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Abstract: An in silico study that featured the effect of starter cultures on the bioactivity and other
health benefits of peptides in semi-hard cheese is presented in this contribution. Model Caciotta-type
cheese samples were obtained in laboratory conditions in two variations. Sample A included starter
cultures of Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Sample B included
starter cultures of Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, and a culture of
lactobacilli Lacticaseibacillus casei. The in silico method showed that the peptides inhibited angiotensin-
converting enzymes (ACE) and ipeptidyl peptidase IV (DPP-4), as well as possessed antioxidant
properties. Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris had a greater effect on
the formation of bioactive peptides.

Keywords: starter cultures; bioactive peptides; semi-hard cheeses; Lactococcus lactis subsp. lactis;
Lactococcus lactis subsp. cremoris; Lacticaseibacillus casei

1. Introduction

Modern foods not only provide the body with nutrients and satisfy hunger, but also
improve physical and mental well-being and prevent nutrition-related diseases [1–7]. If
consumed regularly, antioxidants improve human health and life quality, inhibit aging, and
prevent cancer, cardiovascular diseases, neurological disorders, etc. [8–20].

Dairy products are consumed in all parts of the world, and the dairy sector is the most
prominent market of functional food with global prospects. Safe and live microbes can be
fermented with specially cultivated strains and obtain health-promoting properties that
reduce the risk of certain diseases if these functional products are part of one’s daily diet.
Cheese is one of such dairy products [21–25]. Cheese is a fresh or mature dairy product that
is obtained by coagulating milk with enzymes, microorganisms, acids, etc. This product is
an integral part of almost all traditional cuisines, and its historical role in human diet can
hardly be overestimated. Cheese is easy to digest and rich in nutrients, which makes it an
important and versatile source of proteins, short-chain fatty acids, vitamins, and minerals,
depending on the region [26–30].

Biochemical reactions that occur in semi-hard and hard cheeses during ripening shape
their sensory profile. These reactions result from the metabolism of lactic acid bacteria
(LAB) introduced as starter cultures during the production process, as well as bacteria
that are initially present in raw milk or may enter it from the environment. The nutrient
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medium for the cheese microbiota in ripening cheese includes short peptides or amino
acids of protein molecules, citrates, lactates, bacteriolysis products of starter cultures of
LAB, and free fatty acids [31,32].

Food-derived bioactive peptides are becoming more and more popular as the global
consumer gets more aware of their specific properties that help strengthen the immune
status. Bioactive peptides are relatively small fragments of dietary proteins. As a rule, they
consist of 2–20 amino acid residues. Bioactive peptides can be ligands, and therefore they
can target the immune, cardiovascular, digestive, and endocrine systems [33–35]. Some
food-derived peptides have antioxidant, immunomodulatory, antihypertensive, anticancer,
anti-inflammatory, antimicrobial, opioid, and hypocholesterolemic properties. They can
modulate intestinal microbiome and prevent diabetes and chelate metals [36–38]. The
biological activity of peptides depends mainly on their amino acid composition, sequence,
length, and charge of peptides [39–41].

Modern science knows hundreds of peptides with different biological activities iden-
tified and isolated from various food sources, e.g., milk, whey, eggs, fish, rice, soybeans,
peanuts, chickpeas, corn, and some algae [42]. However, only a few peptides have become
functional nutraceuticals that are used in food production. Only milk and fish bioactive
peptides seem to have established a relatively high presence in the current food ingredient
market. Antioxidant peptides usually contain hydrophobic amino acids and histidine,
phenylalanine, tryptophan, or tyrosine residues [43,44].

Bioactive peptides are obtained from milk or other food proteins during proteolysis
under the action of proteolytic enzymes and microbial fermentation. They are currently
of great interest to scientists [45–47]. Cheeses are purely protein products, which makes
them the main precursors of bioactive peptides, as well as milk protein hydrolysates.
Bioactive peptides are organic molecules with a potential biological activity that can affect
certain body functions and human health in general. Bioactive peptides can serve as
alternative preventive treatments against various metabolic diseases because they have a
broad-spectrum and biospecific activity. Moreover, they are hypoallergenic and structurally
diverse. Depending on the amino acid sequence, composition, length, and charge, active
peptides can exhibit an impressive array of biological properties. They possess antioxidant,
antimicrobial, immunomodulatory, anticancer, antihypertensive, anti-inflammatory, opiate,
and antilipidemic activities that improve the cardiovascular, gastrointestinal, immune,
and endocrine systems. They do not accumulate in the body and quickly degrade in
the environment. They usually contain 2–20 amino acid residues and are encoded in the
primary structure of animal and plant proteins in an inactive form [48–50].

