiber intake were observed in Northern Europe (e.g., Denmark [22],
Norway [23]) Central Europe (e.g., Germany [24]), and Australia [25]), probably due to
widespread consumption of whole grain rye, oat, and wheat in these countries [26].

Table 1. Global intake and recommendations of dietary fiber.

Region
Intake Level (g/day)

Reference
Recommendation (g/day)

Reference
Men Women Overall Men Women Overall

Asia

China 19.4 17.6 – China Health and Nutrition
Survey (2011) [27] – – 25–30 Chinese Dietary Reference Intake

(2017) [28]

Japan 19.9 18.0 18.8 National Health and Nutrition
Survey in Japan (2019) [29] 21 18 10 g/kcal Dietary Reference Intake for

Japanese (2020 Edition) [30]
North America

USA 18.1 15.2 16.6 What We Eat in America
(2017–2020) [31] 38 25 14 g/kcal Dietary Guidelines for

Americans (2020–2025) [32]

Canada 18.4 16.2 – Canadian Community Health
Survey (2015) [33] 38 25 – Canada’s Dietary Guidelines

(2019) [34]
Oceania

Australia 24.8 21.1 – Australian Health Survey
(2011–2012) [25] 38 28 – Australian Dietary Guidelines

(2013) [35]
Europe

European Union – – 25
Scientific Opinion on Dietary
Reference Values (EFSA-2010)

[13]

UK – – 19.7
UK National Diet and

Nutrition Survey
(2016–2019) [36]

– – 30 Eatwell Guide (2016) [37]

France 21.6 17.7 19.6
National Individual Food

Consumption 3
(2014–2015) [38]

– – 30 Guidelines: development of
nutritional references (2016) [39]

Denmark – – 22 Dietary habits in Denmark
(2011–2013) [22] 30 25 30 g/10MJ Nordic Nutrition

Recommendations (2012) [40]Norway 26 22 24 Norkost 3 (2010–2011) [23]

Germany 24.8 23.1 – National Consumption
Research II (2005–2007) [24] – – 30 or 14.6 g/kcal The D-A-CH reference for

nutrient intake (2021) [41]

Russia 15 12 – Russia Longitudinal
Monitoring Survey (2018) [42] – – 30 Center for hygienic education of

the population [43]

Discrepancies in body size and tolerance to high-fiber diets across populations may
also account for differences in average levels of intake and recommendations. For example,
in Japan, the average dietary fiber intake is 18.0 g/day in women and 19.9 g/day in men,
very close to the domestic recommended intake (18 g/day for women and 21 g/day for
men) [29], but much lower than the average levels in Western populations. This may
be explained by the relatively smaller bodies of the Japanese [44,45] and their habits of
eating rice (refined grain) and seafood [46]. Many countries have adopted energy-adjusted
levels of dietary fiber as the recommended amounts. As presented in Table 1, the daily
recommended intake of dietary fiber is 14 g/kcal in the US [32], 14.6 g/kcal in Germany [41],
and 10 g/kcal in Japan [30].

4. Fermentation of Dietary Fiber by the Gut Microbiota

Dietary fibers escape digestion in the upper gastrointestinal tract and are fermented
by bacteria in the colon. The degree of polymerization, particle size, solubility, viscosity,
and other dietary fiber features may influence fiber fermentability and the bacteria speci-
ficity [47,48]. Fibers with low-degree polymerization can be degraded into small molecules
in the gut with fast fermentation [47]; small particles are more likely to be exposed to mi-



Microorganisms 2022, 10, 2507 4 of 18

crobial enzymes; while soluble, viscous fibers, with a high capacity for water retention and
stool formation and thus limited exposure to microbes, are resistant to fermentation [47].
The various interactions between chains of monomers and enzymes influence the growth
of bacteria, leading to the fiber-specific gut microbiota [48]. Generally, the saccharolytic
degradation of fiber in the gut depends on the specific microbes rich in carbohydrate-
active enzymes (CAZymes), mainly glycoside hydrolases (GHs) and polysaccharide lyases
(PLs) [49], the two enzymes not existing in humans. As profiled in Figure 2, dietary fibers
can be shared by some strains synergistically through cross-feeding, i.e., the breakdown
products of polysaccharides partially hydrolyzed by the primary degraders can be used
as substrates for the secondary degraders [50]. For example, inulin-type fructans (ITF)
were found to be extracellularly hydrolyzed by Bifidobacteria in the human colon, liberating
monosaccharides and/or oligosaccharides accessible to the butyrate producers, the sec-
ondary degraders [51–53]. During the utilization and metabolism of polysaccharides by
bacteria, multiple metabolites were generated, including gases (e.g., H2, CH4, CO2), lactate,
succinate, and short-chain fatty acids (SCFAs) [54,55].
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Figure 2. Fermentation of dietary fiber by gut microbiota.

