
Citation: Bailey, C.; Johnson, P.;

Moran, J.; Rosa, I.; Brookes, J.; Hall, S.;

Crook, B. Simulating the

Environmental Spread of

SARS-CoV-2 via Cough and the

Effect of Personal Mitigations.

Microorganisms 2022, 10, 2241.

https://doi.org/10.3390/

microorganisms10112241

Academic Editor: David J Allen

Received: 20 October 2022

Accepted: 10 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Simulating the Environmental Spread of SARS-CoV-2 via
Cough and the Effect of Personal Mitigations
Claire Bailey * , Paul Johnson, Josh Moran, Iwona Rosa, Jodi Brookes, Samantha Hall and Brian Crook

Health and Safety Executive Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
* Correspondence: claire.bailey@hse.gov.uk

Abstract: Background: A cough is known to transmit an aerosol cloud up to 2 m. During the COVID-
19 pandemic of 2020 the United Kingdom’s National Health Service (NHS), other UK government
agencies and the World Health Organization (WHO) advised people to cough into their elbows. It
was thought that this would reduce viral spread and protect the public. However, there is limited
peer reviewed evidence to support this. Objectives: To determine if cough related interventions
reduce environmental contamination, protecting members of the public from infection. Methods:
Scientists and engineers at the Health and Safety Executive (HSE) laboratory used a human cough
simulator that provided a standardised cough challenge using a solution of simulated saliva and
a SARS-CoV-2 surrogate virus; Phi6. Pseudomonas syringae settle plates were used to detect viable
Phi6 virus following a simulated cough into a 4 × 4 m test chamber. The unimpeded pattern of
contamination was compared to that when a hand or elbow was placed over the mouth during
the cough. High speed back-lit video was also taken to visualise the aerosol dispersion. Results
and Discussion: Viable virus spread up to 2 m from the origin of the cough outwards in a cloud.
Recommended interventions, such as putting a hand or elbow in front of the mouth changed the
pattern of cough aerosol dispersion. A hand deflected the cough to the side, protecting those in
front from exposure, however it did not prevent environmental contamination. It also allowed for
viral transfer from the hand to surfaces such as door handles. A balled fist in front of the mouth did
not deflect the cough. Putting an elbow in front of the mouth deflected the aerosol cloud to above
and below the elbow, but would not have protected any individuals standing in front. However,
if the person coughed into a sleeved elbow more of the aerosol seemed to be absorbed. Coughing
into a bare elbow still allowed for transfer to the environment if people touched the inside of their
elbow soon after coughing. Conclusions: Interventions can change the environmental contamination
pattern resulting from a human cough but may not reduce it greatly.

Keywords: cough; droplets; virus transmission; COVID-19; mitigation

1. Introduction

Coughing is well recognised as a means of spread of airborne transmissible infectious
diseases and it therefore contributes to transmission in the indoor evironment. A persistent
cough is one of the main symptoms of SARS-CoV-2 (COVID-19) infection [1], and at the
height of the COVID-19 pandemic was one of the factors used to exclude people from work.
This was complicated by evidence that emerged at the beginning of the pandemic that
significant numbers of people could be asymptomatic carriers and shedders of COVID-
19 [2]. Evidence from tightly defined and isolated populations, such as the passengers
on the Diamond Princess cruise ship [3,4], showed that the proportion of asymptomatic
carriers in the general public may be significantly underestimated [5], but infectivity was
similar to that of those showing symptoms. A person may also shed the virus in a two day
window before overt symptoms [6].

As well as isolation or exclusion, another means of preventing COVID-19 transmission
that was applied in the workplace was social distancing [7,8]. This ranged from 1 m to
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2 m [9], according to nationally and locally applied rules, which also changed at different
times throughout the pandemic and depended on other mitigations put in place such
as enhanced ventilation [10]. However, these recommendations were based on limited
scientific data and to some extent influenced by what was practical and achievable. Some
evidence suggested that, based on droplet size and emission dynamics, the virus could
travel much further [11].