Our research objective was to study the effect of starter cultures on the bioactivity
and other health benefits of peptides in semi-hard cheeses using the in silico method.
The experiment featured ninety-day-old model Caciotta-type cheeses with Lactococcus
lactis subsp. lactis (Lc. lactis subsp. lactis), Lactococcus lactis subsp. cremoris (Lc. lactis
subsp. cremoris) and Lacticaseibacillus casei (Lac. casei). They were tested for chemical
composition, peptide sequence, and molecular weight of peptides. The in silico analysis
featured the bioactivity, structure, and hydrophobic and hydrophilic properties of the
identified peptides. The results obtained made it possible to identify the effect of starter
cultures on the bioactivity and other properties of the semi-hard cheese peptides.

2. Materials and Methods

The model cheese samples of the Caciotta type were produced in laboratory conditions
from Jersey cow milk.

2.1. Model Caciotta-Type Cheese Production

The standard Caciotta cheese has a protein/fat ratio of 0.92. Table 1 presents the main
technological parameters applied in the laboratory production of of cheese Caciotta.
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Table 1. Main technological parameters for the production of laboratory samples of cheese Caciotta.

Starting Components Basic Cheese-Making Parameters

cow milk 10 L Pasteurization milk 64 ◦C, 30 min

annatto (for winter milk) * 5–6 drops Inoculation (fermentation) 34 ◦C, 10 min

* prefabricated bacterial mesophilic culture (Lc. lactis
subsp. lactis V-1568; Lc. lactis subsp. cremoris V-1569)

(control cheese A)
(National Bioresource Center Russian Collection of

Industrial Microorganisms (VKPM))

150 g (0.5% of the milk volume Flocculation multiplier 3

** prefabricated bacterial mesophilic culture (Lc.
lactis subsp. lactis V-1568; Lc. lactis subsp. cremoris
V-1569; Lac. casei V-9227) (experimental cheese B)

(National Bioresource Center Russian Collection of
Industrial Microorganisms (VKPM))

100 g
(50/50, respectively) Cheese cube size 1.0 cm

calcium chloride (10–20% solution CaCl2) in an
aqueous solution (for pasteurized and winter milk) 10 mL Granular curd heating

temperature 45 ◦C

milk-clotting enzyme
(“Carlina” (composition: 90% rennet chymosin, 10%
pepsin; manufacturer: Danisco France SAS, France)

0.35 g
(in the amount necessary for

12–15 min of flocculation time)

Stuffature (the cheese head
was turned eight times); 1.5 h at 45 ◦C

Development at room
temperature ≥ 22 ◦C 4 h

Maturation time
(see final product in Figure 1). 90 days

* prefabricated bacterial mesophilic culture (control cheese A) (Lc. lactis subsp. lactis V-1568; Lc. lactis subsp.
cremoris V-1569) (National Bioresource Center Russian Collection of Industrial Microorganisms (VKPM)). ** prefabricated
bacterial culture (experimental cheese B) (Lc. lactis subsp. lactis V-1568; Lc. lactis subsp. cremoris V-1569; Lac. casei
V-9227) (National Bioresource Center Russian Collection of Industrial Microorganisms (VKPM)).
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Figure 1. Mature Caciotta-type cheese.

2.2. Micrographs of the Lactobacilli

Micrographs of the lactobacilli were obtained using a scanning electron microscope with
systems for an energy-dispersive microanalysis, a wave dispersion microanalysis, and a Nova
NanoSEM 450 backscattered electron diffraction analysis system (Czech Republic) [51].

The test sample with a volume of about 1–5 g was placed in a liquid dispersion module
(volume 500 mL). The measurement started automatically as soon as the absorbance value
reached the specified value.

Measurement parameters:

– Type of measurement—according to the Fraunhofer method;
– Measurement range—from 0.1 µm to 1021.87 µm;
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– Resolution—102 channels;
– Absorption—10.00%;
– Measurement duration—90 scans.

