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Abstract: The Brucella species is the causative agent of brucellosis in humans and animals. So far,
brucellosis has caused considerable economic losses and serious public health threats. Furthermore,
Brucella is classified as a category B bioterrorism agent. Although the mortality of brucellosis is low, the
pathogens are persistent in mammalian hosts and result in chronic infection. Brucella is a facultative
intracellular bacterium; hence, it has to invade different professional and non-professional phagocytes
through the host phagocytosis mechanism to establish its lifecycle. The phagocytosis of Brucella into
the host cells undergoes several phases including Brucella detection, formation of Brucella-containing
vacuoles, and Brucella survival via intracellular growth or being killed by host-specific bactericidal
activities. Different host surface receptors contribute effectively to recognize Brucella including non-
opsonic receptors (toll-like receptors and scavenger receptor A) or opsonic receptors (Fc receptors
and complement system receptors). Brucella lacks classical virulence factors such as exotoxin, spores,
cytolysins, exoenzymes, virulence plasmid, and capsules. However, once internalized, Brucella
expresses various virulence factors to avoid phagolysosome fusion, bypass harsh environments,
and establish a replicative niche. This review provides general and updated information regarding
Brucella phagocytosis mediated by pathogen-host interactions and their intracellular survival in
host cells.
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1. Introduction

Brucellosis is a globally distributed major bacterial zoonosis characterized by abortion
and reproductive failure in livestock, which seriously affects the development of animal
husbandry and international trade. Although the mortality rate is low, it is harmful to
human health as it can lead to a debilitating disease and serious chronic complications if left
untreated [1–3]. The transmission of infection to humans is primarily via direct contact with
animals, handling of contaminated tissues, and consumption of unpasteurized milk [1].
Furthermore, the Brucella species is classified as a category B bioterrorism agent due to its
ease of transmission via aerosol [4].

No licensed human vaccine is available against brucellosis, and despite harsh therapy
using a combination of two antibiotics for several weeks to months, relapses or clinical
failures still occur [5,6]. Consequently, the control of human brucellosis depends on the
control of brucellosis in livestock, which cannot primarily rely on vaccination alone but
must be tackled in combination with proper husbandry measures [6,7]. Additionally, the
widely used live attenuated Brucella vaccines for animals, such as Brucella (B.) abortus S19
and B. melitensis Rev. 1, both induce abortions, are virulent for humans, and interfere
with serodiagnosis. Furthermore, Rev. 1 is resistant to streptomycin, which is a necessary
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antibiotic used for the treatment of the disease, and B. abortus RB51 still presents residual
virulence [6,8].

The causative agent, Brucella species, is a Gram-negative facultative intracellular bac-
terium. Among Brucella species, three of them are known to be endemic in most countries
and are highly virulent to both their natural hosts and to humans, including B. abortus,
B. melitensis and B. suis that primarily infect cattle, sheep and goats, and domestic feral and
wild swine populations, respectively [4,9]. Brucella lacks well-known or classical virulence
factors such as spores, fimbriae, cytolysins, exotoxins, secreted proteases, antigenic varia-
tion, resistance forms, phage-encoded toxins, virulence plasmids, and capsules [7,10]. The
virulence factors that have been reported to be necessary for invasion, the establishment of
infection, as well as intracellular survival and replication of Brucella are cyclic β-1,2-glucan
(CβG), VirB T4SS, pathogen-associated molecular patterns, two-component sensory and
regulatory system BvrS/BvrR, and lipopolysaccharide (LPS) [2,7]. Brucella LPS is altered,
so it is a weak inducer of the host inflammatory response compared to LPS molecules
of other Gram-negative bacteria [9,11]. Other virulence factors include outer membrane
proteins, BacA, SagA, BmaC, BetB, BtaE, MucR, and a genomic island associated with
Brucella pathogenicity [7].