Recommended mitigations to limit droplet spread at a practical, personal level were
to cough into hands or a tissue, or into the crook of the elbow, i.e., the inner elbow [12–14].
There is limited data on how effective these actions are, and also on the role that coughing
into hands could then have on subsequent hand to surface transfer in terms of trans-
mission dynamics. Robust data will provide businesses and industry with an evidence
base on which to provide guidance to workers as they continue to repopulate offices and
meeting rooms.

HSE scientists developed a cough simulation device as part of a project to test the
protective effect of face shields [15]. It was designed to mimic the physical parameters of a
human cough, enabling either an ultraviolet (UV) fluorochrome or a biological agent to
simulate SARS-CoV-2 in aqueous suspension to be delivered as droplets in a size range
comparable to a cough. This paper describes how further use of this cough simulator
provided the opportunity to investigate how far droplets or particles from a cough can
spread under defined conditions, how this can be mitigated and how this might impact on
surface contamination.

2. Materials and Methods
2.1. Cough Simulator and Experimental Set Up

A cough simulator used previously [15] was adapted from an existing design [16]
based on flow rate measurements of coughs from 47 human subjects with influenza [17].
The simulator comprised a ‘drive cylinder’ that ejected 4.2 L of air from a ‘lung cylinder’
through a ‘mouth’ outlet (Figure 1). The experimental set up for the cough simulator is
shown in Figure 2. The flow rate against time matched the target profile of the original
cough simulator [16]. The outlet was connected perpendicularly to a plastic pipe (1.2 m
length × 0.04 m diameter). A pressurised airbrush (Badger 200; Badger Air-brush Co.,
Franklin Park, IL, USA) was used to spray an aqueous solution of a UV fluorochrome (1%
Invisible Red (Chemox Pound, Farnborough, UK)) and/or bacteriophage into the pipe.
Once the pipe was fully charged with spray from the airbrush the cough was initiated. The
simulated cough was directed into test room.
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Figure 2. Experimental set up showing the cough simulator, airbrush and outlet pipe through a
manikin head.

The floor of a wooden test room with internal dimensions of 3 m H × 4 m W × 4 m
D was lined with non-fluorescent black plastic sheet to enhance UV visualisation, then
overlaid with a replaceable layer of clear plastic sheet. Yellow electrical tape was used
to mark parallel lines at 0.5 m intervals from the cough origin and additional marks on
each line to show the intersection of 10, 20, 30, 40 and 45 degree angles radiating out from
the centre line from the initial cough’s origin (Figure 3). The cough simulator outlet pipe
was inserted through a standard manikin head (‘Sheffield head’ (Inspec International Ltd.,
Salford, UK)) to deliver the cough from the centre line at 0 m. Mechanical ventilation to the
room was switched off and doors to the room were partially closed to create near-still air
conditions and minimise external interferences. It was not possible to fully shut the door
due to the need to position the cough machine adjacent to the test area.
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2.2. SARS-CoV-2 Simulant and Experimental Runs

The bacteriophage Phi6 (culture collection ref DSM 21518) was chosen, this being used
as an airborne transmission simulant for SARS-CoV-2 in previous work [18]. A literature
search determined a number of possible recipes for simulated saliva and preliminary tests
(results not shown). One of these was selected based on its ability to maximise survival
of viable Phi6 bacteriophage, without altering the anticipated spread pattern from the
cough machine.

Phi6 was grown in an 18 h culture of its bacterial host Pseudomonas syringae (culture
collection ref DSM 21482) in a shaking incubator at 25 ◦C overnight. This was then cen-
trifuged at 1690 g to remove cell debris and filter-sterilised using both a 0.45 µm filter and a
0.2 µm filter (Merck Millipore, UK) to remove any bacterial debris present. The resulting
solution was then used in the testing.

In initial experimental runs, Phi6 was suspended in tryptone soya broth at a concen-
tration of 1 × 109 plaque forming units (PFU)/mL, this having been determined from
literature to match the estimated SARS-CoV-2 viral load [19]. For later runs, the concen-
tration was increased to 1 × 1010 PFU/mL to maximise detectable numbers and increase
accuracy of the experiments. Phi6 suspensions were mixed in equal volumes with double
strength simulated saliva solution (Table 1) [20] to achieve the working strength for the
tests. The surface tension of the solution was measured using a torsion balance (Model OS
(Torsion Balance Supplies, UK)).