2.3. Protein Analyses

The protein mass fraction was determined using a Rapid N Cube total nitrogen
(protein) analyzer by the Dumas method: after burning the sample, the total nitrogen was
registered by a thermal conductivity detector [52].

2.4. The Molecular Weight Distribution

The molecular weight distribution was determined by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-Na) [51]. Proteins were fractioned in denaturing polyacrylamide gel
(separating 12% and focusing 4%) with 0.1% of SDSNa. The electrophoresis procedure was
performed at a single buffer with the addition of 0.1% SDS-Na at 15 mA. The gel was dyed
with 0.2% of Kumassi R-250 dye (prepared in glacial acetic acid) and then rinsed three times
with distilled water. Gel visualization and analysis were performed using the Gel Doc XR+ Gel
Documentation System. The molecular weight was calculated using the Peptide Mass Calculator
(http://rna.rega.kuleuven.be/masspec/pepcalc.htm (accessed on 1 June 2022)).

2.5. Amino Acid Analyses

The amino acid sequence of the hydrolysate peptides was determined by the method
of matrix-activated laser desorption/ionization on a MALDI Biotyper (Bruker), equipped
with a UV laser (Nd) in the positive ion mode using a reflectron; the accuracy of the
measured monoisotopic masses after the additional calibration by trypsin autolysis peaks
was 0.005% (50 ppm). The spectra were obtained in the mass range of 600–5000 m/z,
choosing the laser power that was optimal for reaching the best resolution. To obtain the
fragmentation spectra, the tandem device mode was used; the measurement accuracy of
fragment ions was no lower than 1 Da. [53].

2.6. Biological Activity of Peptides In Silico

The peptide bioactivity was assessed in silico using the PeptideRanker online server
(http://distilldeep.ucd.ie/PeptideRanker/ (accessed on 5 June 2022)), which ranks pep-
tides according to their potential biological activity [54].

2.7. Visualization of Dihedral Amino-Acid Angles

The visualization of the dihedral angles ϕ against ψ of amino acid residues in the
protein structure was performed using the SWISS-MODEL resource (https://swissmodel.
expasy.org/interactive (accessed on 8 June 2022).) according to the simulated Ramachan-
dran Maps [55].

2.8. D protein Structure Modeling

The structure modeling stage employed the SWISS-MODEL service (https://swissmodel.
expasy.org/interactive (accessed on 10 June 2022)), which includes the SWISS-MODEL reposi-
tory and the SWISS-MODEL interactive workspace. This automated protein structure homol-
ogy modeling platform generates 3D protein models using a comparative approach and a
database of existing models for key reference proteomes based on UniProtKB [55].

2.9. Modeling the Structure of Peptides

The structure of the peptides was modeled using the PepDraw online tool (http://
www2.tulane.edu/~biochem/WW/PepDraw/ (accessed on 15 June 2022)). The MBPDB
database of bioactive milk peptides made it possible to identify and determine the protein
and the properties of the peptides [56].

http://rna.rega.kuleuven.be/masspec/pepcalc.htm
http://distilldeep.ucd.ie/PeptideRanker/
https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
http://www2.tulane.edu/~biochem/WW/PepDraw/
http://www2.tulane.edu/~biochem/WW/PepDraw/
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2.10. Hydrophobicity and Hydrophilicity of Proteins

The hydrophobicity and hydrophilicity of proteins were predicted based on the
ProtScale online service (https://web.expasy.org/protscale/ (accessed on 19 June 2022)).
This online service calculates and constructs two-dimensional graphs for the protein profile
selected by any amino acid scale. It determines the amino acid scale by the numerical
value assigned to each type of amino acid. The method uses the Kite and Doolittle scale
that features individual values for 20 amino acids: Ala: 1.800, Arg: −4.500, Asn: −3.500,
Asp: −3.500, Cys: 2.500, Gln: −3.500, Glu: −3.500, Gly: −0.400, His: −3.200, Ile: 4.500,
Leu: 3.800, Lys: −3.900, Met: 1.900, Phe: 2.800, Pro: −1.600, Ser: −0.800, Thr: −0.700, Trp:
−0.900, Tyr: −1.300, Val: 4.200, −3.500, −3.500, −0.490. When assessing the topology of
a protein and its hydrophobicity by the Kite and Doolittle scale, the graph peaks that are
greater than zero characterize the hydrophobic region, and those below zero describe the
hydrophilic region [57].

