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Abstract: Tuberculosis (TB) management is important for prompt discrimination of latent TB infection
(LTBI) from active TB and proper treatment. Whole blood Interferon-gamma (IFN-γ) release assay
(IGRA) is used to diagnose LTBI based on the secretion of IFN-γ by T-cells in the whole blood by
using a specific antigen of Mycobacterium tuberculosis. However, the ability of IGRA to distinguish
active TB from LTBI is considerably limited. Distinguishing active TB from LTBI is necessary to
identify indicators that can be used to effectively manage TB and develop diagnostic methods. In the
present study, we used a Luminex multiplex bead array (a bead-based antibody–antigen sandwich
method). The whole blood level of acute phase proteins (APPs), such as endoglin (ENG), procalcitonin
(PCT), C-reactive protein (CRP), and α1-acid glycoprotein (AGP), in active TB, LTBI, and healthy
individuals were analyzed and quantified. The APP test results for the serum and whole blood
samples showed that the levels of PCT, CRP, and AGP were significantly increased (p < 0.0500; area
under curve = 0.955) in active TB. The level of these markers in the whole blood of active TB, LTBI,
and healthy individuals could provide data for effective diagnosis and treatment of TB.

Keywords: active tuberculosis; latent tuberculosis infection; acute phase proteins; diagnostic biomarkers

1. Introduction

Tuberculosis (TB), a major infectious disease caused by Mycobacterium tuberculosis
(MTB), represents a major global public health problem [1]; it is characterized by high
infection and mortality rates and is one of the most serious infectious diseases [2]. Although
the number of TB cases in the Republic of Korea has been decreasing, the country’s TB
incidence and mortality rates in 2016 were 77 and 5.2 per 100,000 people, respectively,
which were the highest among the member countries of the Organization for Economic
Cooperation and Development (OECD) (Paris, France) [3].

Approximately 5% of people infected with MTB experience active TB for two to five
years, and the remaining 95% have latent TB infection (LTBI) [4]. LTBI usually lacks the
clinical symptoms of active TB, such as fever, chills, night sweats, weight loss, cough,
hemoptysis, and abnormalities found during chest X-ray (CXR) examinations [5]. To date,
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nearly one-third of the world’s population has LTBI, approximately 10% of whom progress
to active TB during their lifetimes [4].

Currently, TB can be diagnosed as LTBI when using the tuberculin skin test (TST) or
Interferon-gamma (IFN-γ) release assay (IGRA), along with CXR, physical examination,
and assessment of TB exposure and medical history [6]. However, both TST and IGRA
tests could not distinguish active TB from LTBI [7]. It is, therefore, necessary to distinguish
disease states and to conduct rapid examination. Thus, researchers conducted studies
to distinguish LTBI from active TB by using cytokines specific to the MTB antigens, by
using differentially expressed genes with subsequent validation via reverse transcription
polymerase chain reaction (RT-PCR), and by using monocyte chemoattractant protein-1
(MCP-1) [8–10].

As MTB enters a host, the pathogenic mechanism between MTB and the host is
based on protein expression and on protein–nucleic acid interactions [11]. TB-related
proteins can then be used as prognostic and diagnostic markers to distinguish active TB [12].
Technological high-throughput screening has evolved rapidly, and it offers a comprehensive
platform for TB research and biomarker discovery [13]. In particular, serum levels of acute
phase proteins (APPs) and cytokines distinguish patients with TB. Of these APPs, C-
reactive protein (CRP) is often used as a diagnostic marker among children in clinical
practice [14]. TB is associated with changes in endogenous protein levels in serum [15].
Acute-phase reaction proteins are produced in the liver in response to inflammation [16].
Endoglin (ENG) is a type I integrated membrane glycoprotein and is commonly known as
an angiogenic marker. ENG had an impact on the inflammatory state during inflammatory-
related diseases [17]. In addition, one study reported that ENG increases by a factor of
4.9 in iTRAQ and 11.5 in ELISA compared to human immunodeficiency virus (HIV –MTB
co-infection [18]. CRP levels increase in response to interleukin (IL)-6-mediated purulent
infections, such as active TB [19]. Hepatic α1-acid glycoprotein (AGP) production increases
not only in acute inflammation but also in pulmonary TB, and similar results have been
found in TB patients with specific glycosylation patterns for serum AGP, which is useful in
the discriminative diagnosis of bacterial lung infections [20]. Recent studies have reported
a specific correlation between serum procalcitonin (PCT) indices in diagnosing active
TB [21]. However, the ability of the current methods to distinguish active TB from LTBI is
limited [22,23].

