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Abstract: C. jejuni is the leading cause of human foodborne illness associated with poultry, beef,
and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal
transmission from the environment is considered to be the primary source of C. jejuni. As an enteric
pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates
C. jejuni’s ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal
mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human
mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually
infected from two to four weeks of age and remain colonized until they reach market age. A small
dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where
chickens are raised under antibiotic-free environments, additional strategies are required to reduce
C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by
more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic
acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve
gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies
showed promising results; however, they are not fully implemented in poultry production. Current
knowledge on C. jejuni’s morphology, source of transmission, pathogenesis in poultry, and available
preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
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1. Introduction

C. jejuni was first recognized in 1886 by Escherich as he described the C. jejuni as
a spiral bacteria isolated from the colon of dead children [1]. Escherich also identified
the C. jejuni microscopically in stool specimens of children who suffered from diarrhea
without being able to culture it on solid agar [1]. In 1909, a Vibrio-like bacterium was
frequently isolated from aborted fetuses [2], later named Vibrio fetus [3]. Similar reports
linked Vibrio-like organisms to sterility in cows [4], and dysentery in pigs, and later named
Vibrio jejuni [5].

Similarly, several reports noted the presence of Vibrio fetus in the blood of pregnant
women [6] and the blood of people associated with outbreaks related to consumption of
milk contaminated with Vibrio fetus [7]. The absence of a proper isolation method for Vibrio
fetus (C. jejuni) from feces resulted in fewer case reports despite the high prevalence of this
pathogen. However, C. jejuni was successfully isolated from the stool of a patient suffering
from acute enteritis [8]. The development of simpler isolation techniques for culturing
C. jejuni led to the rapid isolation of this pathogen. In the mid-1980s, C. jejuni was recognized
as one of the major causes of enterocolitis in humans [9].

C. jejuni is the leading cause of human foodborne illness associated with poultry, beef,
and pork consumption [10]. C. jejuni is found in the gut of warm-blooded animals, with
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poultry species being the major reservoirs [11]. C. jejuni colonizes the ceca of chicken
between 2 and 3 weeks of age and reaches around 1 × 109 CFU/g in the ceca at market
age [12]. Furthermore, poultry carcass is cross-contaminated at the processing facility due
to spillage of intestinal contents. Handling and consuming improperly cooked poultry
products account for the majority of C. jejuni infections [13]. With the spread of antibiotic
resistance across C. jejuni isolates, the burden of Campylobacteroisis has increased [14].

The poultry industry is facing several challenges with legislative restrictions on the
subtherapeutic use of antibiotics, in addition to the shift in consumers’ preference for “zero”
use of antibiotics in poultry production. Therefore, finding an antimicrobial alternative
to control C. jejuni in poultry production is the need of the hour. Different antibiotic
alternatives include prebiotics, probiotics, synbiotic, bacteriocins, bacteriophages, vaccines,
and organic acids [15].

This review article focuses on the C. jejuni’s morphology, source of transmission,
pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization
in broilers.

2. Campylobacter jejuni Cellular Structure and Morphology

C. jejuni is a gram-negative, corkscrew-shaped, and motile bacteria that belongs to the
family of Campylobacteraceae. C. jejuni is characterized by a spiral/helical morphology with
an amphitrichous sheathed flagella responsible for C. jejuni’s corkscrew motility [16]. The
corkscrew motility or darting motility is a key advantage of C. jejuni movement in a highly
viscous environment such as the mucus [16]. The enzyme C. jejuni’s peptidoglycan pepti-
dase ensures the formation of the helical form, as mutations in peptidoglycan peptidase
result in straight body formation [17]. The loss of C. jejuni’s helical form results in lower
colonization capacity in chickens [17] and lower infectivity in mouse models [17]. C. jejuni
produces a capsular polysaccharide (CPS) that helps the bacteria evade the immune system
and contributes significantly to C. jejuni virulence [18]. Intra-strain variation in the capsular
polysaccharide results in the formation of 47 serotypes [19]. C. jejuni outer membrane is
comprised of Lipo-oligosaccharides (LOS) that lack the O-antigen found in lipopolysaccha-
rides (LPS) of many gram-negative bacteria [20]. In some C. jejuni strains, the LOS binds
with sialic acid resulting in a modified structure that mimics the gangliosides in human
neurons [21]. This molecular mimicry plays a central role in developing Guillain–Barré
syndrome (GBS) in humans [21].

The presence of phase-variable loci in C. jejuni bacteria contributes to its inherent
ability to generate different phenotypes and genotypes. These phase-variable loci are
mainly located in the CPS, flagella, and LOS, forming new structures to evade the immune
system and help C. jejuni survive different environmental factors. Different stress conditions
lead to morphological changes in C. jejuni, for example, oxygen-rich compounds that change
from spiral shape to coccoid form [22]. Oxidative stress leads to forming the viable but
non-culturable (VPNC) form of C. jejuni [23].