3. Results

The model cheese samples were synthesized according to the technology described
in Section 2.1. The model cheeses (250 ± 20 g) ripened at 12–14 ◦C and relative humidity
of 80–85%. Their chemical composition and active acidity were determined on day 90
(Table 2).

Table 2. Chemical composition of model cheeses on day 90.

Index Cheese A * (Control) Cheese B **
(Test)

Mass fraction of solids, % 55.16 ± 0.21 54.85 ± 0.23

Mass fraction of fat in solids, % 48.93 ± 1.95 49.50 ± 1.04

Mass fraction of total protein, % 20.23 ± 0.28 21.23 ± 0.31

Mass fraction of salt, % 2.34 ± 0.72 3.13 ± 0.55

pH 4.74 ± 0.18 4.13 ± 0.06
Cheese A * contained starter cultures of Lc. lactis subsp. lactis and Lc. lactis subsp. cremoris. Cheese B ** contained
starter cultures of Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris and Lac. casei, 0.5% + 0.5%.

It is shown in Table 1 that the chemical composition of the model cheeses was almost
the same. However, the active acidity was lower in the experimental samples with Lac. casei
(0.5% + 0.5%). The biochemical properties of LAB include acid formation energy, limiting
acidity, ability to ferment citric acid salts, curd quality, proteolytic activity, etc. [24]. Lactic
acid streptococci have different activities. L. lactis was the first microorganism isolated in
pure culture (in 1873 by Lister). L. lactis subsp. lactis is homofermentative bacteria. During
ripening, these bacteria ferment glucose via the fructose bisphosphate pathway also known
as the Embden-Meyerhof-Parnas (E.M.P.) pathway, which is similar to that of alcohol.
Pyruvate, however, does not decarboxylate to acetaldehyde, like in alcoholic fermentation:
it is used directly as an electron (hydrogen) acceptor. D-lactate dehydrogenase in LAB
marks the formation of D(–)-lactic acid, while L-lactate dehydrogenase marks L(+)-lactic
acid. DL-lactic acid is determined by the synthesis of two lactate dehydrogenases of
different stereospecificity accompanied by the L(+)-lactic acid formation. They are strong
acid formers and exhibit proteolytic activity during cheese ripening [58–61].

Unlike L. cremoris neither ferment maltose and dextrin nor de-aminates arginine.
At low cultivation temperatures (15–20 ◦C), some strains form a significant number of
volatile acids. The energy of acid formation in L. cremoris is weaker than in L. lactis. Lac.
casei is homofermentative and ferments lactose, releasing mostly lactic acid; however,
these bacteria develop slowly in milk. Lac. casei has prominent saccharolytic properties. It
ferments fructose, galactose, mannitol, mannose, raffinose, ribose, salicin, sorbitol, trehalose,
esculin, etc. Glucose is fermented without gas formation. Lactobacilli produce a number
of hydrolytic enzymes, e.g., lactase, which breaks down lactose (milk sugar) and prevents

https://web.expasy.org/protscale/
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lactase deficiency [62,63]. Lac. casei is found in various cheeses, especially at the late
ripening stages. Lac. casei can form chains with different numbers of cells and produce gas
from sodium citrate [64]. LAB is shown in Figure 2.
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The change in casein fractions during the proteolysis of milk proteins was determined
in the model cheese samples by the electrophoresis in polyacrylamide gel (Figure 3).
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The proteolytic activity during cheese ripening depends on several factors, such as type
of coagulant, native milk microbiota and starter cultures, residual effect of the coagulant
and native milk proteases, which can be affected by the moisture content in the cheese,
its temperature, and relative humidity, ripening conditions, etc. Electrophoresis is one of
the most common observation methods for cheese ripening. It can detect various casein
fractions and protein breakdown products throughout the whole ripening process [65].
Fractions of α-casein are more susceptible to proteolysis, while degradation of β-casein
occurs much less frequently [66]. Electrophoresis methods separate proteins by molecular
weight and compare the staining intensity of polypeptide chains in the polyacrylamide gel.