The most abundant SCFAs are acetate, propionate, and butyrate. SCFAs can be used by
gut mucosal cells as energy sources, with butyrate the preferred energy substrate for colono-
cytes [56,57]. The absorbed SCFAs, on the other hand, are transferred to the circulation
via the hepatic portal vein to act as signaling molecules [58]. By binding to free fatty acid
receptors (FFARs) or G protein-coupled receptors (GPCRs: GPR41/FFAR3, GPR43/FFAR2,
GPR109A) of host cells [59], SCFAs can activate the complicated downstream molecular
pathways in liver, brain, lung, pancreas, bones, adipose tissue, and other organs [55,60–64].
SCFAs play crucial regulatory roles in host metabolic homeostasis, immunological pro-
cesses, maintenance of intestinal barriers, neurobiology, skeletal functions, and suppression
of inflammation and carcinogenesis [55], and have been proved to be beneficial for human
health. SCFAs were believed to be the crucial molecules that alleviated diabetes via greater
postprandial glucagon-like peptide 1 (GLP-1) and fasting peptide YY (PYY) [65].
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5. Impacts of Dietary Fiber on Gut Microbial Community Structure and Diversity

The fermentation of fiber in the colon is driven by the gut microbiota, and in return,
the nutritional substrate of intestinal flora can modulate the structure and diversity of the
microbiome. Results are consistent regarding the relationship between dietary fiber intake
and the beta diversity of gut microbiota. People on fiber-rich diets (rural/unindustrialized
diet, Mediterranean diet, or vegetarian diet) were consistently found to harbor a dramati-
cally different microbial community structure from their counterparts living in developed
areas [66–68]. Recently, a Chinese adult cohort study revealed a significant correlation
between the intake of whole grains and vegetables in the habitual diet and the changes
in beta diversity of the gut microbiome [69]. Similar shifts in bacterial composition were
consistently observed in most intervention trials administering high-fiber diets [70–76].

As a diverse ecosystem with microbes functionally compensating for each other is
more robust against environmental influences [77], higher microbial richness and evenness
(i.e., alpha diversity) may represent a healthy community [78]. However, results are incon-
sistent on the association between dietary fiber and alpha diversity of gut microbiota. In a
comparative study, adults from unindustrialized regions in Papua New Guinea accustomed
to a plant-based diet were found to have a higher alpha diversity compared with American
adults on Western diets [79]. While agrarian diets high in fruit/legume fiber were bene-
ficial for microbial richness [80], the rapidly decreased dietary fiber in Western diets was
believed to cause the loss of intestinal biodiversity [81]. However, among two independent
populations from Washington DC and New York, Lin et al. [82] did not observe significant
associations of total fiber intake with the Shannon index or evenness index. Long-term
diet quality (with more fruit and vegetables) in Chinese adults was positively associated
with microbiome alpha diversity [83], but frequent habitual intake of whole grains and
vegetables was not found to increase the Shannon index in another Chinese population [69].

Results derived from trials were less consistent. In a trial in healthy Swedish vol-
unteers, no significant intervention effect was observed for a 3-month vegetarian diet on
the Shannon index compared with a normally omnivorous diet [84]. In randomized trials
administering interventions with specific dietary fibers, the alpha diversity was observed
to decrease in some target healthy populations [70,73,74,85–90], but was found to remain
stable in some others [75,91–93]. In our previous study, we also observed reduced alpha
diversity among diabetes patients taking a higher level of dietary fiber [94]. It seems
that high-fiber diets may lead to the enrichment of specific fiber-digested strains: most
are beneficial SCFA producers, which may inhibit the residence or growth of detrimental
species and thereby demonstrate a temporary loss of alpha diversity [77].

6. Influences of Dietary Fiber on Different Gut Microbes

Dietary fiber intake improved the richness of SCFA producers, but demonstrated
type-specific roles in microbial proliferation [72,74,85,88,91,95]. Interventions using in-
ulin [72,87,96,97], guar gum [98], resistant starch [88,91,99], GOS [75,76,95,100], FOS [76],
or arabinoxylan oligosaccharide (a kind of FOS) [85,101,102] consistently resulted in an
increased abundance of Bifidobacterium, while intake of a specific fiber type led to the
promotion of Faecalibacterium, Ruminococcus (particularly for RS), Lactobacillus (particularly
for fibers containing galactose or fructose units), Akkermania, or Roseburia (Figure 1). Most
microbial changes could be detected after 1- to 2-week interventions, but were found to
remain stable throughout the whole period of interventions [75,96,98,101].

Theoretically, the increase in SCFA producers by fiber fermentation in the human colon
should be followed by an increase in fecal SCFA concentrations [88,91,100,102]. However,
numerous studies demonstrated the opposite result [70,72,75,76,85,86,88–90,96,97,103]. The
increased fecal bulk due to high-fiber intake may dilute the concentration of SCFAs [104].