3. Source and Transmission of Campylobacter jejuni in Poultry

C. jejuni is a versatile bacterium that occupies different niches and hosts [20]. C. jejuni
can be found in water and is part of the commensal microbiota of many animals, including
poultry [20]. Poultry species are considered the major reservoirs for thermophile Campy-
lobacter species, including C. jejuni, C. coli, and C. lari. C. jejuni accounts for the majority of
campylobacteriosis in humans [20].

C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmis-
sion from the environment is considered the primary source of C. jejuni [24]. Following
the infection, broilers rapidly show a high load of C. jejuni in the cecal content [25]. Fecal
shedding of C. jejuni and fecal ingestion is the main source of bird-to-bird transmission
in broiler farms [26]. Vertical transmission of C. jejuni in broiler farms is controversial
as C. jejuni is detected in broilers at 2–3 weeks of age, irrespective of C. jejuni positive
parent flocks [26]. Furthermore, the isolation of C. jejuni from eggs in commercial and
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experimental layer flocks has been unsuccessful [27]. C. jejuni led to embryonic mortality
in experimentally infected eggs [28], and C. jejuni did not survive more than 3–6 h follow-
ing egg penetration [29,30]. Broiler flocks are usually infected with strains different than
the strains detected in the breeder flocks [31], suggesting the negligible role of vertical
transmission in C. jejuni in broiler flocks. Despite such observations, bacteriological and
molecular methods confirmed the [32,33] presence of C. jejuni in eggshells. Furthermore,
the survival of C. jejuni in a viable but not culturable form might be a critical factor behind
the unsuccessful isolation of C. jejuni from infected eggs, and young hatchlings [34]. There-
fore, future studies are needed to elucidate the role of vertical transmission in introducing
C. jejuni to commercial broiler flocks.

The dry nature of chicken feed and wood shavings decreases the presence of C. jejuni,
as C. jejuni’s viability is hindered by high O2 and low moisture levels [35]. Nevertheless,
feed and bedding material can be a source of C. jejuni as it becomes contaminated by other
sources such as fecal material and insects [35]. Reused litter can act as a source of C. jejuni
infection. However, common litter management practices can limit the spread of C. jejuni
to the next flock [35]. Unchlorinated water has been suggested as a potential source of
C. jejuni in broiler farms. Water can act as a vehicle to transmit C. jejuni [36] as it requires
microaerophilic conditions and cannot grow at a temperature less than 31 ◦C. C. jejuni
was found in water lines only after the flock was colonized; however, the strains found in
the water lines were not fully present in infected broilers, indicating that water is not the
original source of contamination [37,38].

Flies and insects can act as a vector for several pathogens on broiler farms. Flies [39]
and beetles [40] may introduce C. jejuni into chicken farms from multiple sources such as
animal feces and lakes contaminated with C. jejuni [41]. The presence of livestock animals
on the farm is associated with an increased risk of C. jejuni transmission through flies to
broiler flocks [41]. C. jejuni colonization pattern peaks during summer [42], correlating
directly with the insect populations. Therefore, Insects might be an important factor in
C. jejuni seasonality incidences. Rodents are vectors for pathogens, including C. jejuni [43,44].
However, C. jejuni strains circulating in humans and livestock differ from those carried by
rodents [43]. In some instances, rodents living close to humans and farms may carry the
same C. jejuni strains [44]. Hence, rodents may not be the original source of C. jejuni, yet
they remain an important vector that can transmit C. jejuni in broiler farms.

C. jejuni has been isolated from wild animals. Due to their migratory behaviors,
wild animals can spread C. jejuni at far distances from the source of infection [45]. The
proximity of wild animals in agricultural settings increases the transmission of zoonotic
diseases [46]. Furthermore, a wide array of wild animals is hunted for human consumption
and can potentially involve in the zoonotic transfer of C. jejuni [47]. C. jejuni has been
isolated from waterfowls [48], songbirds [49], raccoons [50], raptors [51], wild boars [52],
and deer [53]. C. jejuni isolated from wild animals carries a different lineage from C. jejuni
isolated from broilers farm [54]. However, C. jejuni isolated from wild animals living near
broilers farm shows a similar lineage with C. jejuni strains found in the broiler farms [54].
The role of wild animals in introducing C. jejuni to chicken farms is not fully understood
and requires additional studies. Furthermore, farm workers and equipment can have a role
in introducing C. jejuni to broiler flocks [55]. The movement of contaminated equipment
between different farms can potentially transmit C. jejuni. Evidence from C. jejuni isolation
from crates [55], and farmers’ boots [55] proved that contaminated transport crates transmit
C. jejuni to the slaughterhouse [55]. Reservoirs and routes of transmission of C. jejuni are
summarized in Figure 1.
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Figure 1. Reservoirs and routes of transmission of C. jejuni. Created with Biorender.com (accessed on
20 October 2022).