Clear casein bands with different levels of hydrolysis throughout the ripening period,
which indicates that the process involved several factors are shown in Figure 3. Although in
Figure 3 are clear bands of various casein fractions, the fractions with the lowest molecular
weight prevailed both on day 60 and day 90 of ripening. All samples demonstrated peptides
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with a molecular weight of 1.1–14.5 KDa. As for the sensory evaluation, cheese B had a
more pronounced taste and aroma on day 90 due to Lac. casei in its starter culture. After
90 days of ripening, both cheeses were tested for peptide sequences and their bioactivity
(Table 3).

Table 3. Peptide sequences and their bioactivity.

Sample Fragment in Amino Acid Sequence Peptide Sequence in one Letter Code * Bioactivity Molecular Weight, Da

A 1–5 MMKSF 0.730558 643.3

A 1–5 MKVLI 0.194789 603.4

A 1–7 MMSFVSL 0.488188 894.4

A 7–11 LVVTI 0.0498343 624.3

A 8–12 VVTIL 0.0759513 624.3

A 11–16 TCGAQA 0.162151 550.2

A 16–21 RPKHPI 0.396125 747.5

B 20–28 EQLTKCEVF 0.154299 1176.5

B 22–31 KHQGLPQEVL 0.224327 1148.6

A 22–31 NVPGEIVESL 0.118838 1056.6

A 23–28 TKCEVF 0.182253 806.3

A, B 31–35 SQETY 0.0993374 627.3

B 31–42 SQETYKQEKNMA 0.127054 1536.6

A 32–38 SSSEESI 0.0916819 978.2

A, B 35–42 KGYGGVSL 0.226416 780.4

A, B 38–45 GGVSLPEW 0.628953 844.4

A, B 39–43 FSDKI 0.403109 609.3

A 39–45 TRINKKI 0.0758366 872.6

A 43–50 INPSKENL 0.208794 914.5

A 43–50 PEWVCTTF 0.703949 1142.4

A 44–50 NPSKENL 0.209493 801.4

A, B 46–50 VCTTF 0.383259 650.2

A 48–59 GKEKVNELSKDI 0.105419 1439.7

A, B 51–62 CSTFCKEVVRNA 0.32156 1436.6

A 51–55 QSAPL 0.491633 515.3

A, B 51–55 HTSGY 0.16794 724.2

A, B 51–59 HTSGYDTQA 0.090863 1139.3

A 52–56 VLSRY 0.181831 637.4

A, B 54–59 SRYPSY 0.442889 1012.3

A, B 55–67 CKEVVRNANEEEY 0.0499419 1662.7

A 56–60 DTQAI 0.094131 547.3

A 57–61 PSYGL 0.748397 696.2

B 60–67 GSESTEDQAMEDI 0.0764591 1571.5

A, B 60–68 GSESTEDQA 0.0703232 1163.3

B 61–69 VQNNDSTEY 0.0623822 1149.4

B 63–69 NEEEYSI 0.0502548 883.4

A 64–70 YQQKPVA 0.12662 913.4

A 65–70 QQKPVA 0.121875 670.4

A 69–73 QTQSL 0.105763 656.3

B 70–77 GSSSEESA 0.0857066 833.3

A 72–76 INNQF 0.436729 635.3
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Table 3. Cont.

Sample Fragment in Amino Acid Sequence Peptide Sequence in one Letter Code * Bioactivity Molecular Weight, Da