6.1. Bifidobacterium

The bifidogenic effect of dietary fiber determines its ability to increase various species
belonging to the Bifidobacterium genus. Healey et al. [72] found that a supplement of inulin
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increased the relative abundance of Bifidobacterium from 6.69% to 15.07%. Kiewiet et al. [96]
found that inulin mainly increased the abundance of Bifidobacterium adolescentis and raised
Bifidobacterium angulatum and Bifidobacterium ruminantium to a detectable level in the treat-
ment group. The consumption of inulin-rich food was also found to increase the Bifi-
dobacterium longum level by threefold [87]. In addition, participants consuming 2-week
partially hydrolyzed guar gum had an increased Bifidobacterium abundance to 12% from
8% at baseline, while those taking a placebo did not [98]. RS from potato led to a 6.5-fold
elevated level of Bifidobacterium faecale/adolescentis/stercoris sequences [91].

GOS was reported to remarkably increase the relative abundance of Bifidobacterium
from 7.0% to 34.8% [75]. Another study also observed a GOS-induced elevated bifidobac-
teria count from 7.2 to 7.8 (log 10 CFU/g). Adults treated with GOS and FOS had more
abundant Bifidobacterium, with linear discriminant analysis effect sizes (LDA effect size)
of around 4.0 compared to the baseline level [76]. Müller et al. [85] found that AXOS
significantly increased two OTUs of Bifidobacterium, the leading drivers of the microbial
deviations between pre- and postintervention.

6.2. Faecalibacterium

Many long-chain types of fiber demonstrated effects to enhance the abundance of
Faecalibacterium. Inulin was found to increase the relative abundance of Faecalibacterium
from 0.41% to 0.61% [72]. Partially hydrolyzed guar gum persistently caused an increment
of Faecalibacterium during intervention and washout periods [74]. The consumption of
whole-grain wheat rich in RS and total fiber induced more than a doubling of Faecalibac-
terium spp. [88]. Similar results were found by Hughes et al. [90]: an RS2-enriched wheat
intervention was related to a significant elevation in Faecalibacterium compared to baseline
and the control group.

6.3. Ruminococcus

The specific effect of RS2 on the proliferation of Ruminococcus was consistently demon-
strated in previous studies. Baxter et al. [91] found that RS2 derived from native maize led
to a 2.5-fold increase in the relative abundance of Ruminococcus bromii, a specific taxon that
performed as a primary degrader of RS. Martínez et al. [99] noticed that subjects consuming
maize RS2 had a significantly higher proportion of Ruminococcus bromii (average 4.1%) than
at baseline (average 1.0%) and those taking placebo (average 2.6%) or chemically modified
RS4 (average 1.2%). RS2-enriched wheat/whole-grain wheat was found to induce increases
in the Ruminococcus genus and Ruminococcus bromii [88,90].

A similar Ruminococcus-induced effect was observed for other types of fiber. For
examples, arabinogalactan supplementation resulted in a nearly eightfold increase in an
uncultured Ruminococcus spp. [86]. Both Yasukawa et al. [98] and Reider et al. [74] observed
an association of partially hydrolyzed guar gum with a bloom in Ruminococcus. Regarding
inulin, a negative correlation was observed between the consumption and the richness
of Ruminococcus bromii [91]. A randomized trial of 34 healthy participants demonstrated
a decreased relative abundance of Ruminococcus (from 2.11% to 1.15%) by intervention
with an ITF prebiotic [72]. Administration of yeast mannan, another type of gum, also
contributed to a lower abundance of Ruminococcus compared with the control group [103].

6.4. Lactobacillus

Fibers containing fructose or galactose units such as inulin, fructo-oligosaccharides and
galacto-oligosaccharides could particularly lead to a higher fecal abundance of Lactobacillus.
An intervention using very-long-chain inulin, a special inulin with an average number
of fructose units between 50 and 103, was found to increase lactobacilli levels by 2.42-
fold compared to baseline and by 5.88-fold relative to the placebo group [97]. Another
inulin-induced increment of Lactobacillus was observed in 34 healthy subjects (0.26% to
1.26%), and the effect was more pronounced (from 0.6% to 3.0%) in subjects with initial low
habitual dietary fiber intake [72]. Deshipu stachyose granules, a mixture of GOS derived
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from the dietary roots of Lycopus lucidus turcz, were found to increase the mean number
of lactobacilli from 6.8 to 7.5 (log 10 CFU/g) after 14-day treatment [95]. A lactobacilli-
promoted effect was also observed for gum arabic [105] and arabinoxylan oligosaccharides
(AXOS) [85].

6.5. Prevotella

Observational studies consistently identified a specific higher Prevotella in unindustri-
alized or rural populations consuming high-fiber diets, just like Hadza hunter-gatherers in
Tanzania [106] and adults from Papua New Guinea [79], than those from industrialized
regions or urban areas [66,79,106,107]. Therefore, Wu et al. [108] proposed the concept
of gut microbial enterotypes, based on which gut microbiomes can be clustered as Pre-
votella enterotype (corresponding to dietary carbohydrates) and Bacteroides enterotype
(corresponding to dietary protein and animal fat).