Table 1. Double strength Simulated Saliva recipe (used double strength stock to mix with equal
amount of TSA broth and Phi6).

Component Concentration (g/L)

Potassium Chloride 0.298

Sodium Chloride 0.234

Sodium Bicarbonate 4.2

α-Amylase (Porcine) 4.0

Mucin (Gastric) 2.0

Sterile distilled water N/A

Tryptone Soy Agar (TSA, Oxoid (Oxoid Ltd., Basingstoke, UK)) plates were spread
with 300 µL of an 18 h culture of Pseudomonas syringae and placed at 83 pre-determined
locations on the floor grid (Figure 3 and Table 2). An additional plate was also placed on
the wall 4 m away from and facing the cough at head height.

Table 2. Sample positions.

Sample Number Description

1 0 m, outer edge on left
2 0 m centre
3 0 m, outer edge on right
4 0.5 m, outer edge on right
5 0.5 m, 45◦ degrees on left
6 0.5 m, 40◦ degrees on left
7 0.5 m, 30◦ degrees on left
8 0.5 m, 20◦ degrees on left
9 0.5 m, 10◦ degrees on left
10 0.5 m centre
11 0.5 m, 10◦ degrees on right
12 0.5 m, 20◦ degrees on right
13 0.5 m, 30◦ degrees on right
14 0.5 m, 40◦ degrees on right
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Table 2. Cont.

Sample Number Description

15 0.5 m, 45◦ degrees on right
16 0.5 m, outer edge on right
17 1 m, outer edge on left
18 1 m, 45◦ degrees on left
19 1 m, 40◦ degrees on left
20 1 m, 30◦ degrees on left
21 1 m, 20◦ degrees on left
22 1 m, 10◦ degrees on left
23 1 m centre
24 1 m, 10◦ degrees on right
25 1 m, 20◦ degrees on right
26 1 m, 30◦ degrees on right
27 1 m, 40◦ degrees on right
28 1 m, 50◦ degrees on right
29 1 m, outer edge on right
30 1.5 m, outer edge on left
31 1.5 m, 45◦ degrees on left
32 1.5 m, 40◦ degrees on left
33 1.5 m, 30◦ degrees on left
34 1.5 m, 20◦ degrees on left
35 1.5 m, 10◦ degrees on left
36 1.5 m centre
37 1.5 m, 10◦ degrees on right
38 1.5 m, 20◦ degrees on right
39 1.5 m, 30◦ degrees on right
40 1.5 m, 40◦ degrees on right
41 1.5 m, 45◦ degrees on right
42 1.5 m, outer edge on right
43 2 m, outer edge on left
44 2 m, 40◦ degrees on left
45 2 m, 30◦ degrees on left
46 2 m, 20◦ degrees on left
47 2 m, 10◦ degrees on left
48 2 m centre
49 2 m, 10◦ degrees on right
50 2 m, 20◦ degrees on right
51 2 m, 30◦ degrees on right
52 2 m, 40◦ degrees on right
53 2 m, outer edge on right
54 2.5 m, outer edge on left
55 2.5 m, 30◦ degrees on left
56 2.5 m, 20◦ degrees on left
57 2.5 m, 10◦ degrees on left
58 2.5 m centre
59 2.5 m, 10◦ degrees on right
60 2.5 m, 20◦ degrees on right
61 2.5 m, 30◦ degrees on right
62 2.5 m, outer edge on right
63 3 m, outer edge on left
64 3 m, 30◦ degrees on left
65 3 m, 20◦ degrees on left
66 3 m, 10◦ degrees on left
67 3 m centre
68 3 m, 10◦ degrees on right
69 3 m, 20◦ degrees on right
70 3 m, 30◦ degrees on right
71 3 m, outer edge on right
72 3.5 m, outer edge on left
73 3.5 m, 20◦ degrees on left
74 3.5 m, 10◦ degrees on left
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Table 2. Cont.