To differentiate active TB from LTBI, assistive biomarkers must be developed, and
effective TB diagnosis, treatment, and management are needed. In the present study,
multiplex bead arrays target serum APP markers, such as ENG, CRP, AGP, and PCT, in
order to discriminate the active TB, LTBI, and healthy individuals. A total of 126 whole
blood and serum samples were collected and used for the present study.

2. Materials and Methods
2.1. Clinical Samples

A total of 126 human whole blood and serum samples were collected from April
2018 to March 2019 at the Department of Laboratory Medicine, Good Samsun Hospital,
Busan, the Republic of Korea. This study was approved by the Institutional Review Board
(IRB) of the Catholic University of Pusan (IRB Approval No.: CUP IRB-2019-01-010). All
enrolled individuals were more than 20 years old. All groups excluded those with HIV
infection, diabetes mellitus (DM), cancer, or autoimmune disease, and those who had
received chemotherapy within the last 3 months and had a history of active TB treatment.
The clinical characteristics of the present study are shown in Table 1. The active TB group
was confirmed positive for Ziehl–Neelsen AFB stain, mycobacterial culture, MTB-PCR
using respiratory specimens, and CXR. AFB stain results were established according to
CDC guidelines [24]. The LTBI group was confirmed positive for whole blood IGRA, the
QuantiFERON TB-Gold in-tube (QFT-GIT) test, and negative for active TB diagnostic assay;
it also had no active TB symptoms. The healthy individuals were confirmed negative for
whole-blood IGRA and CXR examination, and had no active TB symptoms.
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Table 1. Demographic and clinical characteristics of study subjects.

Demographic and Clinical Characteristics Active TB LTBI Healthy Individuals

Total number (n = 129) 22 29 58
Median age (range), years 55.2 (23–89) 44.6 (21–70) 33.2 (22–61)

Gender, male/female 15/7 6/23 12/46
AFB stain results
+ positive, n (%) 2 (9.1) NA NA

++ positive, n (%) 4 (18.2) NA NA
+++ positive, n (%) 4 (18.2) NA NA

++++ positive, n (%) 4 (18.2) NA NA
Negative 8 (36.4) NA NA

AFB culture results
Positive, n (%) 19 (86.4) NA NA

Negative, n (%) 3 (13.6) NA NA
MTB-PCR results

Positive, n (%) 21 (95.5) NA NA
Negative, n (%) 1 (4.5) NA NA

CXR
Positive, n (%) 22 (100.0) 4 (13.8) 0 (0.0)

Negative, n (%) 0 (0.0) 25 (86.2) 58 (100.0)
IGRA test results

Positive, n (%) NA 29 (100.0) 0 (0.0)
Negative, n (%) NA 0 (0.0) 58 (100.0)

General characteristics of the groups involved in the study showing the number of subjects per group (n), the
mean age, gender, AFB stain results; + positive: rare; ++ positive: few; +++ positive: moderate; ++++ positive:
many; Negative: AFB not found, MTB-PCR results, chest X-ray (CXR), IGRA test results; n: number; healthy
individuals: non-infected healthy group; LTBI: latent tuberculosis infection group; active TB: active pulmonary
tuberculosis group, NA: not applied.

2.2. Whole Blood Collection and Serum Preparation

Whole blood samples were collected using VACUETTE® EDTA blood collection tubes
(Greiner Bio-One, Frickenhausen, Austria) containing EDTA anticoagulant. Samples were
centrifuged at 4000× g for 15 min to obtain the serum, which was stored at −20 ◦C in a
1.5 mL microcentrifuge tube until use.