Brucella can infect both professional phagocytes such as macrophages and dendritic
cells (DCs), and non-professional phagocytes such as placental trophoblasts and epithelial
cells [6,11]. Other cells can also be infected by Brucella, such as neutrophils, lymphocytes,
and erythrocytes, although no efficient intracellular replication is attributed as they are
more associated with bacterial dispersion hence providing an indication of their regulatory
role in the persistence of the bacteria [1]. Due to its capacity to survive and replicate within
host macrophages, the Brucella pathogen has the ability to produce chronic infection that
could lead to life-long infections. Dendritic cells (DCs) are well-known antigen presenting
cells, which are also considered a safe haven for Brucella growth. Brucella can interfere
with their maturation leading to the inhibition of antigen processing and presentation
that circumvents the host immune response. Moreover, Brucella can infect the animal
placenta resulting in abortion. In particular, it can replicate in the placental trophoblasts,
where erythritol is produced. Indeed, the erythritol utilization is one of Brucella’s virulence
factors [11]. Four steps are essential for Brucella to infect the host: adherence, internalization,
intracellular growth, and dissemination within the host [7]. This review mainly focuses on
the phagocytosis of Brucella spp. into the host cells as well as its intracellular growth in the
macrophage cell model, on which there is currently still minimal information available to
completely describe Brucella’s interaction with its target cells and tissues.

2. Brucella Phagocytosis and Intracellular Survival
2.1. Pathogen Recognition
2.1.1. Bacterial Adhesion

As mentioned earlier, Brucella possesses the ability to cause chronic infection in many
different cell types. Brucella must break the epithelial barriers to cause systemic infection.
To do that, the bacteria first have to invade the host cells to initiate their intracellular
infectious cycle. Therefore, adhesion to the host cells is the first and most essential step
in the invasion process. Brucella expresses various adhesin molecules to mediate the
host and pathogen interaction. Brucella adhesins include the sialic acid-binding proteins
SP29 and SP41; BigA and BigB proteins containing the immunoglobulin-like domain;
the monomeric autotransporters BmaA, BmaB, and BmaC; the trimeric autotransporters
BtaE and BtaF; and collagen, vitronectin-binding protein Bp26. These molecules regulate
Brucella adhesion to host cell surface molecules and extracellular matrix components. In
addition to ensuring the adhesion of Brucella to the host cell surface, these adhesins are
considered immunogens or vaccine candidates to activate host immunity [12–17]. A study
by Castaneda-Roldan et al. [16] displayed that a Brucella surface protein SP41 can bind
selectively to epithelial HeLa cells. This adhesin protein is the expressed product of the
ugpB gene. Brucella ugpB knockout strain decreased bacterial internalization by 40- to
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50-fold less than the wild-type strain. Besides, another surface protein with an apparent
molecular mass of 29-kDa was demonstrated to target the host gangliosides structure on
red blood cells. A fraction of SP29 was found as a periplasmic protein in B. melitensis [18].
A region in chromosome 1 of B. abortus contains a gene, bigA, which codes an adhesin. This
adhesin mediates the adherence and invasion into Madin-Darby canine kidney (MDCK)
and Caco-2 cells. By performing immunofluorescence microscopy and Western blot assay,
this adhesin was proven to localize at the outer membrane and contain an immunoglobulin-
like domain, respectively [19]. It is noteworthy that VirB5 is an effector of a well-known
Brucella virulence factor T4SS that plays an essential role in Brucella infection and is also
recognized as an adhesin to contact with the host cells. Indeed, Deng et al. [20] determined
that a single domain antibody, BaV5VH4, can bind Brucella VirB5 protein, disrupting the
interaction between Brucella and host macrophage cells. Though the VirB5 protein in
Agrobacterium tumefaciens localizes to the T-pilus tip that contributes to host-cell recognition,
its direct adhesion function in this bacterium or Brucella is still unclear and needs to be
deeply clarified [21].