However, many intervention trials did not find that Prevotella could be induced by
dietary fiber [108,109]. The discrepancy might be due to the ability of Prevotella to ferment
complicated carbohydrates, not only indigestible fiber but also digestible carbohydrates,
digested oligosaccharides, and monosaccharides [108], all of which were rich in the typical
starchy plant food in unindustrialized areas [110]. It is the long-term intake of various
carbohydrates in habitual diets but not the short-term single-fiber intervention that could
construct a Prevotella-dominated microbial community [109,111]. The microbial differences
could also be explained by the discrepancies in geography, ethnicity, and lifestyles across
populations [112].

In summary, low-fiber diets have been suggested to influence the richness of the gut
microbiome in healthy individuals, disrupt the symbiotic relationship between the gut
microbiota and the intestine, and may increase the risk of diseases. High-fiber diets, on the
other hand, have been used to modify the microbiota to achieve improved health outcomes.

7. Cutoff Threshold of Dietary Fiber Intake on Gut Microbiota

A dose-dependent bacterial proliferation with levels of fiber was demonstrated in vitro
with significant growth, but only with detected metabolic promotion at a low level [113].
The relationship was also observed in population studies. Among 80 adults with an
average of 14.1 ± 5.11 g/day intake of dietary fiber, Dominianni et al. [114] observed
different compositions of gut microbiota in subjects with more than 11.7 g/day dietary
fiber intake and found linear negative associations of fiber intake with Coprococcus and
Porphyromonadaceae. Gaundal et al. [115] observed an inverse linear association of Alistipes
with dietary fiber among subjects consuming more than 30 g/day dietary fiber and a
positive correlation of Bacteroides stercoris with a total intake of healthy food components,
such as fiber and grain products. In our previous study on diabetes patients, a mediating
effect was observed for Desulfovibrio in the habitual dietary fiber–A1c associations among
patients taking more than 7.2 g/day dietary fiber, but not in those taking less [94].

In intervention trials, administering multiple dosages of dietary fiber facilitate the
evaluation of the type-specific dose-dependent microbial effects of dietary fiber and enabled
the identification of cutoff thresholds. Summarized in Table 2 are the trials implementing
multiple-dosage inulin, gum arabic, RS4, FOS, AXOS, or resistant maltodextrin. These
trials demonstrated various altered taxa in gut microbiota induced by dietary fiber, but
consistently observed an increased abundance of bifidobacteria, albeit with varied cutoff
thresholds of fiber intake.
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Table 2. Cutoff thresholds of dietary fiber on gut microbiota in intervention trials.

Author
(Year)

Region

Participants
N | F:M a

Mean Age
(Years)

RCT
Design

Dietary
Fiber

Type of
Fiber

Administrated
Dosage
(g/day)

Duration of
Intervention

Changes in Gut
Microbiota b

Cutoff
Threshold

(g/day)

Kolida, S.
[116]
(2007)

UK

30 | 15:15
26.5 ± 3.1

double-
blind

crossover
Inulin NSP

0 g
5 g
8 g

2-week
intervention

1-week
washout

↑: Bifidobacteria
* Depending on initial

abundance
NO

Reimer, R.
A. [117]
(2020)

Canada

50 | 28:22
around 31

double-
blind

crossover

Inulin-type
fructans

(ITF)
NSP

0 g or 7 g
(n = 25)

0 g or 3 g
(n = 25)

4-week
intervention

4-week
washout

↔: α-diversity (Shannon
index)

↔: β-diversity (Bray–Curtis
distance)

↑: Bifidobacterium,
Cellulomonas, Nesterenkonia,

Brevibacterium
↓: Lachnospira, Oscillospira

↔: Fecal SCFAs

7 g for
Bifidobacterium,
Cellulomonas,
Nesterenkonia,
Brevibacterium,

Lachnospira,
Oscillospira

Calame, W.
[105]
(2008)

Netherlands

48 | –
30.9 ± 12.8

double-
blind Gum arabic NSP

0 g (placebo-
control, n = 8)

5 g (n = 8)
10 g (n = 8)
20 g (n = 8)
40 g (n = 8)
10 g inulin
(positive

control, n = 8)

4-week
intervention

↑: Bifidobacteria, lactobacilli,
bacteroides

10 g for
bifidobacteria,

lactobacilli,
bacteroides

Deehan, E.
C. [118]
(2020)

Canada

40 | 20:20
28.4 ± 8.1

double-
blind RS4 RS

Placebo
(n = 10)

Maize RS4
(n = 10)

Potato RS4
(n = 10)

Tapioca RS4
(n = 10)

All 10 g for
1 week
→20 g for

1 week
→35 g for

1 week
→50 g for

1 week

4-week
intervention

In maize group:
↓: α-diversity (Pielou and

Shannon index)
l: β-diversity (Bray-Curtis)