2.3. Analysis of Serum Acute Phase Protein Markers

Peripheral venous whole blood samples were used to analyze the biomarkers of inter-
est via magnetic Luminex multiplex bead array by using Luminex® 100/200™, Human
Premixed Multi-Analyte kit (R&D Systems, Minneapolis, MN, USA) and Human Cardiovas-
cular Disease Magnetic Bead Panel 3 MILLIPLEX® MAP kit (EMD Millipore Corporation,
Billerica, MA, USA) according to the manufacturers’ instructions. The PCT and ENG were
analyzed and quantified with the Human Premixed Multi-Analyte kit (R&D Systems),
whereas the CRP and AGP were analyzed and quantified with the Human Cardiovascular
Disease Magnetic Bead Panel 3 MILLIPLEX® MAP kit (EMD Millipore Corporation). The
samples were evaluated using a MAGPIX® multiplexing system (Luminex Corporation,
Austin, TX, USA), which is a fluorescent bead-based instrument. Results were analyzed
and interpreted using the Luminex xPONENT® software (Luminex Corporation).

2.4. Statistical Analysis

Statistical analysis was performed using the GraphPad Prism 5.0 software (GraphPad
Software, San Diego, CA, USA). Differences in APP markers among the active TB, LTBI,
and healthy individuals were analyzed, and 95% confidential intervals were calculated. An
unpaired t-test was performed to compare the three groups. Additionally, a receiver opera-
tor characteristic (ROC) curve analysis was conducted to confirm the clinical usefulness of
the results and to determine the cut-off value, specificity, and sensitivity of the assays [25].
The p values of <0.05 were considered statistically significant.
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3. Results
3.1. Quantitative APP Marker Analysis Results for the Active TB, LTBI, and Healthy Individuals

Based on the APPs data analysis, the mean ENG values for the active TB, LTBI, and
healthy individuals were 1267.88 ± 214.47, 1209.12 ± 252.60, and 1371.81 ± 303.69 pg/mL,
respectively, and their corresponding mean PCT values were 44.11 ± 29.21, 22.68 ± 11.67,
and 18.15 ± 4.58 pg/mL. The mean CRP values for the active TB, LTBI, and healthy
individuals were 343,491.91 ± 362,153.63, 2358.38 ± 1213.21, and 3375.52 ± 1833.75 ng/mL,
respectively; their corresponding AGP values were 6886.68 ± 2438.14, 3749.57 ± 1369.43,
and 2969.90 ± 795.71 µg/mL. Compared with the LTBI and healthy individuals, the active
TB group had significantly higher mean PCT, CRP, and AGP. Compared with the healthy
groups the LTBI group had significantly higher mean PCT, CRP, and AGP (Figure 1, Table 2).
The active TB and LTBI groups significantly differed in terms of PCT (p = 0.0007) and in
terms of CRP and AGP. (p < 0.0001). The active TB and healthy individuals significantly
differed in terms of ENG (p = 0.0149), PCT (p = 0.0112), CRP (p = 0.0083), and AGP
(p = 0.0012). Moreover, the active TB and healthy individuals significantly differed in
terms of PCT, CRP, and AGP (p < 0.0001). The active TB, LTBI, and healthy individuals
significantly differed in terms of ENG (p = 0.0287) and in terms of PCT, CRP, and AGP
(p < 0.0001) (Table 3).

3.2. ROC Curve Analysis Based on the Results for APPs

ROC curve analysis was performed to ensure that the results were clinically applica-
ble. The p value of the ROC curve and the AUC for the APPs were as follows: for PCT,
p < 0.0001 and AUC = 0.8750; for CRP, p < 0.0001 and AUC = 0.9961; and for AGP, p < 0.0001
and AUC = 0.9671. No significant differences in the ROC curves of ENG were observed
(Figure 2). The p values for PCT, CRP, and AGP were all statistically significant (p < 0.0500),
and the AUC was approximately 0.9550 (Figure 2).
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Figure 1. Comparison of acute-phase proteins between the active tuberculosis (ATB; Red), Latent
tuberculosis infection (LTBI; Yellow), and healthy individuals (HI; Green). (A) Endoglin (ENG);
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** p < 0.001, *** p < 0.0001.