2.1.2. Host Receptors

Once Brucella adheres to host cells, the binding of the pathogen to various host cell
receptors activates a series of signaling pathways essential for bacterial uptake. Opsonized
bacteria are internalized via complement receptors (CRs) and Fc receptors (FcRs) which
promote the efficient phagocytosis of Brucella into host phagocytes. A major virulence
factor of Brucella, the LPS O-chain fragment, is responsible for binding to antibodies or
the C3 component of complement systems [22–24]. Opsonization of Brucella enhances the
uptake of Brucella into human monocytes [25]. Eze et al. [22] reported that antibody and
complement-mediated opsonization resulted in a profound increase in the phagocytosis of
B. melitensis in murine peritoneal macrophages in individual or synergistic effects. However,
another study by Rittig et al. [26] showed that the opsonization of Brucella by antibody
but not complement contributed to increasing the uptake of Brucella in human monocytes.
These authors proposed a reason that complement receptor 3 (CR3) has both opsonic and
non-opsonic binding sites. Thus, Brucella can bind directly to this receptor without the
need for the main opsonic complement fragment iC3b [26–28]. Although the opsonic entry
plays an essential role in the early stage of Brucella infection, studies have reported that the
contribution of FcRs and CRs in the phagocytosis of Brucella are still limited. Among FcRs,
FCγRIIA plays a crucial role in the phagocytosis of IgG2-opsonized bacteria. Hosseini
khah et al. [29] proved that FCγRIIA (CD32) and the polymorphism of this receptor are
associated with susceptibility to brucellosis in humans. The most efficient phagocytic
receptor among CRs is CR3 (integrin, Mac-1) [28,30].

On the other hand, host cell receptors classified as lectin and fibronectin receptors
recognize non-opsonized bacteria. Scavenger receptor A (SR-A) is a well-described lectin
receptor in recognition of Brucella. This receptor can effectively detect lipid A fraction
of LPS [31]. Interestingly, following Brucella internalization by SR-A recognition, T4SS is
considered a regulator for SR-A signal transduction that enables Brucella to establish an
intracellular lifecycle in the host cells [31,32].

Among host receptors that recognize Brucella, toll-like receptors (TLRs) are most char-
acterized for their functions in recognition and immune response against brucellosis [33].
Much experimental evidence suggests the essential role of TLRs in phagocytosis and in
the host signaling pathways to protect against Brucella infection. TLR2, TLR4, and TLR6
are supposed to recognize different membrane components of Brucella, while TLR3, TLR7,
and TLR9 have been found accountable for the detection of Brucella nucleic acid structure
motifs [34–38]. Although TLRs contribute to the host protection against Brucella infection,
these pathogens may interfere with TLRs-mediated immune signaling to evade recogni-
tion by the innate immune system. A TIR domain-containing protein in Brucella (TcpB)
interferes with MAL-TLR4 interaction leading to the inhibition of TLR4 signaling pathway.
Particularly, the DD loop of TB-8 and TB-9, which are TcpB-derived decoy peptides, is sup-
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posed to be able to specifically bind to the MAL TIR domain to form a dimer, then disrupt
MAL TIR domain-mediated interaction leading to the inhibition of TLR4 signaling. This
interference prevents DCs maturation and the cytotoxic activity of cytotoxic T lymphocytes
during Brucella chronic infection [39–41]. TLR2 recognizes Brucella lipoprotein, but it has
been revealed to have no function in controlling Brucella infection in the TLR2 knockout
mice model [42,43]. TLR4 can recognize LPS, and a non-canonical lipid A of LPS at a very
high concentration resulting in the promotion of the maturation phagocytic vacuoles and
inducing the pro-inflammatory cytokine TNF-α [44]. Regarding receptor costimulation,
Brucella can express more than one ligand for various host cell receptors. Heat-killed B.
abortus simultaneously costimulates TLR2 and TLR9 in mouse DCs. This costimulation
ensures bacterial phagocytosis and promotes the downstream signal transduction of these
receptors [45]. In addition, TLR2 also plays a critical role in Brucella invasion into tro-
phoblast giant cells [46]. This suggests that Brucella can infect different types of cells in the
same way.