4. Pathogenesis of C. jejuni in Broilers

C. jejuni pathogenesis consists of four main steps: (1) ingestion, (2) acid tolerance
and bile resistance, (3) reproduction in mucus, and (4) invasion of epithelial cells [12].
C. jejuni infection is transmitted between birds via the fecal–oral route [56]. A small dose
of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization [57]. As an
enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system
that mediates C. jejuni’s ability to survive the gut’s harsh conditions [58]. Campylobacter
multidrug efflux pump (CmeABC) helps C. jejuni in eliminating toxic compounds such
as antimicrobials, bile salts, and heavy metals. CmeABC comprises three proteins, a
periplasmic protein, an inner membrane protein, and an outer membrane protein [59].
CmeABC gene encodes the multidrug efflux pump in C. jejuni and it is regulated through
Cme repressor (CmeR) [60]. The presence of bile compounds stimulates the expression of
CmeABC, increasing C. jejuni’s resistance to bile salts [60]. Mutations in regulator genes
related to bile resistance block C. jejuni’s colonization ability [61].

C. jejuni depends on the two-component system consisting of CheY (cytoplasmic
response regulator protein) and CheA (membrane-associated histidine auto kinase sensor)
in responding to different chemoattractant/chemorepellents found in different environ-
ments [62]. In response to a stimulus, CheA is autophosphorylated, and a phosphate group
is transferred to activate CheY. CheY interacts with the flagellar motor switch proteins
leading to a clockwise rotation of the flagella [63]. The flagella play a central role in C. jejuni
motility, adhesion, and invasion of the intestinal epithelial cells [64]. The flagellum consists
of seven protofilaments of FlaA and FlaB subunits [64] and is attached to the basal structure
through FlgE, which serves as a hook [64]. FlaA is the major Flagellin in C. jejuni and is
regulated by σ28 promotor [20]. On the other hand, FlaB is the minor flagellin in C. jejuni
and is regulated by the σ58 promoter [20]. Chemotaxis such as aspartate, glutamate, citrate,
and L-fucose upregulates the σ58 gene [65]. FlaA plays a significant role in C. jejuni’s
initial colonization of the chicken GIT [66]. The FlaA mutant has a ability to decrease the
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C. jejuni colonization in chicken [67]. Furthermore, the flagella include the type III secretion
system (T3SS), which is responsible for delivering effector proteins needed for cellular
invasion [20]. Thus, mutations in the flagellum lead to a decreased ability in colonization
and invasion of intestinal epithelial cells.

The absence of immortalized chicken intestinal cell line hinders the capacity to charac-
terize the mechanism of C. jejuni invasion of epithelial cells. In vitro, C. jejuni was capable
of invading primary avian cells [68,69]. The presence of avian mucus protected the human
cell line against the C. jejuni invasion [70]. It is well-known that C. jejuni survives and re-
produces in avian mucus [71]. However, several factors interfere with C. jejuni’s capacity to
invade the avian epithelial cells in vivo and might explain the near-commensal relationship
of C. jejuni in avian species. Several differences are observed between humans and avian
species in terms of body temperature (37 ◦C vs. 42 ◦C), mucus pH (the avian mucus is more
acidic), and difference in mucus structure. C. jejuni upregulates genes related to metabolism
and regulatory systems and downregulates genes related to periplasmic proteins at 37 ◦C
in comparison with 42 ◦C [72]. This difference in gene expression may explain the C. jejuni
adaptability and pathogenicity in humans’ intestinal tract. C. jejuni upregulates the CadF
gene, which is responsible for cell adhesion at 37 ◦C and 42 ◦C, indicating the ability of
C. jejuni to adhere to intestinal cells in humans and avian species [72]. On the other hand,
C. jejuni isolates showed different gene expressions at 37 ◦C vs. 42 ◦C [73]. The difference
in gene expression might explain some of the differences in C. jejuni’s pathogenicity. How-
ever, it might not be enough to justify the complete picture of C. jejuni pathogenicity in
humans vs. the near-commensal relationship in avian species. It was hypothesized that
the pH of the avian mucus confers protection for avian species against C. jejuni. How-
ever, through in vitro studies, the neutralization of the avian mucus did not diminish its
anti-Campylobacter jejuni properties [68].

Purified chicken mucin inhibited the adherence and internalization of C. jejuni to a
human intestinal cell line without affecting C. jejuni viability [70]. The oxidation of purified
chicken mucin with sodium metaperiodate enabled C. jejuni to invade the intestinal cell
line [70]. The results indicate the protecting role of o-glycosylated mucin structure in the
intestinal cell line against C. jejuni.

The avian mucus is highly sulphated and sialylated compared with the human mu-
cus [74]. The comparison between chicken and human mucin structures revealed thirty-
three unique structures in chicken mucin [75]. The large intestine in chicken contains the
highest sulphated structures, followed by the small intestine and cecum [75]. In chicken,
C. jejuni colonizes mainly the ceca and, to a lesser extent, in the small and large in-
testines [76]. Evidence from in vitro studies shows that the purified chicken mucin from
the large intestine had a higher inhibition ability against C. jejuni compared with the pu-
rified chicken mucin from the small intestine and cecum [75]. These results highlighted
that presence of sulphated O-glycans is inversely correlated with the concentration of
C. jejuni in the host. Furthermore, the increased sulfation and sialyation increase the anionic
charge in the chicken mucin, creating a charge repulsion effect against C. jejuni [74]. These
results indicate the role of chicken mucus in modulating C. jejuni virulence in avian species.
C. jejuni pathogenesis is summarized in Figure 2.
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5. Control of C. jejuni in Broilers: (Preharvest)

C. jejuni establishes colonization in the lower intestinal tract of the chicken, particularly
in the ceca, within 24 h [65]. C. jejuni concentration can reach up to 1 × 109 CFU/g in
infected birds [20]. Birds are usually infected from two to four weeks of age and remain
colonized until they reach market age [65]. Therefore, control methods are needed to reduce
C. jejuni prevalence across broiler farms.