A 73–77 NNQFL 0.693175 635.3

B 73–80 KQMEAESI 0.0604811 1015.4

A 76–81 TFPGPIP 0.774112 627.4

A 78–86 EVATEEVKI 0.0379171 1017.5

B 78–86 ESISSSEEI 0.0703352 1140.4

B 80–91 CKDDQNPHSSNI 0.313549 1437.5

B 80–94 CKDDQNPHSSNICNI 0.61108 1687.7

B 87–93 TVDDKHY 0.0687443 957.4

A 87–96 TVDDKHYQKA 0.0839258 1284.6

B 87–96 VPNSVEQKHI 0.119726 1150.6

A, B 87–92 AVRSPA 0.171253 680.3

A, B 88–94 VRSPAQI 0.149257 850.4

A, B 90–94 EKTKI 0.0411874 618.4

A, B 90–96 EKTKIPA 0.0778473 866.4

A, B 93–102 TQTPVVVPPF 0.213655 1164.6

B 93–103 TQTPVVVPPFL 0.336248 1197.7

B 95–100 SCDKFL 0.844337 712.3

A 96–100 QWQVL 0.584037 673.4

A 100–104 LDDDL 0.294973 590.3

A 101–108 DDDLTDDI 0.139488 921.4

A 103–109 LNENKVL 0.0983577 829.5

A 104–109 NENKVL 0.0944044 716.4

B 107–117 KSCQAQPTTMA 0.451658 1325.5

A 110–115 VLDTDY 0.109603 805.3

A, B 115–119 RLKKY 0.162844 707.5

A 116–122 DKVGINY 0.13778 644.4

A, B 120–126 KVPQLEI 0.109796 826.5

A 122–127 CMENSA 0.152971 734.2

A, B 125–131 DQVKRNA 0.0817682 830.4

A 127–131 VPNSA 0.12024 567.2

A 127–134 PKYPVEPF 0.630562 976.5

B 128–133 EPEQSL 0.108742 702.3

A 128–134 EPEQSLA 0.111383 853.3

B 129–134 LCSEKL 0.227722 888.4

A, B 130–134 CSEKL 0.263366 692.4

A 130–134 PVEPF 0.604782 588.3

B 130–137 CSEKLDQW 0.393924 579.3

A, B 135–140 TESQSL 0.0615565 904.2

A, B 135–142 TESQSLTL 0.0988356 1198.3

A 135–143 TPTLNREQL 0.0748829 1151.5

B 136–142 HSMKEGI 0.177846 801.4

A, B 138–142 LCEKL 0.274007 1008.4

A, B 143–151 HAQQKEPIM 0.258844 1081.5

A 148–159 SGEPTSTPTTEA 0.0824745 1177.5

A 160–165 VESTVA 0.0342661 605.3
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Table 3. Cont.

Sample Fragment in Amino Acid Sequence Peptide Sequence in one Letter Code * Bioactivity Molecular Weight, Da

A, B 160–167 VESTVATL 0.0738447 899.4

A, B 163–176 TKKTKLTEEEKNRL 0.0531694 922.5

B 166–172 SFNPTQL 0.619614 806.4

A 166–174 TLEDSPEVI 0.0723477 1162.4

A, B 167–172 PPTVMF 0.826762 771.3

A 168–180 EDSPEVIESPPEI 0.166577 1440.7

A 168–172 NPTQL 0.293133 572.3

A, B 173–180 PPQSVLSL 0.487707 840.5

A 174–178 YPSGA 0.433892 574.2

A, B 175–179 PSGAW 0.870583 597.2

A 175–180 ESPPEI 0.211756 671.3

A, B 179–186 SLSQSKVL 0.184348 941.5

A 180–186 KKISQRY 0.127085 922.5

A, B 181–186 SQSKVL 0.210141 741.4

B 181–189 TVQVTSTAV 0.0291752 1160.4

A, B 181–192 SQPKVLPVPQKA 0.343103 1281.8

A 182–188 VPLGTQY 0.161862 937.3

A, B 183–189 SQRYQKF 0.584592 1036.5

A, B 185–191 GTQYTDA 0.086917 755.3

A 189–194 TDAPSF 0.417727 717.2

A 192–197 PSFSDI 0.547239 665.3

A, B 195–201 SDIPNPI 0.573163 755.4

A 200–204 QHQKA 0.0976463 611.3

A, B 202–213 IGSENSEKTTMPLW 0.351255 1533.5

A, B 205–209 MKPWI 0.853622 674.4

A 208–213 YQEPVL 0.234191 748.4

A 209–216 IQPKTKVI 0.108562 926.6

B 210–218 QPKTKVIPY 0.213985 697.4

A, B 217–221 PYVRY 0.446831 1233.6

* A—alanine; C—cysteine; D—aspartic acid; E—glutamic acid; F—phenylalanine; G—glycine; H—histidine;
I—isoleucine; K—lysine; L—leucine; M—methionine; N—asparagine; P—proline; Q—glutamine; R—arginine;
S—serine; T—threonine; V—valine; W—tryptophan; Y—tyrosine; Bold font indicates potential bioactive peptides