2.2. Engulfment and Internalization Process Activation
2.2.1. Bacterial Engulfment

Upon translocation across the mucosal epithelial cell layer, professional phagocytes
such as macrophages, DCs, and macrophage-like cells engulf the bacteria in which <10%
of these phagocytosed Brucella survive and escape killing during the initial phase of
infection. Following the binding of Brucella, phagocytic and non-phagocytic receptors
mediate a variety of signaling pathways, leading to the remodeling of the cell membrane
structure to engulf bacteria [6,8]. Generally, Brucella induces a zipper-like mechanism for
internalization [47]. Up to 8 min after contact, Brucella moves in a swimming motion on
the cell surface with a generalized membrane ruffling. At the same time, the cell surface is
rearranged and actin polymerization is activated around the side of bacterial adherence.
Notably, these events depend on the Brucella virulence factor VirB [48,49]. Moreover, the
cellular prion protein (PrPc) is a glycoprotein anchored on the outer leaflet of the plasma
membrane. It is associated with phagocytosis via cytoskeletal rearrangement and the
host inflammatory response. The PrPc is described as a major internalization receptor on
M cells during Brucella via the oral route [50–52]. However, the role of PrPc in Brucella
internalization is still controversial. Indeed, upon B. melitensis infection, silencing of PrPc

in microglia cells did not affect bacterial phagocytosis and intracellular killing [53].
Actin polymerization is required in the penetration of Brucella into host cells. Bacterial

adhesion to cell surface involves other proteins acting as second messengers including
cGMP, PIP3-kinase, MAP-kinase, and tyrosine kinase that leads to activation of GTPases of
Rho subfamilies such as Rho, Rac, and Cdc42, which play a critical role in the regulation
of the cytoskeleton [8,54]. Additionally, a genome-wide small interfering RNA perturba-
tion screen was performed to identify novel host factors crucial for Brucella intracellular
trafficking. The results displayed that the prominently affected clusters are related to actin-
remodeling and phagocytosis. These clusters include ARP2/3, WASP regulatory complex,
and the small GTPases Rac1 and Cdc42 [55]. Consistently, adhesion to the macrophage sur-
face involves the activation of GTPases and F-actin polymerization where, at the early stage
of infection, annexin I is also implicated in membrane fusion [8,49,54]. Besides, adhesin
protein BigA was proven to induce actin-cytoskeleton rearrangement in MDCK and Caco-2
cell lines [19]. The TLR4/PI3-kinase signaling pathway is essential for smooth Brucella
strain internalization but not in the rough strain. The smooth strain infection quickly elicits
F-actin polymerization at the early stage of infection and fuses the early endosome faster
than the rough strain [56].

2.2.2. Formation and Maturation of Brucella-Containing Vacuoles

Internalization occurs via lipid raft microdomains at the macrophage cell membrane
that are rich in cholesterol, glycosylphosphatidylinositol, and gangliosides, and contribute
to the intracellular trafficking of Brucella [8,52]. Following interaction with the cell mem-
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brane of professional or non-professional phagocytes and around 5 min after entry, BCVs
enter the endocytic pathway, initiated by the fusion with early endosome, characterized by
Rab5, early endosomal antigen 1, and the transferrin receptor (TfR) markers [57,58]. At the
next stage of internalization, BCVs continue to fuse with the late endosomes that undergo
transient acidification, leading to changes in bacterial gene expression and intracellular
survival associated with the late endosomal markers Rab7, RILP, and Lamp1 during 4 h
post-infection (pi) [55,59,60]. The presence or absence of these lysosomal markers in the
BCVs maturation can be used to evaluate the effect of Brucella virulence factors on its intra-
cellular survival. Brucella expresses various effector molecules to modulate its intracellular
trafficking. For example, Brucella can secrete a lysozyme-like protein SagA identified as a
muramidase. This enzyme participates in the early stage of Brucella intracellular trafficking
by avoiding BCVs and lysosome fusion. In particular, it regulates the recruitment of Lamp1
in the BCVs maturation by an unknown mechanism [61]. In addition, Brucella membrane
fusogenic protein interacts with phospholipid vesicles to favor membrane fusion and is
involved in the recruitment of lysosomal markers, Lamp1 [62]. However, the specific mech-
anism in this event is still unclear [63]. A study by Naroeni et al. [64] revealed that live B.
suis prevented the fusion of B. suis-containing phagosomes with the lysosome compartment
while this association was clearly observed using killed B. suis.