Sample Number Description

75 3.5 m centre
76 3.5 m, 10◦ degrees on right
77 3.5 m, 20◦ degrees on right
78 3.5 m, outer edge on right
79 4 m outer edge on left
80 4 m centre
81 4 m outer edge on
82 Middle head height 4 m

Each test run comprised three coughs performed in quick succession at intervals of
approximately one minute, this being the shortest turnround to allow the simulator to
be re-primed. Three coughs was considered to simulate the natural cough process as it
is unlikely that individuals would cough once only. This had been determined from a
previous study [21] as delivering a measurable quantity of cough droplets. On completion
of the test run the room was closed and the plates left for 10 min to allow the particles
suspended in the air to settle. Initial experiments showed no appreciable increase in
numbers settling on plates left longer than 10 min and up to 1 h, therefore, the shorter time
scale was chosen for future tests as the more practical option. After 10 min the room was
mechanically ventilated for 30 s to remove any fine particles still suspended in the air, and
the lids were replaced on the plates as they were retrieved.

Exposed TSA plates were incubated at 25 ◦C overnight. Clear halos in the resulting
lawn of bacterial growth showed where a bacteriophage particle had landed and these
were enumerated.

Three sets of tests were conducted to examine the effect of mitigation using a hand or
elbow to contain the spread of a cough across the test room, as follows:

• Test A: Cough spread into the test room with no intervention.
• Test B: Cough spread into the room with a cupped human hand placed in front of the

manikin mouth as a person would (See Figure 4).
• Test C: Cough spread into the room with the sleeveless human inner elbow placed in

front of the manikin mouth as a person would (not touching the mouth).

2.3. Backlit Photography of the Coughs

A Phantom highspeed camera was used to capture the slow-motion images of the
coughs, the camera was set to record an image every millisecond with each frame being
exposed for 600 µs. Two 12,000 lumen lights were used to illuminate the scene, one of
which was positioned behind the cough simulator to aid in the visualisation of the particles.
The second light illuminated the front of the simulator.

The three different scenarios used within the environmental test were visualised. In
addition, members of the public have also been observed to practice other interventions,
such as suppression of a cough using a balled fist, a sleeved elbow or an elbow pushed
more tightly to the mouth. These therefore were included in the study and analysed using
backlit photography.

2.4. Virus Survival and Fluorescence Visualisation of Environmental Transfer
Following Interventions

A test rig was built comprising a flat wooden board (0.8 m × 0.3 m) onto which was
mounted a 0.03 m diameter × 0.5 m long wooden pole. This was painted with black
non-reflective paint as in Figure 5, and was used to mimic a handrail.
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A 1% solution of Invisible Red (Chemox Pound, Farnborough, UK) was added to a Phi6
and simulated saliva solution so as to maintain the concentration of Phi6 used in previous
tests. During method development it was determined that the addition of Fluorescent dye
did not adversely affect viral viability and recovery. The fluorochrome allowed surface cross
contamination to be visualised under UV light and photographed. The following series of
test scenarios were conducted in duplicate to observe the effectiveness of mitigation using
a hand or inner elbow placed in front of the manikin mouth to contain a cough;

• Scenario 1: human hand placed in front of the manikin mouth, observed transfer
to hand.

• Scenario 2: human hand placed in front of the manikin mouth, contact hand rail for
three seconds and observed transfer to hand rail.

• Scenario 3: sleeveless human inner elbow placed in front of the manikin mouth,
observed transfer to elbow.

• Scenario 4: sleeveless human inner elbow placed in front of the manikin mouth, place
hand on inner elbow for three seconds (to mimic a person folding their arms) and
hand on hand rail for three seconds. Observed transfer to both hand and hand rail.

• Scenario 5: as Scenario 3 but with sleeved arm; sleeved crook of a human elbow placed
in front of the manikin mouth, observed transfer to elbow.

• Scenario 6: as Scenario 4 but with sleeved arm; sleeved human inner elbow placed in
front of the manikin mouth, place hand on inner elbow for three seconds and hand on
hand rail for three seconds. Observed transfer to both hand and hand rail.