Table 2. Acute-phase protein levels in serum samples between active TB, LTBI, and healthy individuals.

Acute-Phase Protein
Markers

Active TB,
Mean Level ± SD

LTBI,
Mean Level ± SD

Healthy Individuals,
Mean Level ± SD

Endoglin (pg/mL) 1267.88 ± 214.47 1209 ± 252.60 1371.81 ± 303.69
Procalcitonin (pg/mL) 44.11 ± 29.21 22.68 ± 11.67 18.15 ± 4.58

C-reactive protein (ng/mL) 343,491.91 ± 362,153.63 2358.38 ± 1213.21 3375.52 ± 1833.75
α1-acid glycoprotein (µg/mL) 6886.68 ± 2438.14 3749.57 ± 1369.43 2969.90 ± 795.71

Abbreviations: LTBI, latent tuberculosis infection; SD, standard deviation.

Table 3. Statistical data of quantitative acute-phase protein analysis between the active TB, LTBI, and
healthy individuals.

Acute-Phase Protein
Markers Active TB vs. LTBI LTBI vs. Healthy

Control
Active TB vs. Healthy

Individuals
Active TB vs. LTBI vs.
Healthy Individuals

Endoglin 0.3848 0.0149 * 0.1457 0.0287 *
Procalcitonin 0.0007 *** 0.0112 * <0.0001 *** <0.0001 ***

C-reactive protein <0.0001 *** 0.0083 ** <0.0001 *** <0.0001 ***
α1-acid glycoprotein < 0.0001 *** 0.0012 ** <0.0001 *** <0.0001 ***

* p < 0.05, ** p < 0.001, *** p < 0.0001.

3.3. Diagnostic Performance of the Quantitative APP Markers

To investigate the clinical relevance of the APP markers, the AUC, sensitivity, and
specificity of ENG, PCT, CRP, and AGP were analyzed (Table 4). All APP markers except
endoglin had AUC values of 0.87 or higher, indicating good diagnostic performance in ATB
(p < 0.001). In particular, CRP showed high sensitivity of 95.45% and specificity of 98.28%,
and AGP showed high sensitivity of 90.91% and specificity of 93.10%.
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Figure 2. ROC curve analysis of acute-phase proteins between the active TB and healthy individuals.
(A) Endoglin (ENG); (B) procalcitonin (PCT); (C) C-reactive protein (CRP); (D) α1-acid glycoprotein
(AGP). *** p < 0.0001.

Table 4. The diagnostic utility of acute-phase protein markers for tuberculosis.

Acute-Phase Protein
Markers

AUC
(95% CI) Cut-Off Value Sensitivity

(%) (95% CI)
Specificity

(%) (95% CI) p Value

Endoglin 0.60
(0.46–0.73) >1330 ng/mL 54.55

(32.21–75.61)
53.45

(39.87–66.66) 0.1833

Procalcitonin 0.87
(0.76–0.99) >23 ng/mL 86.36

(65.09–97.09)
87.93

(76.70–95.01) <0.0001

C-reactive protein 0.99
(0.99–1.00) >8853 ng/mL 95.45

(77.16–99.88)
98.28

(90.76–99.96) <0.0001

α-1-acid glycoprotein 0.98
(0.93–1.00) >4548 ng/mL 90.91

(70.84–98.99)
93.10

(83.27–98.09) <0.0001

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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4. Discussion

TB is a serious infectious disease with high infection and mortality rates [2]. According
to the 2021 WHO report, approximately half a million (range, 417,000–556,000) new cases
of rifampicin-resistant TB (of which 78% are multi-drug-resistant TB) have been diagnosed,
and this phenomenon is a major concern [26]. Among the member countries of the OECD,
the Republic of Korea has high prevalence and mortality rates for TB [3].

TB management is important for the rapid differentiation of LTBI from active TB and
for the identification of the appropriate anti-TB treatment. Currently, either the TST or IGRA
test is used to diagnose LTBI [27]. A single test can erroneously diagnose LTBI and active
TB [7]. Although numerous studies have been conducted to distinguish LTBI from active
TB, according to a China-based study, the ENG levels of the HIV–MTB coinfection group
showed a 4.9-fold increase in iTRAQ proteomics, and an 11.5-fold increase in enzyme-
linked immunosorbent assay (ELISA) results compared with those of the HIV-free TB
group [18].