The interaction between BCVs and endoplasmic reticulum (ER) from 4 to 8 h pi results
in the formation of replicative BCVs (rBCVs) with the presence of several ER markers such
as calnexin, calreticulin, and Sec61β [60]. It is noteworthy that interaction between lipid
rafts and O-chain of smooth Brucella LPS plays a vital role in the mediation of the bacterial
entry that leads to the development of specialized membrane-bound compartments known
as replicative phagosomes or replicative vacuoles [65]. The continuity of rBCV membranes
with the ER was observed unmistakably by applying the 3D-CLEM approach. This study
proposed a model where rBCVs are integrated into the ER meshwork [66]. On the other
hand, CβG is well-known as a virulence factor of Brucella sp. and can modulate lipid raft
organization. CβG probably acts on lipid raft to favor the recruitment of lipid raft marker
flotillin-1 from 0.5 to 8 h pi. In addition, CβG regulates the lysosome fusion and enables
BCVs to associate with ER [67,68].

2.3. Host Intracellular Killing or Bacterial Intracellular Growth
2.3.1. Host Bactericidal Effect against Brucella

Following bacterial engulfment by host cells, most ingested Brucella that are localized
in the endosomal BCVs (eBCVs) are killed within the phagolysosome compartment in the
last stage of phagosome maturation during 4 to 8 h pi. Using a fluorescent probe specifically
for proteolytic activity, during the first 6 h pi, the BCVs clearly showed fluorescent intensity
emission, and this remarkable fluorescence was not detected at 12 h pi [69]. The phagolyso-
some compartment displays many effectors that limit Brucella growth and survival such as
reactive oxygen species (ROS), nitric oxide (NO), and antimicrobial peptides [70,71]. Nitric
oxide and lysozyme activities are employed to monitor RB51 vaccine efficiency in cows [72].
This is because NO can react with structural elements, metabolic enzymes, nucleic acid,
and it inhibits bacterial secretion system expression. A study by Hu et al. [73] indicated that
thioredoxin-interacting protein (TXNIP), a multifunctional protein in metabolic diseases, is
involved in the production of NO and ROS, leading to the control of bacyccterial intracellu-
lar survival. These authors proposed a novel host pathway, iNOS/NO-TXNIP-iNOS/NO,
related to Brucella T4SS expression. Aside from NO, although ROS causes DNA, protein,
and lipid damage, Brucella possesses xthA-1 gene that encodes a protein that contributes to
oxidative stress resistance [74]. On the other hand, rough Brucella induces monocytes to se-
crete higher CXC, CC chemokines (GRO-α, IL-8, MCP-1α, MCP-1β, MCP-1, and RANTES),
pro-inflammatory (IL-6, TNF-α), and anti-inflammatory (IL-10) cytokines than the smooth
strain [75]. The lacking of the O-chain of LPS interferes with the fusion between the BCVs
and lysosomes [76]. Therefore, the decrease in bacterial viability is more dramatic with
strains that are lacking in the O-chain of LPS.
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2.3.2. Brucella Intracellular Survival