5.1. Biosecurity

Strict biosecurity measures are the key role in preventing the transmission of C. jejuni
in broilers’ houses [35]. Identifying the potential sources and methods to detect C. jejuni at
the farm level are the major steps needed for a successful biosecurity measures. Restricting
access to poultry houses is key to maintaining a C. jejuni-free flock and following strict
biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at
market age [38]. Cleaning and disinfecting poultry houses between cycles can reduce
C. jejuni prevalence [38]. Furthermore, strict hygiene practices such as boot covers, hand
washing, and footbaths can decrease C. jejuni transmission [35]. Standard litter management
practices are also critical to decrease the presence of C. jejuni in the litter, and transmission
is reduced with enough downtime between flocks [77].

Partial depopulation (thinning) of broiler flocks can increase the risk of C. jejuni
transmission on the farm [78]. A strict biosecurity measure during the thinning process is
required to ensure a low transmission rate of C. jejuni [78]. Furthermore, C. jejuni prevalence
peaks during summer and early autumn time [79]. This seasonality of C. jejuni also
correlates with the peak of insect populations [80]. Therefore, strict biosecurity measures
are needed during summer, early autumn, and thinning to ensure a low prevalence of
C. jejuni within the farm.

5.2. Probiotics, Prebiotics, and Synbiotic

Probiotics have the ability to improve gut health and prevent enteric diseases in poultry.
Several mechanisms of probiotics include (1) antagonism and competitive exclusion of
enteric pathogenic bacteria, (2) pH reduction by producing organic acids, (3) bacteriocin
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production, (4) stimulation/modulation of host immune response, (5) and alteration of
virulence factors of enteric pathogens [81]. On the other hand, prebiotics are non-digestible
feed ingredients that confer a beneficial effect on the host by promoting the proliferation of
beneficial bacteria in the gut [81]. The combination of probiotics and prebiotics is known
as synbiotics [81].

The ability of probiotics, prebiotics, and synbiotics to combat C. jejuni has been demon-
strated in vitro, in vivo, and in field studies. In vitro, the anti-Campylobacter activity of
probiotics has been carried out in agar-plate diffusion assays [82], co-cultures assays [83],
and adhesion and colonization assays using cell lines [82].

Probiotics secrete organic acids that exhibit antimicrobial activity against gram-negative
bacteria [84]. In vitro, E. faecium, P. acidilactic, L. salivarius, and L. reuteri supernatant inhib-
ited C. jejuni growth [84]. Similarly, the supernatant of L. crispatus significantly decreased
C. jejuni growth [85]. L. crispatus antimicrobial activity was mediated through the pro-
duction of organic acids, namely: lactic acid [85]. In ceca, E. faecalis strain inoculation
decreased C. jejuni load to 1 log CFU/g reduction after 6 h post-inoculation [86]. The anti-
Campylobacter ability of lactic acid-producing bacteria was mediated through the production
of organic acids [85].

Probiotic species can disrupt the expression of virulence factors in enteric pathogens [87,88].
The cell-free supernatant media of L. acidophilus strain La-5 and Bifidobacterium longum
strain NCC2705 downregulated ciaB (invasion) and FlaA (motility) [87]. Similarly, the
cell-free supernatant of L. salivarius, L. johnsonii, L. crispatus, and L. gasseri downregulated
flaA, flab, flhA (motility), ciaB (invasion), and AI-2 (quorum sensing molecule autoinducer-
2) [89]. These studies demonstrate the ability of probiotics species to attenuate the C. jejuni
virulence factors. The downregulation of C. jejuni motility and invasion genes results in a
lower ability to colonize the GIT of broilers and invade human and chicken primary cell
lines [89]. Lactobacillus spp. Supplementation can modulate the host immune system [89].
L. salivarius, L. johnsonii, L. crispatus, and L. gasseri supplementation increased nitric oxide
production and phagocytic ability of chicken macrophages, leading to a decrease in the
C. jejuni load [89]. Furthermore, a mixture of Lactobacillus spp. Increased the expression
of costimulatory molecules, namely: CD40, CD80, and CD86, in macrophages [89]. The
costimulatory molecules are essential to initiate an adaptive and humoral immune response;
hence probiotic supplementation can initiate the innate and adaptive immune response
against C. jejuni [90].