ENG is an important glycoprotein lipid involved in extracellular matrix (ECM) syn-
thesis, angiogenesis, and cell proliferation, and is expressed by endothelial cells activated
through the transforming growth factor-β (TGF-β) pathway [28,29]. ENG is overexpressed
in hepatocellular carcinoma (HCC) micro vessels because HCC is characterized by neovas-
cularization by tumor cells [30,31]. ENG expression is correlated with tumor progression
and microvascular density, such as colon cancer, lung cancer, and prostate cancer, and is a
key protein for tumor proliferation and metastasis [32]. In the present study, there were
no tumor patients as an underlying disease in the ATB and LTBI; ENG levels in the active
TB group were not significantly different (p > 0.0500, AUC = 0.5968) from those in the
LTBI group and healthy individuals. AGP is one type of immunomodulatory substance;
it forms granulomas when macrophages engulf the pulmonary TB pathogen, and it is
produced in the extracellular matrix [33]. During MTB infection, AGP is produced in the
lungs, and macrophages are an important source [20]. AGP is a major APP produced by the
liver, and its level increases with systemic damage, inflammation, or infection [34,35]. One
study has identified AGPs in serum with a sensitivity of 81.2% (69/85) and a specificity
of 95.2% (80/84) via ELISA. In addition, a sensitivity of 81.2% (69/85) and a specificity of
90.1% (64/81) differentiated the active TB from the healthy individuals [13]. Indeed, in
this study, the AGP values of the active TB group obtained using the magnetic Luminex
multiplex bead array were significantly higher than those of the LTBI and healthy individu-
als (p < 0.0001, AUC = 0.9671). Research has suggested that CRP is an acute inflammatory
reactant whose levels increase in response to IL-6-mediated purulent infections, such as
active TB [19]. Indeed, our data showed that the CRP value in the active TB group signifi-
cantly increased (p < 0.0001, AUC = 0.9961) compared with those in the LTBI group and
healthy individuals. As a biomarker, PCT is a propeptide of calcitonin with no hormonal
activity; it is a biomarker of the systemic inflammatory response to bacterial infection that
is not significantly age related [36,37]. In a study that evaluated the usefulness of PCT for
the differentiation between pulmonary TB and other lung infections, the sensitivity and
specificity of PCT for differentiating TB and non-TB groups were 42% (95% CI = 30–56) and
87% (95% CI = 63–96), respectively. In the present study, the PCT levels of the active TB
group was significantly higher (p < 0.0010, AUC = 0.8750) than those of the LTBI group and
healthy individuals.

Despite numerous research projects that have been conducted, a gold standard that
could differentiate active TB and LTBI groups remains inexistent. This study thus aimed
to compare the APP levels in serum samples to differentiate active TB and LTBI groups
and ultimately identify biomarkers that can be used to differentiate LTBI from active TB. In
conclusion, PCT, CRP, and AGP are biomarkers that could differentiate the active TB, LTBI,
and healthy individuals at a statistically significant level. However, additional screening
tests, such as CBC and WBC differential counts, and additional acute inflammatory me-
diator tests, are expected to improve the quality of TB diagnosis. The whole blood levels
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of these markers of active TB, LTBI, and healthy individuals are useful as indicators for
differential diagnosis and as basic data for effective diagnosis and treatment.

This study has several limitations. First, the sample size was small. The expression
of target molecules should be further investigated in a larger number of patients from
multiple centers. Second, there is some age disparity between study groups. CRP that has
a correlation with the level of expression according to age require further study in similar
age groups. Further studies involving a larger number of clinical samples and a larger
population are needed to validate the importance of this study and to improve the accuracy
of discrimination between active TB and LTBI groups.

5. Conclusions

We suggest that PCT, CRP, and AGP are potential biomarkers that could differentiate
the active TB, LTBI, and healthy individuals at a statistically significant level.
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