In the early stage of phagocytosis, a small proportion of BCVs allows Brucella to start
proliferating. Some evidence for this event include the inhibition of Rab7 recruitment,
which is essential for phagolysosome fusion, and the acidification of this compartment,
which triggers the expression of T4SS. Besides, Brucella chromosomal replication was
observed at 8 h pi within Lamp1-positive BCVs [77]. Up-to-date studies revealed that
effectors of T4SS have crucial roles in inhibiting host immune responses and promoting
intracellular trafficking and growth during Brucella infection. In particular, RicA can interact
with Rab2 GTPase, which is critical for Brucella intracellular trafficking [60]. VceC and VecA
are related to host autophagy and apoptosis. BtpA and BtpB are required to modulate host
immunity and energy metabolism. In addition, other T4SS effectors also play different
roles in the host-Brucella interaction that have been extensively studied, clarifying their
specific functions [78–80]. A study by Martinez-Nunez et al. [81] demonstrated that BvrS/R
transcriptionally regulates T4SS VirB. A bvrS and bvrR mutant resulted in low levels of the
VirB1, VirB5, VirB8, and VirB9. In addition, this study clarified that the regulator protein
BvrR binds directly to the VirB promoter. The BvrR/BvrS system is one of the virulence
factors that interacts with other diverse virulence factors simultaneously to ensure the
intracellular growth fate of Brucella.

Brucella can start multiplying in macrophages at 12 to 24 h pi [69]. At this time, two
events are in progress. First, the pathogen readily reaches its safe haven to replicate. Lastly,
the pathogen has set up its specific virulence genes. The conversion from eBCVs to rBCVs
is a hallmark of Brucella intracellular growth. In addition to the beneficial functions of
T4SS in promoting Brucella intracellular replication, a study by Casanova et al. [55] dis-
covered two components of the trimeric vacuolar protein sorting complex, VPS35 and
VPS26A, which are related to the evasion of the lysosomal degradative pathway. In this
infection stage, Brucella is in a multi-membranous compartment, supplemented with sev-
eral autophagosomal bodies and ER markers. The association of Brucella with the host ER
establishes the replicative niche. By reaching this organelle, Brucella can take advantage of
the biosynthetic enzymes, connect to the local nutrient supply, and avoid phagolysosome
fusion [76,77,82]. On the other hand, Kohler et al. [76] proposed the term “brucellosome”
for the replicative niche of Brucella, which is poor in nutrients, low in oxygen tension,
and with a neutral pH microenvironment. However, Brucella still furtively exploits these
harsh environments as stimuli to induce virulence genes involved in their intracellular
trafficking and growth [83]. Once adapted to the intramacrophage environment, Brucella
extends its intracellular persistence indefinitely, contributing to systemic proliferation and
dissemination to other targeted cells or tissues. Furthermore, at this late stage of infection,
the switch from rBCVs to the autophagic BCVs (aBCVs) mediates bacterial release from
infected cells. Autophagy-initiation proteins ULK1, Beclin 1, ATG14L and PI3-kinase activ-
ity is required for the aBCVs formation. This event is exploited by Brucella for cell-to-cell
spreading [84–86]. However, once again, Brucella continues displaying an effector of the
T4SS system, BspL, to delay the formation of aBCVs that benefit the optimal intracellular
replication before disseminating to other cells. At the same time, BspJ, a nucleomodulin,
directly or indirectly regulates host cell apoptosis to complete its intracellular cycle [87,88].
As mentioned, the microenvironment inside these vacuoles has limited nutrients. Interest-
ingly, Brucella behaves as a stealthy pathogen. It has adapted to these harsh intracellular
environments in the host cells by setting up various virulence factors such as the heat shock
proteins DnaK and ClpB. These virulent factors play an important role in Brucella resistance
against some stresses but do not favor intracellular growth [89].

3. Conclusions

Brucella sp. is a facultative intracellular pathogen. It can infect professional and non-
professional phagocytes. To establish its intracellular niche, it has to invade host cells,
initiated by bacterial adherence to the host cell surface. The detection of Brucella by various
host cell receptors is the second phase of bacterial phagocytosis (Figure 1). Once Brucella



Microorganisms 2022, 10, 2003 7 of 13

is detected by either opsonic or non-opsonic receptors, various signaling pathways are
activated to engulf and uptake it into the host cells. In the typical way of phagocytosis,
BCVs enter the endosomal pathway from the fusion steps with early endosomes, late
endosomes, and lysosomes resulting in bacterial elimination. Nevertheless, as a stealthy
pathogen, Brucella facilitates its intracellular replication by exploiting host cell resources.
More than that, Brucella has various effectors that interfere with antibacterial mechanisms
to ensure its intracellular survival (Figure 2). Furthermore, all Brucella functional proteins
related to the interaction between Brucella and host cells is summarized in Table 1.