Probiotic bacteria adhere to and occupy gut mucosal surfaces and competitively ex-
clude enteric pathogens. In vitro studies are fundamental to investigating the probiotics’
mechanism of action. On the other hand, in vivo studies provide a comprehensive as-
sessment of probiotics’ ability to benefit the host. Not all promising results in vitro are
replicated in vivo. For example, in vitro studies with E. faecalis strain decreased the C. jejuni
load by two log CFU/g. However, the E. faecalis strain could not decrease C. jejuni’s load
in vivo [86]. In vitro studies with L. plantarum N8, N9, ZL5, and L. casei ZL4 adhered to
the HT-29 cell line and competitively disrupted the adhesion and invasion of C. jejuni
to the HT-29 cell line [91]. Similarly, L. paracasei JR, L. rhamnosus 15b, Y L. lactis, and L.
lactis FOA decreased C. jejuni adhesion and invasion of the primary chicken cell line [92].
Probiotics enhance the integrity of the intestinal barrier by upregulating the expression
of tight junction genes [93]. In a study, the supplementation of E.coli Nissle 1917 to the
Ht-29 cell line upregulated tight junction genes expression resulting in lower C. jejuni
intracellular invasion [93].

The supplementation of Poultry Star®, (Overland Park, KS, USA) (E. faecium, P. acidi-
lactic, L. salivarius, and L. reuteri) via drinking water from the day of hatch to slaughtering
decreased C. jejuni cecal load by six log CFU/g at 35 days of age [84]. However, studies
with Poultry Star® supplementation only decreased C. jejuni cecal load by 2 log CFU/g
at day 35, and no reduction in C. jejuni cecal load at 42 days of age [94]. The variability
in probiotic efficacy between the two studies can be due to the difference in experimental
design, challenge timing, and cecal microbiota of the broiler birds.
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Isolated B. subtilis exhibited an anti-Campylobacter activity in vitro [95]. The supple-
mentation of B. subtilis isolates reduced C. jejuni cecal load by one log CFU/g [95]. Motile
probiotic bacteria can migrate towards the ceca where C. jejuni resides, thus having more
chances to eliminate C. jejuni [95]. Therefore, the same B. subtilis isolates were propagated
ten times to increase their motility. The propagated B. subtilis supplementation reduced
C. jejuni cecal load by 2.5 log CFU/g at 21 days of age [95]. Similarly, the supplementation
of B. longum subsp. longum PCB133 + galactooligosaccharide decreased C. jejuni cecal load
by 1 log CFU/g at 56 days of age [96]. The oral gavage of L. salivarius SMXD51, every
2–3 days from the hatch until day 35, resulted in a 2.5 log CFU/g reduction in C. jejuni cecal
load [97]. Furthermore, the supplementation of L. paracasei J. R, L. rhamnosus 15b, L. lactis Y,
and L. lactis FOA combination used seven days before slaughter decreased C. jejuni load by
five log CFU/g [92]. These data may suggest that multispecies probiotics may be better
than single species probiotics in decreasing C. jejuni load in the poultry.

Contradictory results were obtained when evaluating the efficacy of probiotics on
C. jejuni load in broilers. The probiotic bacterial strain, the supplementation dose of probi-
otics, the route of administration, C. jejuni challenge strain, age, sex, and breed of birds used
for the study should be considered when evaluating the efficacy of probiotics. Moreover,
C. jejuni survival in the host depends on the host’s microbiota [98]. Therefore, an interaction
between C. jejuni and residing microbiota can influence the efficacy of the supplemented
probiotic either positively or negatively.

5.3. Organic Acids

Organic acids are organic compounds that have acidic properties [99]. Organic acids
are differentiated from other acids by having a carboxyl acid -COOH to which hydrogen
or an organic compound might be attached [99]. Organic acids can be (1) short-chain
fatty acids (SCFAs) (≤C6) such as acetic, lactic, butyric, fumaric, and propanoic acid,
(2) medium-chain fatty acids (C7:C10) such as capric, caprylic acid, and (3) long-chain fatty
acids (≥C11) such as lauric acid [99]. The gastrointestinal tract of avian species harbors
millions of bacteria that produce different metabolites, including organic acids [99]. The
antimicrobial mechanism in probiotics is mediated through the production of organic
acids [81]. Therefore, supplementing organic acid is expected to impact the bird’s health
positively. Organic acids supplementation leads to a decrease in the gut pH, enhancing the
proteolytic enzymes and nutrient digestibility [99]. Furthermore, organic acids can act as
bacteriostatic and/or bactericidal against gram-negative pathogenic bacteria, making them
a suitable antibiotic alternative [83].

The supplementation of 2% formic acid in combination with 0.1% sorbate prevented
the colonization of C. jejuni [100]. However, supplementing 2% formic acid alone was
insufficient to prevent C. jejuni colonization [100]. Formic acid lowers the pH of the
gut affecting the acid-sensitive bacteria present in the environment. On the other hand,
sorbate targets the bacteria by diffusing through the cell membrane and lowering the pH
of C. jejuni.