Sterile pre-moistened sponge wipes (Sterile Sampling Sponge/Envirostik Kit, Tech-
nical Services Consultants Ltd., Heywood, Lancashire, UK) as employed in a previous
study [22] were used to determine if viable virus was present from hand contact. The wipes
were systematically rubbed across the test surface and placed back in the bag. 10 mL PBS
was then added and massaged for 1 min to extract the virus. The resulting Phi6 suspension
was added to 100 µL volumes to 3 mL Tryptone Soy agarose over lay containing 300 µL
of actively growing 18 h culture of Pseudomonas syringae. The over lay was poured onto
Tryptone soy agar and left to set before incubating at 25 ◦C for 12 h. Plaques were then
counted and back calculated to estimate the number per swab. Before each run the hand,
elbow and rail were disinfected to remove any microorganisms using disinfectant wipes
(Distel, East Kilbride, UK).

3. Results and Discussion
3.1. Viral Particle Travel within the Environment

The surface tension of the simulated human saliva was determined as 0.058 M·m−1.
This was comparable to previously reported experimental values [23,24].

The average environmental spread seen with an unmitigated cough (test A) was
focussed on the centre line as shown in Figure 6A. There was observed to be an initial burst
and elongated cloud with the highest concentration of virus (21 to 25 live viral particles)
at the centre, 1 m away from the cough origin. Live viral particles were found to have
spread to all parts of the test area but in lower numbers, with the exception of the settle
plate at head height at 4 m from the cough origin. A slight drift to the right was observed,
with slightly higher viral numbers down the right-hand side, probably due to slight air
movement within the test room. Figure 6A shows the average cough pattern seen from
three runs.

In test B, when a hand was placed in front of the outlet of the cough simulator, the
pattern was more dispersed than the unmitigated cough, with 5 to 10 live viral particles
at most locations throughout the room. The deposited viral particles contaminated plates
further out into the room in slightly higher numbers than was seen for the unmitigated
cough. This result is shown by the plate at 3 m and 20 degrees to the right showing an
average of 16 to 20 viable counts over three runs (Figure 6B). An average of 3.33 viable viral
particles was detected at head height at the back of the room, 4 m from the cough origin,
highlighting the low level dispersal of viral particles throughout the room.
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the mouth (test C). All data points = average of three test runs.

In test C, when an elbow was placed in front of the outlet of the cough simulator, the
number of viable virus increased at 40 and 45 degrees from the central line from the cough
origin. Contamination was also detected further away from the cough origin compared to
both tests A and B, with up to 50 virus particles being detected at 3.5 m away from and
to the left of the cough origin. In contrast to the unmitigated and hand tests the plates
at the 4 m line also showed high numbers (40 to 45 viable viral particles). An average of
0.65 viable viral particles was detected at head height at the back of the room, 4 m from
the cough origin. This was the result of 2 colonies on one of the three test runs. Figure 6C
shows the average cough pattern seen from three runs.

3.2. Photographic Visualisation of the Cough Following Interventions

Backlit photographs clearly showed the particle cloud and its direction of travel. With
the unmitigated cough, the cough travelled from the mouth and formed a cloud (Figure 7A).
This elongated and gently dispersed. When a cupped hand was placed in front of the
mouth (test B) the particle cloud was diverted from a forward plane and escaped the hand
as a “star” pattern in a flat vertical plane (Figure 7B). A bare elbow (test C) was shown to
divert the particle burst above and below the elbow, while still being propelled forward
(Figure 6C). This cloud was seen to recombine as it travelled further from the cough origin.

Visualisation tests undertaken with a balled fist showed that it did not deflect the
cough like the cupped hand over the mouth, but resulted in wider and less elongated cloud
dissemination, (Figure 8).

Compared to intervention with a bare elbow, a sleeved elbow appears to entrap some
of the particles thus reducing the particle cloud size and directing it in an upward manner
(Figure 9A). An elbow pressed up close to the mouth or origin of the cough appears to
visually reduce forward contamination compared to an unmitigated cough and the bare
elbow (test C), deflecting much of it back towards the face of the person coughing. See
Figure 9B.
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3.3. Viral Survival and Transfer into the Environment Following Interventions

Fluorescence visualisation demonstrated that in all of the simulated scenarios saliva
and bodily fluids were present on each surface contacted. This was consistent across both
test runs performed and is shown in Figure 10A,B.
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The numbers of virus retrieved per wipe sample are shown in Table 3. The results
were lower than might be expected, based on the original titre used to prime the cough
simulator. However, during initial method development the wipes were shown to have
a consistent retrieval efficiency which, although only 40% of the expected total (data not
shown), allowed direct and relative comparisons to be made across scenarios as shown in
Table 3.