Eighteen potentially bioactive peptides out of 115 peptide sequences found in cheeses
A and B are shown in Table 3. Their bioactivity ranged from 0.547239 to 0.870583 units.
The results of the assessment of bioactive properties using the database of bioactive milk
peptides MBPDB confirmed the biologically active properties of the identified peptide
sequences. Further studies were carried out using the in silico method using the online
resources presented in Sections 2.6–2.10. Further research featured the effect of the cultures
on the protein structure. In Figures 4 and 5 are the Ramachandran plots that visualize the
dihedral angles of the polypeptide backbone (ψ and ϕ) in proteins.

Each point on the Ramachandran plots represents one amino acid. In a polypeptide,
the backbone bonds rotate relatively freely. These rotations are represented by torsion
angles Phi (ϕ) and Psi (ψ), respectively. The white areas correspond to conformations where
the polypeptide atoms come closer than the sum of their van der Waals radii. These regions
are sterically forbidden for all amino acids except glycine, which is unique in that it lacks
a side chain. Glycine molecules were observed in both cheese samples. Dark green areas
correspond to conformations without steric collisions, i.e., they are the regions allowed
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for the arrangement of amino acids, namely the α-helix and β-helix conformations. Light
green areas show the regions that are allowed in case the van der Waals radii are slightly
shorter, i.e., the atoms can move a little closer together. This additional region corresponds
to the left α-helix.
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Figure 4. Ramachandran plots (Cheese A).

L-amino acids cannot form extended sections of the left helix, but individual residues
sometimes adopt this conformation. As a rule, they are represented by glycine, but they
can also be asparagine or aspartate if the side chain forms a hydrogen bond with the main
chain and, therefore, stabilizes this otherwise unfavorable conformation. The forbidden
regions for amino acids in the model space are usually associated with the steric hindrance
between the C-β-methylene group of the side chain and the atoms of the main chain.
Glycine has no side chain and can take Phi (ϕ) and Psi (ψ) angles in all four quadrants
of the Ramachandran plot. As a result, glycine is often found in the turning regions of
proteins where any other residue would be sterically hindered.

The main areas are represented by the two dark green areas, while the three allowed
areas are light green. The nuclear regions (dark green in Figures 4a and 5a) represent the
most favorable combinations of ϕ and ψ and contain the highest number of points. The
allowed areas (light green) either cluster around the main areas or detach from the main
area. Nevertheless, they contain fewer data points than the main areas (dark green). The
white areas are prohibited for amino acids.
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For a more detailed analysis, we modeled Ramachandran plots for glycine (B), pre-
proline (C), and proline (D). These amino acids have different local steric hindrance proper-
ties and can take into account the effect of neighboring sequences. The proline side chain is
covalently linked to the preceding N backbone. Thus, proline is more strictly prohibited
than conventional residues. The residues, immediately before Pro (prePro), are limited as
a result of the steric interaction with the proline ring. The other 16 types of amino acids
prefer different regions, but their outer contours that separate the allowed regions from
rogue ones match very closely. That is why they are all grouped together in the general case
of distribution (Figures 4a and 5a). The general Ramachandran plot shows that the main
amino acids in cheese sample B are within the right α-helix, since the points representing
the location of the amino acids in the figure are presented at the lower left border of the
plot. The amino acids of cheese A are concentrated in the upper left border, which means
that this sample has a left-handed β-helix.

With the help of the SWISS-MODEL online service (https://swissmodel.expasy.org/
interactive (accessed on 10 June 2022)), they developed the protein structure models of the
studied cheeses (Figure 6).

Based on the obtained amino acid sequences, we determined the degree of hydrophilic-
ity and hydrophobicity of proteins. Their graphs were built using the ProtScale online
service based on the Kite and Doolittle scale (Figure 7).