In vitro, butyrate supplementation demonstrated a bactericidal effect against C. jejuni [101].
However, the supplementation of butyrate-coated micro-beads did not decrease C. jejuni col-
onization [101]. The ineffectiveness of in vivo butyrate supplementation can be attributed
to the fast absorption of butyrate by enterocytes. Similarly, the feed acidification with
5.7% lactic acid and 0.7% acetic acid decreased the presence of C. jejuni in the feed [102].
However, the limited effect of organic acids on C. jejuni colonization in broilers might
be attributed to the possibility of being absorbed by the gut microbes before it reaches
the ceca [102].

Another study tested different combinations of organic acids, prebiotics, and probiotics
against C. jejuni infection. Only Adimix® Precision, (Dendermonde, Belgium) (sodium
salt butyrate) decreased the cecal load of C. jejuni by 2 log CFU/g at 42 days of age [94].
Other compounds containing organic compounds such as lactic acid had a limited ability to
decrease C. jejuni cecal load. The efficacy of organic acids in controlling enteric pathogens
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relies heavily on (1) type of SCFAs, (2) dose of SCFAs in feed, (3) buffering capacity of the
feed and (4) complex microbiota in the host.

When choosing the type of organic acid for supplementation, the pathogen’s metabolism
also should be considered. C. jejuni cannot ferment carbohydrates and depends mainly
on amino acids and some SCFAs to proliferate in the avian gut [103]. C. jejuni utilizes
acetate, lactate, fumarate, succinate, and malate as part of its citric acid cycle to satisfy its
energy needs [103]. The ability of C. jejuni to use SCFAs might explain the ineffectiveness
of organic acid supplementation such as lactic acid, formic acid, and acetic acid in the
presented studies. Butyrate supplementation might be the organic acid of choice to control
C. jejuni. Yet, the fact that butyrate is the primary energy source for enterocytes [104] limits
its presence in the gut and decreases its ability to fight pathogens.

5.4. Bacteriophages

Bacteriophages are viruses ubiquitously found in nature and infect bacterial and
archaeal cells [105]. The world contains approximately 1032, which is almost 10 times
more than the number of bacterial cells on earth [106]. Bacteriophages were discovered in
1915 by Frederick Twort and Félix d’Hérelle in 1917 [107]. Bacteriophages are considered
non-pathogenic to humans as they are frequently isolated from human saliva [108] and
feces [109]. Humans are frequently exposed to bacteriophages in food and drinking water
without any adverse reaction to their consumption [110]. Moreover, bacteriophages domi-
nate the human gut virome [110]. However, the chicken virome is yet to be characterized.

Bacteriophages are suggested as an antibiotic alternative in controlling foodborne
pathogens, as they are easy to isolate, have narrow specific, and do not alter the microbiome
of the treated host [111]. Though more than 170 C. jejuni phages have been documented,
the majority of these phages have a narrow spectrum [105] to control foodborne pathogens.
C. jejuni phages are divided into two categories: lytic and lysogenic. Lytic bacteriophages
are preferred as they can lyse the targeted cell immediately [111]. In contrast, the lysogenic
bacteriophages are not used as they incorporate into the bacterial genome and transfer
virulence factors between bacteria [111].

Lytic Campylobacter phages are categorized based on their size into three categories [105].
The first category includes large phages, ranging between 320 and425 kbp, whereas the
second category comprises phages that range between 175 and183 and show a high affinity
towards C. jejuni and C. coli [105]. The third category includes Campylobacter phages with
the smallest size and the greatest affinity and lytic ability toward C. jejuni [105]. Campylobac-
ter phages are versatile tools that can be incorporated into the preharvest and postharvest
control of foodborne pathogens.

The efficacy of two Campylobacter phages, CP8 and CP34, was tested for five days
post-C. jejuni infection, resulting in a 0.5–5 log CFU/g reduction in C. jejuni based on the
intestinal site and phage dose [112]. The best results in C. jejuni load reduction was obtained
24–48 h post bacteriophage supplementation [112]. Similarly, the efficacy was tested with
two administration routes (drinking water vs. feed) of a phage cocktail (phiCcoIBB35,
phiCcoIBB37, and phiCcoIBB12) [113]. The highest reduction (2 log CFU/g) of C. jejuni
load was recorded when the cocktail phage was supplemented in the feed [113]. These
results indicated the ability of bacteriophages to control C. jejuni and highlighted the need
to determine the dose and route of administration to achieve the best results.

A comparison between a single phage and a cocktail phage to reduce C. jejuni colo-
nization resulted in a maximum of 2.8 log CFU/g cecal C. jejuni load in both groups [114].
The single phage resulted in 43% phage resistance, whereas the cocktail phage led to 24%
phage resistance [114]. The development of phage resistance limits the using Campylobacter
phages in controlling C. jejuni prevalence. Though the use of phage cocktails might delay
the C. jejuni development, the effectiveness of C. jejuni phages is yet to be determined at
the farm scale [114].
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5.5. Bacteriocins

Bacteriocins are ribosomal synthesized antimicrobial peptides secreted by bacteria.
Bacteriocins can act as bacteriostatic and bactericidal against related bacterial species [115].
The secretion of bacteriocins confers the destruction of targeted bacteria without damaging
the host. Bacteriocin mode of action is mediated through membrane permeabilization
followed by cell lysis [116]. The supplementation of bacteriocins in C. jejuni infected
broilers efficiently reduces C. jejuni’s load and contamination in the food chain [117,118].
Seven-day-old broilers treated with purified encapsulated OR7 bacteriocins produced by
L. acidophilus NRRL B-30514 significantly reduced C. jejuni load [118].