↑: Bifidobacterium
↑: Eubacterium rectale,

Oscillibacter,
Anaeromassilibacillus,

Ruminococcus
↓: Agathobaculum
butyriciproducens,

Adlercreutzia equolifaciens
↑: Fecal butyrate

In tapioca group:
↓: α-diversity (Pielou and

Shannon index)
l: β-diversity (Bray-Curtis)

↑: Bifidobacterium
↑: Parabacteroides distasonis,

Faecalibacterium,
Eisenbergiella

↓: Eubacterium hallii and
Clostridium viride
↑: Fecal propionate

*No effect of potato RS4
detected

In maize group:
20 g for

α-diversity,
β-diversity,
Eubacterium

rectale,
Oscillibacter,
Anaeromas-
silibacillus,

Ruminococcus;
35 g for fecal

butyrate;

In tapioca group:
35 g for

α-diversity,
β-diversity, fecal

propionate

Bouhnik, Y.
[119]
(1999)
France

40 | 22:18
29.6

Short-chain
fructo-

oligosaccharides
(SC-FOS)

ROS

0 g (n = 8)
2.5 g (n = 8)
5 g (n = 8)

10 g (n = 8)
20 g (n = 8)

7-day
intervention ↑: Bifidobacteria 5 g for

bifidobacteria

Bouhnik, Y.
[120]
(2006)
France

40 | 22:18
29 ± 1.3

Short-chain
fructo-

oligosaccharides
(SC-FOS)

ROS

0 g (n = 8)
2.5 g (n = 8)
5 g (n = 8)

7.5 g (n = 8)
10 g (n = 8)

7-day
intervention

↑: Bifidobacteria (linear
correlation)

↑: Total anaerobes

10 g for total
anaerobes

Tandon, D.
[121]
(2019)
India

69 | 35:34
around 30

double-
blind

Fructo-
oligosaccharides

(FOS)
ROS

0 g (n = 17)
2.5 g (n = 16)
5 g (n = 18)

10 g (n = 18)

90-day
intervention

↑: α-diversity (Chao)
↑: Bifidobacterium,

Lactobacillus, Faecalibacterium,
Ruminococcus, Sutterella,

Oscillospira
*Reversal impact of

prebiotics
postdiscontinuation

*Inconsistent results of
analyses performed on data

at two distinct levels of
taxonomy (OTUs or genus)

10 g for
α-diversity,

Bifidobacterium,
Lactobacillus,

Faecalibacterium,
Ruminococcus,

Sutterella,
Oscillospira
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Table 2. Cont.

Author
(Year)

Region

Participants
N | F:M a

Mean Age
(Years)

RCT
Design

Dietary
Fiber

Type of
Fiber

Administrated
Dosage
(g/day)

Duration of
Intervention

Changes in Gut
Microbiota b

Cutoff
Threshold

(g/day)

Maki, K. C.
[122]
(2012)

The US

55 | –
53.1 ± 12.6

double-
blind

crossover

Arabinoxylan-
oligosaccharide

(AXOS)
ROS

0 g
2.2 g
4.8 g

3-week
intervention

2-week
washout

↑: Bifidobacterium spp.
4.8 g for

Bifidobacterium
spp.

François, I.
E. [123]
(2012)

Belgium

57 | 27:30
42 ± 17

double-
blind

crossover

Arabinoxylan
oligosaccha-

rides
(AXOS)

ROS
0 g

2.4 g
8 g

3-week
intervention

2-week
washout

↑: Bifidobacteria
↑: Fecal SCFAs (acetic acid,

propionic acid)

8 g for
bifidobacteria,

fecal SCFAs

Fastinger, N.
D. [104]
(2008)

The US

38 | 19:19
around 27

double-
blind

Resistant
maltodex-

trin
ROS

0 g (n = 12)
7.5 g (n = 13)
15 g (n = 13)

3-week
intervention

↑: Bifidobacterium
(nonsignificant)

↑: Proportion of propionic
acid (linear)

NO

Lefranc-
Millot, C.

[124]
(2012)
France

48 | 24:24
28

double-
blind

Resistant
dextrin ROS

0 g(n = 12)
10 g (n = 13)
15 g (n = 12)
20 g (n = 11)

2-week
intervention

↔: Bifidobacterium spp.,
Lactobacillus spp.
↑: Bacteroides

↓: Clostridium perfringens
↓: Colonic pH

10 g for
Bacteroides;

15 g for
Clostridium
perfringens;

20 g for colonic
pH

Burns, A. M.
[125]
(2018)

The US

49 | 28:21
26.3 ± 6.8

double-
blind

cross-over

Resistant
maltodex-

trin
ROS

0 g (n = 16)
15 g (n = 17)
25 g (n = 16)

3-week
intervention

2-week
washout

↑: Bifidobacteria 25 g for
bifidobacteria

Mai, V. [126]
(2022)

The US

49 | 28:21
26.3 ± 6.8

double-
blind

cross-over

Resistant
maltodex-

trin
ROS

0 g (n = 16)
15 g (n = 17)
25 g (n = 16)

3-week
intervention

2-week
washout

↑: Fusicatenibacter
saccharivorans

↑: Akkermansia muciniphila,
Faecalibacterium prausnitzii
(in individuals with low

baseline counts)

25 g for
Akkermansia
muciniphila,

Faecalibacterium
prausnitzii

a: Ratio of female subjects to male subjects; – data not available. b: ↑ increased; ↓ decreased; ↔ unchanged;
l changed β-diversity.