Microorganisms 2022, 10, 2003 7 of 13 
 

 

important role in Brucella resistance against some stresses but do not favor intracellular 

growth [89]. 

3. Conclusions 

Brucella sp. is a facultative intracellular pathogen. It can infect professional and non-

professional phagocytes. To establish its intracellular niche, it has to invade host cells, 

initiated by bacterial adherence to the host cell surface. The detection of Brucella by various 

host cell receptors is the second phase of bacterial phagocytosis (Figure 1). Once Brucella 

is detected by either opsonic or non-opsonic receptors, various signaling pathways are 

activated to engulf and uptake it into the host cells. In the typical way of phagocytosis, 

BCVs enter the endosomal pathway from the fusion steps with early endosomes, late en-

dosomes, and lysosomes resulting in bacterial elimination. Nevertheless, as a stealthy 

pathogen, Brucella facilitates its intracellular replication by exploiting host cell resources. 

More than that, Brucella has various effectors that interfere with antibacterial mechanisms 

to ensure its intracellular survival (Figure 2). Furthermore, all Brucella functional proteins 

related to the interaction between Brucella and host cells is summarized in Table 1. 

 

Figure 1. Brucella adhesion and recognition. (A) Brucella expresses various adhesins such as SP29, 

SP41, BigA, BigB, BmaA, BmaB, BmaC, BtaE, BtaF, Bp26, and T4SS-VirB5. These adhesins enable 

Brucella to adhere to the host cell surface through the extracellular matrix component, including 

collagen, fibronectin, or sialic acid-binding protein. (B) Once tightly adhered to the cell surface, Bru-

cella can be detected by binding to various cell receptors. FcγIIA receptor and CR3, opsonic recep-

tors, recognize the O-chain fragment of Brucella LPS. Whereas non-opsonic receptors comprise SR-

A and TLRs. SR-A recognizes lipid A LPS. TLR2, 4, 6 detect surface molecules of Brucella such as 

LPS and lipoprotein, while TLR3, 7, 9 are responsible for recognition of nucleic acid motifs. 

Table 1. Brucella functional proteins in interaction with host cells. 

Brucella Proteins Functions 

Cyclic β-1,2-glucan Important for circumventing host cell defenses, and modulate lipid raft organization 

VirB T4SS Mediating intracellular survival and circumventing host immune responses 

SP29, SP41 Sialic acid-binding proteins, in bacterial adherence 

BigA, BigB Proteins containing the immunoglobulin-like domain, in bacterial adherence 

BmaA, BmaB, BmaC The monomeric autotransporters, in bacterial adherence 

Figure 1. Brucella adhesion and recognition. (A) Brucella expresses various adhesins such as SP29,
SP41, BigA, BigB, BmaA, BmaB, BmaC, BtaE, BtaF, Bp26, and T4SS-VirB5. These adhesins enable
Brucella to adhere to the host cell surface through the extracellular matrix component, including
collagen, fibronectin, or sialic acid-binding protein. (B) Once tightly adhered to the cell surface,
Brucella can be detected by binding to various cell receptors. FcγIIA receptor and CR3, opsonic
receptors, recognize the O-chain fragment of Brucella LPS. Whereas non-opsonic receptors comprise
SR-A and TLRs. SR-A recognizes lipid A LPS. TLR2, 4, 6 detect surface molecules of Brucella such as
LPS and lipoprotein, while TLR3, 7, 9 are responsible for recognition of nucleic acid motifs.