Similarly, supplementing two purified forms, L. salivarius NRRL B-30514 and
P. polymyxa NRRL B-30509, decreased the C. jejuni cecal load by three log CFU/g [117].

Recently, reuterin emerged as a promising bacteriocin in controlling C. jejuni coloniza-
tion in broilers. Reuterin is an antimicrobial compound produced during the anaerobic
formation of glycerol by L. reuteri [119]. Reuterin exhibits a wide antimicrobial spectrum
against gram-negative and gram-positive bacteria, yeast, and mold [119]. The mechanism
of action of reuterin is mediated through the reaction of acrolein with the thiol groups
of glutathione, inhibiting the redox-base defenses and leading to oxidative stress in the
targeted bacteria [120]. The genome analysis of C. jejuni revealed the absence of glutathione
biosynthesis protein, suggesting that C. jejuni lacks the ability to detoxify acrolein [121].
The absence of glutathione biosynthesis protein might explain the susceptibility of C. jejuni
during in vitro studies to reuterin [122].

Bacteriocins production has a high metabolic cost; hence probiotic species will not
overproduce it. Supplementing encapsulated bacteriocins with probiotic species might
play a prominent role in competitively excluding C. jejuni from the avian gut.

5.6. Vaccines

Vaccination remains a potentially effective strategy to mitigate the prevalence of
foodborne pathogens (C. jejuni and Salmonella) in poultry production [123]. Vaccination
aims to stimulate a mucosal anti-Campylobacter jejuni immune response and reduce the C.
jejuni load at market age. Several vaccine strategies have been developed to control C. jejuni
in broilers:

5.6.1. Whole Cell Vaccine and Live Attenuated Vaccine

A formalin-killed C. jejuni whole cell vaccine containing 2.7 × 108 CFU/mL C. jejuni
combined with an oil adjuvant or aluminum hydroxide gel adjuvant was inoculated sub-
cutaneously in Japanese Jordi chicken at 37 days of age [124]. The aluminum hydroxide
gel adjuvant group received a booster at 58 days of age. The birds were challenged with
C. jejuni on 72 days of age. Both vaccine groups induced high anti-C. jejuni IgG lev-
els [124]. Similarly, a formalin-killed C. jejuni whole-cell vaccine was formulated with or
without an E. coli heat-labile toxin as an adjuvant. The vaccine administration enhanced the
anti-C. jejuni levels and reduced C. jejuni colonization from 16% to 93% in the vaccinated
group compared with the non-vaccinated one [125]. However, the E. coli heat liable toxin
did not increase the immunogenicity of the vaccine [125].

Oxidative stress response plays a significant role in C. jejuni’s enteric lifestyle. C. jejuni
oxidative stress defense mutant shows a low ability to persist in the avian gut. In this
study, birds were orally gavaged with 0.5 mL of C. jejuni ∆ahpC mutant at 3 and 7 days of
age, followed by a challenge (WT C. jejuni) at 14 days of age [126]. The pre-colonization
of broilers with the C. jejuni ∆ahpC mutant decreased the C. jejuni by three log CFU/g
reduction at 42 days of age [126]. These results suggest that the C. jejuni ∆ahpC mutant
has the potential to be used at the farm level to control C. jejuni at the preharvest stage;
however, more safety studies are required at a farm level.
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5.6.2. Crude Cell Lysate

The efficacy of a nanoparticle vaccine composed of poly lactide-co-glycolide nanopar-
ticle (NP) and encapsulated 25, 125, or 250 µg outer membrane of C. jejuni was evaluated
against C. jejuni [127]. The subcutaneous route induced the highest immune response in
vaccinated broilers and decreased the C. jejuni load by 5.7 logCFU/g in the ceca [127].
Similarly, the oral delivery of C. jejuni oral lysate reduced the C. jejuni load in layer
and broiler chickens by 2.24 log CFU/g and 2.14 log CFU/g, respectively, at 22 days
post-infection [128].

5.6.3. Subunit Vaccine

Type VI secretion system (T6SS) enables bacteria to infect neighboring cells and plays
a vital role in inter-bacterial competition and bacterial communication with the host’s
cells [129]. In C. jejuni, the type VI secretion system (T6SS) plays a role in evading the
immune system and bacterial survival [130]. A subunit vaccine was formulated from
a purified 50 µg of recombinant hemolysin co-regulated protein (RHCP) entrapped in
chitosan sodium tripolyphosphate nanoparticles [131]. The broilers were orally gavaged
with subunit vaccine at 7 days of age and then boosted at 14 and 21 days of age [131]. The
vaccinated broilers were then challenged with C. jejuni at 28 days of age. The vaccinated
group had one log CFU/g reduction of C. jejuni load in the ceca [131].