In the report of Kolida et al. [116], 25 of 30 individuals taking 8 g/day inulin responded
positively and only 20 of 30 in the group taking 5 g/day. In Reimer et al.’s study [117],
subjects on 7 g/day ITF had higher levels of Bifidobacterium, Cellulomonas, Nesterenkonia,
and Brevibacterium and lower Lachnospira and Oscillospira, with a cutoff threshold of 3 g/day
for Bifidobacterium only. Calame et al. [105] used multiple dosages of gum arabic (0, 5, 10,
20, 40 g/day for 4 weeks) and found significantly increased bifidobacteria, lactobacilli and
bacteroides in the volunteer group consuming 10 g/d gum arabic only, but not those on
a higher dosage. Deehan et al. [118] observed remarkable microbial modulations by RS4
derived from maize and tapioca, particularly for the dosages of 20 g/day for maize and
35 g/day for tapioca.

The dose-dependent effect of fructo-oligosaccharides (FOS), a prebiotic supplement
with bifidogenic capabilities, has been well evaluated. Bouhnik et al. [119] administrated
0 to 20 g/day short-chain FOS (SC-FOS) in healthy volunteers, and observed a dose-
dependent increase in fecal bifidobacteria with a cutoff value of 5 g/day. Considering
the tolerance of humans, the optimal dose of SC-FOS is 10 g/d for significantly elevated
fecal bifidobacteria in healthy volunteers consuming their usual diet. In a subsequent trial,
Bouhnik et al. [120] observed a linear correlation of bifidobacteria, with SC-FOS ranging
from 0 to 10 g/day. Tandon et al. [121] identified multiple beneficial microbes promoted by
FOS, including Bifidobacterium, Lactobacillus (predominated by Lactobacillus ruminis, which
was newly classified as Ligilactobacillus ruminis [127]), Faecalibacterium, and Ruminococcus,
with relatively higher increases at 10 g/day than the other three levels (0, 2.5, 5 g/day). The
microbial effects of AXOS were evaluated in healthy men and women by Maki et al. [122]
and François et al. [123], respectively. Bifidobacterium spp. and postprandial plasma ferulic
acid were found to be significantly higher in subjects consuming 4.8 g/d AXOS than those
on 2.2 g/d or 0 g/d (control) [122]. In comparison, bifidobacteria and SCFAs (acetic acid
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and propionic acid) increased after consumption of 8 g/day AXOS (not significant at
2.4 g/day) [123].

The microbiological properties of resistant maltodextrin were incompletely under-
stood. No significant boost in Bifidobacterium but a linearly increased proportion of propi-
onic acid in stool samples were observed in a trial administering 0, 7.5, 15 g/day resistant
maltodextrin [104]. Lefranc-Millot et al. [124] did not find altered abundance of Bifidobac-
terium spp. or Lactobacillus spp., but apparent dose-dependent effects of resistant dextrin on
Bacteroides (increased at 10 g/d only), Clostridium perfringens (decreased at 15 g/d only), and
colonic pH (changed at 20 g/d only). Based on the same database, two studies obtained dif-
ferent results. In one study, only 25 g/day resistant maltodextrin consumption resulted in a
positive change in bifidobacteria [125], while another analysis observed a slightly increased
abundance of Akkermansia muciniphila and Faecalibacterium prausnitzii among subjects taking
25 g/d resistant maltodextrin, but only among those with low baseline abundance of the
bacteria [126]. It seems that the initial abundance of microbes resident in the human colon
may determine the effects of fiber interventions [72,101,116]. Cloetens et al. [101] found
that—regardless of the dosage used and the duration of intervention—AXOS supplementa-
tion succeeded in increasing Bifidobacterium in subjects with a low initial abundance, but
failed in those without any detected fecal Bifidobacterium at baseline, further supporting the
influences of the initial abundance of microbes.

8. Modulation of Dietary Fiber on Gut Microbiota in Diabetes Patients

Alterations in the human gut microbiota can be implicated in a variety of complex and
chronic diseases, such as diabetes, obesity, cancers, and cardiovascular disease [5–8]. Type
2 diabetes is a metabolic disease that may affect and can be affected by gut microbiota [128],
which represents a good example to show how dietary fiber induces modulation of the gut
microbiota and improves clinical outcomes.