Brucellosis is a worldwide disease causing severe economic and public health prob-
lems. Therefore, understanding the characteristics of the causative agent, its interaction
with host cells and specific virulence factors is vital in eradicating brucellosis. Several recent
studies focus on understanding the interaction between Brucella and its host, and the mech-
anism of how it works, but still the available data are limited and the complete mechanisms
involved are unclear. In fact, in comparison to other bacteria such as Mycobacterium species,
Salmonella species, and Helicobacterium species, more research has been recently invested in
Brucella species. However, there are still many gaps in understanding Brucella phagocytosis,
and many questions remain unanswered particularly regarding the interaction between
molecules related to F-actin polymerization including cofilin, profilin, ARP2/3, and WASP
that renders importance in the context of Brucella infection. In addition, searching for more
virulence factors implicated during Brucella phagocytosis also deserves more attention.
Therefore, more extensive efforts are necessary to study this stealthy pathogen deeper
in order to discover alternative therapies or even more effective vaccines to eliminate
brucellosis completely.
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Table 1. Brucella functional proteins in interaction with host cells.

Brucella Proteins Functions

Cyclic β-1,2-glucan Important for circumventing host cell defenses, and modulate lipid raft organization

VirB T4SS Mediating intracellular survival and circumventing host immune responses

SP29, SP41 Sialic acid-binding proteins, in bacterial adherence

BigA, BigB Proteins containing the immunoglobulin-like domain, in bacterial adherence

BmaA, BmaB, BmaC The monomeric autotransporters, in bacterial adherence

BtaE, BtaF The trimeric autotransporters, in bacterial adherence

Bp26 Collagen, vitronectin-binding protein, in bacterial adherence

VirB5 Effector of a well-known Brucella virulence factor T4SS, in bacterial adherence

SagA A lysozyme-like protein SagA identified as a muramidase

VceC, VecA T4SS, related to host autophagy and apoptosis

BtpA, BtpB Modulate host immunity and energy metabolism

BvrS/R Transcriptionally regulates T4SS VirB

VPS35, VPS26A Related to the evasion of the lysosomal degradative pathway

BspL Delay the formation of aBCVs that benefit the optimal intracellular replication before disseminating to
other cells

BspJ A nucleomodulin, directly or indirectly regulates host cell apoptosis to complete its intracellular cycle

DnaK, ClpB Heat shock proteins, role in bacterial resistance against stresses
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Figure 2. Intracellular trafficking cycle of Brucella in host cells. After recognizing Brucella by different
receptors, host cells activate the signaling pathway resulting in F-actin polymerization at the binding
site with bacteria. Then the BCVs undergo fusion with early, late endosome, and finally lysosome. At
the last phase of BCVs’ maturation, Brucella is killed by nitric oxide, ROS, and digestive enzymes
that localize in the phagolysosome compartment. However, Brucella has the ability to avoid the
phagolysosome fusion to reach its intracellular niche at ER. Brucella SagA protein is secreted to
interfere with the interaction between BCVs and lysosomes. Once localizing in ER, Brucella can
proliferate and mature into aBCVs. This aBCVs formation depends on distinct autophagy proteins
including ULK1 and Beclin 1, which contribute to bacterial egress and the formation of infection foci
resulting in dissemination to other cells and tissues. Besides, Brucella activates a T4SS-BspL effector
to delay the formation of aBCVs, and ultimately reach maximum proliferation.
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Abbreviations

CβG Cyclic β-1,2-glucan
LPS Lipopolysaccharide
DCs Dendritic cells
MDCK Madin-Darby canine kidney
CRs Complement receptors
FcRs Fc receptors
CR3 Complement receptor 3
SR-A Scavenger receptor A
TLRs Toll-like receptors
TcpB A TIR domain-containing protein in Brucella
PrPc The cellular prion protein
TfR Transferrin receptor
ER Endoplasmic reticulum
rBCVs Replicative BCVs
eBCVs Endosomal BCVs
ROS Reactive oxygen species
NO Nitric oxide
aBCVs Autophagic BCVs
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