5.6.4. Bacterial Vector-Based Vaccine

Live or genetically engineered bacterial strains emerge as potential vaccine candidates
against enteric pathogens. Bacteria that are avirulent to chickens and elicit an immune
response are considered suitable vectors. These vectors can present C. jejuni virulent
antigens to the birds’ immune system. C. jejuni mutants show a transient colonization
pattern in the chicken gut and do not persist enough to activate an immune response [132].
Avirulent Salmonella and Lactobacillus strains are the bacterial vectors of choice for creating
a bacterial vector-based vaccine against C. jejuni. An avirulent Salmonella Typhimurium
χ3987 strain expressing CjaA was orally gavaged in broilers at 1 and 14 days of age
(booster) [133]. At 28 days of age, the broiler was challenged by C. jejuni. The vaccine
inoculation led to 6.0 log CFU/g reductions in the C. jejuni cecal load [133].

Finally, phase variation and strain differences in C. jejuni, C. coli, and C. lari compli-
cate the development of a potential vaccine that can decrease campylobacteriosis around
the globe.

5.7. Quorum Sensing Inhibitors

In broilers, C. jejuni cecal load can reach up to 1 × 109 CFU/g [134]. C. jejuni can detect
and respond to rapid changes in bacterial densities using quorum sensing [135]. Quorum
sensing is a cell-to-cell communication in which bacteria produce, detect, and respond
to signaling molecules known as autoinducers [136]. The accumulation of autoinducers
happens in a density-dependent manner [135]. When the autoinducer concentration reaches
a certain threshold, it leads to the activation of a signal cascade [137]. The signal cascade
alters gene expression, resulting in morphological changes in the bacterium that aids its
survival in the environment [137].

At first, quorum sensing studies in C. jejuni identified a gene that encodes an ortho-
logue of the LuxS system that mediates the production of autoinducer-2 (AI-2) [138]. In
the same study, the C. jejuni luxS mutants showed a decreased motility in semisolid media,
indicating a key role of luxS in regulating darting motility in C. jejuni [138]. Furthermore,
the role of luxS in host colonization was evaluated in a study testing the colonization ability
of the C. jejuni luxS mutant strain vs. the C. jejuni wild-type strain [139]. The luxS mutant
showed decreased colonization capacity in chicken seven days post-inoculation; however,
some birds inoculated with the luxS mutant strains maintained a similar level of coloniza-
tion compared with groups inoculated with the wild-type strain [139]. Furthermore, a
competitive fitness experiment between the wild-type and luxS mutant showed a decrease
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in the recovery of the mutant in comparison with the wild-type, indicating an important
role of luxS in C. jejuni fitness [140].

The imminent role of luxS in C. jejuni’s adaption to environmental conditions [141],
expression of virulence factors [140], and biofilm formation [142] make it a potential
target for controlling C. jejuni infection. In vitro, (-)-α-pinene showed an anti-quorum
sensing activity against C. jejuni by decreasing the C. jejuni quorum signaling by more than
80% [143]. The supplementation of 250 mg/L of (-)-α-pinene in C. jejuni-challenged broilers
resulted in 0.8 log CFU/g reduction in the cecal load [143]. (-)-α-pinene inhibitory activity
against C. jejuni is attributed to (-)-α-pinene ability to inhibit efflux pump activity and
quorum sensing, which play a crucial role in colonizing the host [143]. Thus, (-)-α-pinene
can potentially contribute to the control of C. jejuni in broilers.

Citrus extracts decreased motility and biofilm formation in E. coli O157:H7, S. ty-
phimurium, and P. aeruginosa. Similarly, citrus extracts inhibited C. jejuni autoinducer-2
quorum sensing, resulting in lower motility and lower biofilm formation [144]. Similarly,
Sedum rosea (roseroot) extract decreased C. jejuni quorum signaling by more than 90% and
decreased C. jejuni invasion of INT407 cells by 80% [145]. These results demonstrate the
ability of natural phenolic compounds to alter the quorum sensing in C. jejuni, resulting in
a lower fitness in C. jejuni. Quorum inhibitory compounds are a promising tool to control
C. jejuni in poultry. However, additional studies are needed to determine the required dose
and treatment period to decrease the load of C. jejuni in poultry. The control strategies of
C. jejuni are summarized in Figure 3.
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6. Conclusions

Chicken around the globe remains the main reservoir for campylobacteriosis in hu-
mans. With the increase in campylobacteriosis worldwide, antibiotic resistance in C. jejuni
and increased post-C. jejuni infection complications (such as GBS and MRS), looking for a
suitable control strategy becomes the need of the hour. A multi-hurdle approach is needed
to ensure the control of foodborne pathogens from farm to fork. Strict biosecurity combined
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with feed additives and a suitable vaccine (if developed) might be the method of choice to
control C. jejuni in broiler production.
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