Table 3 presents selected trials administering fiber interventions among diabetes
patients. The first trial focused on the effects of GOS by administering an intervention
with low-dose GOS (5.5 g/day for 12 weeks) among 29 men with well-controlled type
2 diabetes [129]. As a result, a slightly elevated abundance of Bifidobacterium was ob-
served, but without significant overall changes in gut microbiota or any improvement
in glucose metabolisms. In 52 Japanese patients with type 2 diabetes, Gonai et al. [130]
observed markedly restored abundance (taxa at the family level only) of Bifidobacteriaceae
by GOS, but found reduced OTUs, Lachnospiraceae, Ruminococcaceae, Peptostreptococcaceae,
Erysipelotrichaceae, and Porphyromonadaceae. Although no significant improvements in
metabolic outcomes were observed in this study, the negative correlations of HbA1c lev-
els with abundance of Bifidobacteriaceae and Peptostreptococcaceae, fasting plasma glucose
(FPG) with Peptostreptococcaceae, and triglyceride (TG) with Ruminococcaceae, and the pos-
itive correlations of aspartate transaminase (AST) and alanine transaminase (ALT) with
Lachnospiraceae indicate the roles of gut microbiota in metabolic homeostasis among dia-
betes patients.

Table 3. Modulation of dietary fiber on gut microbiota and metabolic outcomes in patients with type
2 diabetes.

Author
Year

Region
Subjects

F:M a

Mean Age
(years)

RCT
Design

Fiber Type
or Sources

Amount of
Fiber

(g/day)

Duration
of

Intervention

Change in Gut
Microbiota b

Metabolic
Effects b

Microbiome
and metabolic

Indicators

Pedersen,
C. [129]
(2016)

UK

29 well-
controlled

men

All men
around 57

Double-
blind

galacto-
oligosaccharide

(GOS)

5.5 (n = 14)
placebo
(n = 15)

12 weeks

↑: α-diversity
(Shannon and

Simpson indices)
↑: Bifidobacterium

(close to
significance)

No significant
effect on
glucose,

insulin, or
C-peptide

fasting
concentrations

Bifidobacterium
positively

correlated with
total AUC of
glucose and

IL-6
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Table 3. Cont.

Author
Year

Region
Subjects

F:M a

Mean Age
(years)

RCT
Design

Fiber Type
or Sources

Amount of
Fiber

(g/day)

Duration
of

Intervention

Change in Gut
Microbiota b

Metabolic
Effects b

Microbiome
and metabolic

Indicators

Gonai, M.
[130]
(2017)
Japan

52
patients

–
50 ± 10

Double-
blind

galacto-
oligosaccharide

(GOS)

10 (n = 27)
placebo
(n = 25)

4 weeks

↓: α-diversity
(Observed OTUs)

↑:
Bifidobacteriaceae
↓: Lachnospiraceae,
Ruminococcaceae,
Peptostreptococ-

caceae,
Erysipelotrichaceae,

Porphyromon-
adaceae

No clinical
parameters

changed
significantly

Negative
correlations of
A1c with Bifi-
dobacteriaceae

and Peptostrep-
tococcaceae;
FPG with

Peptostreptococ-
caceae; TG with
Uminococcaceae;

positive
correlations of
AST and ALT

with
Lachnospiraceae

Zhao, L.
[65]

(2018)
China

43
patients

–
35–70

Open-
label fiber in diet

high-fiber
diet (n = 27)
usual care

(n = 16)

84 days

l: β-diversity
(Bray-Curtis)
↑: Bifidobacterium

spp. and other
SCFA producers
↑: CAZyme-

encoding genes
for starch and

inulin
degradation
↑: fhs for acetate

and but for
butyrate

formation
pathway

↑: acetate and
butyrate

↓: A1c
↑: Postprandial

insulin

Higher acetate
and butyrate

coincided with
a significantly

greater AUC of
postprandial
glucagon-like
peptide-1 and
a higher level

of fasting
peptide YY,

which partly
improve A1c

level

Birkeland,
E. [131]
(2020)

Norway

25
patients

10:15
63.1

Double-
blinded,

crossover

inulin-type
fructans

16
placebo

6-week
intervention

4-week
washout

↔: α-diversity
(observed OTUs)
l: β-diversity
↑: Bifidobacterium

adolescentis,
Bacteroides ovatus,
Faecalibacterium

prausnitzii
↓: Ruminococcus
↑: SCFAs (acetic

acid and
propionic acid)

Bifidobacterium
adolescentis
negatively

related to fecal
butyric acid

Mitchell,
C. M.
[132]
(2021)

US

22 adults
at risk for

T2D

14:8
54.4 ± 8.3

Double-
blind Inulin

10 (n = 13)
placebo
(n = 9)

6 weeks ↑: Bifidobacteria
↓: Fasting

insulin,
HOMA-IR

No significant
correlation

between
changes in

bifidobacteria
and any
outcome
variables.