In Figure 7a, it is illustrated that the peptides possess hydrophilic properties since
most graph peaks on axis Y range from –2.8 to 0, which hints at the hydrophobic properties
of the peptides on axis Y. Most hydrophobic regions have the following peptide sequences:

https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
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TVDDKHYQKA and TESQSLTL. Most peaks are amino acids: aspartic acid, threonine,
and serine. These amino acids have hydrophobic properties and 1–4 uncharged side
radicals. Protein regions with such amino acid residues can hydrate and interact with
other similar residues by hydrogen bonds. These peaks characterize the order of amino
acids with hydrophobic properties. As for the control sample, the maximal value on the
hydrophobicity scale belongs to threonine located in the 11-T region: it is 2.875 units. The
highest hydrophilic properties belong to valine located in the 127-V region: it is 2.798.
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Cheese B (Figure 7b) has the following characteristic trait. The main part of the peaks
in the hydrophobic region is in regions 131–154 and 198–202 with peptides CSEKLDQW,
LCEKL, HAQQKEPIM, and IPNPI Q, respectively. Most peaks above 0 are represented by
amino acids Q, P, L, K, I, and E, which possess hydrophobic properties and 1–3 uncharged
side radicals. Isoleucine (150—I) has a maximal hydrophobicity value of 2.00 units. Like
in the control sample, the peptide sequences of the test sample have a predominantly
hydrophilic nature.

The obtained data confirm the results published in [67,68] on the hydrophobic and
hydrophilic properties of these amino acids.
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The next research stage featured the characteristics of potential bioactive peptides.
Their structure was compiled using online servers. The characteristics of bioactive peptides
are presented in Table 4.

Table 4. Potential bioactive peptides.

Sample Peptide Sequence Bioactivity * Potential Bioactive
Properties ** Peptide Structure ***

A, B PSGAW 0.870583 ACE inhibitors
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Table 4. Cont.

Sample Peptide Sequence Bioactivity * Potential Bioactive
Properties ** Peptide Structure ***

A NNQFL 0.693175 DPP-4 inhibitor
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The assessment in Table 4 shows that the peptide samples are ACE inhibitors, DPP-4
inhibitors, and antioxidants. Based on the in silico studies, Lc. lactis subsp. lactis and
Lc. lactis subsp. cremoris in the control sample had a greater effect on the development of
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bioactive peptides. Thus, the control sample contained thirteen bioactive peptide sequences,
while the experimental sample with Lac. casei had only seven.

The sections of the bioactive peptides in cheeses A and B are shown in Figures 8 and 9.
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The identified bioactive peptides had aromatic rings that were represented mainly by
tryptophan, tyrosine, and phenylalanine. As for the peptide bioactivity in Table 3, peptide
sequence SCDKFL with high peptide bioactivity 0.8444337 was found only in cheese B with
Lac. casei. Peptide sequences MKPWI (0.853622) and PSGAW (0.870583) were found both in
the control cheese A and the experimental cheese B. These sequences also demonstrated a
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high bioactivity of peptides. All these peptide sequences included such essential amino
acids as lysine, isoleucine, leucine, phenylalanine, methionine, and tryptophan, which are
beneficial for human health and must be included in the diet. All these sequences inhibit
the angiotensin-converting enzyme (ACE). ACE inhibitors are responsible for multifactorial
actions in the human body, e.g., they relax blood vessels, thus, reducing blood pressure.
In medical practice, ACE inhibitors are known to reduce the hospitalization incidence for
heart failure as they increase life expectancy, exercise tolerance, and life quality [1,24,69].

4. Conclusions

Bioactive peptides appear as a result of biochemical and microbiological reactions
under the action of proteolytic enzymes and microorganisms in starter cultures during
the cheese ripening. They can act as ACE inhibitors. Regular consumption of mature
cheeses not only satisfies the need for protein and essential amino acids but also, under
certain circumstances, makes it possible to reduce or avoid taking pharmacological drugs.
This issue, however, requires further research in cooperation with medical scientists. The
authors believe that cheese can be regarded as a functional product. Cheese has a long shelf
life: the longer the period of its ripening, the more bioactive peptides and amino acids they
accumulate. This research proves that the accumulation of bioactive peptides in different
cheeses can be predicted depending on the strain of microorganisms in their starter cultures.
Biopeptide studies open certain prospects because various strains of microorganisms used
in the food industry, including cheese-making, are so beneficial that they can potentially
replace some pharmacological preparations, thus realizing the health-via-food concept.
Further research will feature different parameters and raw materials in cheese formulations.
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