Table 3. Viral transfer per wipe.

Sample Position Number of Virus per Wipe (Average of Two Runs)

Scenario 1: Single cough to hand 375

Scenario 2: Rail after hand transfer 75

Scenario 2: Hand after contact with the rail 50

Scenario 3: Single cough to a bare inner elbow 212.5

Scenario 4: Hand after contact with contaminated inner elbow 25

Scenario 4: Rail after contact with the hand that touched the inner elbow 25

Scenario 4: Bare inner elbow after contact with a hand None detected

Scenario 5: Single cough to a sleeved inner elbow 37.5

Scenario 6: Hand after contact with a sleeved contaminated inner elbow None detected

Scenario 6: Rail after contact with the hand that touched the sleeved inner
elbow None detected

Scenario 6: A sleeved inner elbow after contact with a hand None detected

Live virus was detected on the hands and elbow before contact with the touch points,
showing that virus was being expelled with the cough. It can be seen from visualisation of
the fluorescent dye that the simulant body fluid was transferred to the hand rail and it was
shown that some viral particles were transferred. However, the level of viral contamination
was found to be low. Viable viral particles were still detectable on the hand after touching
the handrail indicating that not all the virus was transferred to another surface. The
surface wipes taken from the sleeved elbow showed low viral counts and no transfer to
the hand or rail was detected in these scenarios. This suggests that the virus was likely
entrapped/entrained within the material and therefore not easily transferred. However,
it is also possible that the Phi6 did not survive the process of being transferred to the
touch points during these tests. These results show the benefit of the dual approach of
fluorescence visualisation along with the viral marker, as the fluorescence clearly shows
transfer of fluid in all tests. However, this fluid may or may not contain live virus.

4. Conclusions

This small-scale pilot study aimed to examine the effect of personal mitigations to pre-
vent others from being exposed to a cough. It was shown that placing a hand or bare elbow
over the mouth when coughing can deflect, but does not prevent, environmental exposure.
The direction of the expelled cough was diverted from a frontal cloud to one that spread the
contamination up and over an elbow placed in front of the mouth or in a flat sideways plane
with a hand placed over the mouth. This means that, with a cupped hand, it is possible
that those in front of the cough would have reduced exposure, however those to the side
are potentially exposed to more viral particles than without mitigation/intervention. The
photographic analysis indicated that a sleeved elbow may capture more of the aerosols
and therefore would suggest that when coughing, an individual should cover their mouth
with a sleeved elbow rather than their hand or bare elbow to reduce potentially exposing
bystanders.

This study did not look at exposure that may occur to the rear of the cough due to
restrictions in the test room. Some studies have indicated that cough mitigations, such
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as wearing a visor or mask may direct aerosols behind the individual coughing [25] and
further research with the cough simulator would be beneficial, to compare this effect to
frontal or sideward dissemination of the airborne virus when mitigation of the cough is
caused by the hand or the elbow.

The simulated cough was assumed to be representative of a real human cough and has
been used in other research to mimic a cough. The particle size distribution was assumed
to be representative of a human cough however the short explosive nature of the cough
blast made measurement difficult [15].

This study showed that if a person coughed into their hand it is possible for live viral
particles to be subsequently transferred to areas in the environment such as door handles.
The advice given by the NHS, WHO and other public health bodies throughout the world
during the COVID-19 pandemic was for a person to cough into their inner elbow. The
rationale was that this would reduce environmental contamination as the hand was not
contaminated. However, this study showed that, at least in the short term after coughing
into an inner elbow, there is a need not to touch that site as it was possible to transfer live
viral particles if a person crossed their arms, for example, thereby touching the cough site
with a hand. It is clear from this study and the work of others that the general public should
be mindful of viral transfer.
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