Reimer, R.
A. [133]
(2021)

Canada

290 adult
patients

with over-
weight/
obesity

198:92
around 55

Double-
blind

soluble
viscous fiber

15–20
(n = 147)
isocaloric
placebo
(n = 143)

52 weeks

↑: Collinsella,
Parabacteroides,

Roseburia
↓:

Faecalibacterium,
Lactobacillus,
Oscillibacter

↓: A1c, BMI,
WC, LDL

Mateo-
Gallego, R.

[134]
(2021)
Spain

14
patients

with over-
weight or

obesity

–
56.1 ± 6.27

Double-
blinded,

crossover

isomaltulose
+ resistant

dextrin

16.5 + 5.28
placebo

10-week
interven-

tion
6–8 weeks’
washout

↔: α-diversity
(Shannon, Pielou,

Observed
features)

↔: β-diversity
(weighted
Unifrac)

↑: Parabacteroides
↓: Bacteroides,
Odoribacter,

Butyricimonas,
Oscillospira

↓: BMI, Blood
glucose,

HOMA-IR

a: Ratio of female subjects to male subjects; – data not available. b: ↑ increased; ↓ decreased; ↔ unchanged;
l changed β-diversity.
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In a milestone intervention trial conducted in Chinese diabetes patients, Zhao et al. [65]
found that a diet with a high mixture of fibers selectively promoted SCFA-producing strains,
particularly fecal Bifidobacterium spp., leading to enriched CAZyme-encoding genes for
starch and inulin degradation and activated pathways for acetate and butyrate formation,
and thus achieved a better improvement in HbA1c levels and postprandial insulin concentra-
tions. More trials were subsequently designed to evaluate the intervention effects of specific
types of dietary fiber. In a pilot study of 22 high-risk adults for type 2 diabetes, Mitchell
et al. [132] observed significantly increased bifidobacteria and reduced fasting insulin level
and homeostatic model of assessment for insulin resistance (HOMA-IR) after a 6-week
inulin (10 g/day) intervention, but did not find a significant correlation of changes in bifi-
dobacteria with any metabolic outcomes. In another pilot study, Mateo-Gallego et al. [134]
added isomaltulose (16.5 g/day) and resistant maltodextrin (5.28 g/day) into alcohol-free
beer for 14 diabetes subjects for 10 weeks, and observed higher Parabacteroides and lower
Bacteroides, Odoribacter, Butyricimonas and Oscillospira accompanying decreased body mass
index, blood glucose level and HOMA-IR.

In recent years, well-designed RCTs have supported beneficial alternations in gut
microbiota induced by specific types of fiber in diabetes patients. A one-year intervention
using a soluble viscous fiber product containing 15–20 g/day dietary fiber achieved signifi-
cantly increased Collinsella, Parabacteroides and Roseburia, but decreased Faecalibacterium,
Lactobacillus, and Oscillibacte, and thus improved metabolic outcomes of diabetes patients,
including decreased levels of body mass index, waist circumference, HbA1c and LDL [133].
Birkeland et al. [131] evaluated the prebiotic effect of ITF on the fecal microbiota and
produced SCFAs in 25 patients with type 2 diabetes. A prominent bifidogenic effect was ob-
served, with the highest positive effect on OTUs of Bifidobacterium adolescentis, followed by
OTUs of Bacteroides. Analogous effects were also observed among prediabetes individuals
administered beta glucan, inulin, RS and GOS [135,136].

Evidently, altering the gut microbiota of diabetes patients has great potential to im-
prove glycemic control status, and can be used as an effective intervention for patients [137].
However, alpha diversity of gut microbiota was observed to remain unchanged or decrease
in patients placed on a high-fiber diet. Bifidobacterium was the only beneficial fiber-enriched
microbe consistently induced by fiber interventions. It is possible that—due to prevalent
diabetes or related conditions—the gut microbiome may have been altered, leading to
serious depletion of beneficial bacteria and microbial dysbiosis that could not be easily
promoted by dietary interventions [128,138,139]. As the key roles of SCFAs in metabolic
enhancement have been highlighted, more approaches should be developed and validated
to improve the abundance of microbial SCFAs producers.

9. Conclusions and Future Prospects

Evidence is accumulating on the beneficial effects of dietary fiber intake on human
health. The mechanisms involved have been better understood in recent years, indicating
the critical role of the gut microbiota in this process via the production of SCFAs and other
functional metabolites. The decreasing dietary fiber intake over the centuries has fostered
a gut microbiota detrimental to human health, leading to a global epidemic of diabetes,
cancers, and other noncommunicable diseases. The responses of the gut microbiota to
increased availability of dietary fiber may differ by type, level, and duration of intake,
demonstrating dietary fiber type-specific cutoff thresholds. Understanding the intricate
interplay between dietary fiber and the gut microbiota may help to develop effective
intervention strategies to prevent and control noncommunicable diseases. Further studies
are warranted to further elucidate this complex relationship in human health and identify
targets for effective interventions.
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