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Abstract: The Bacillus Calmette-Guérin (BCG) vaccine has been used for over one hundred years to
protect against the most lethal infectious agent in human history, tuberculosis. Over four billion BCG
doses have been given and, worldwide, most newborns receive BCG. A few countries, including
the United States, did not adopt the WHO recommendation for routine use of BCG. Moreover,
within the past several decades, most of Western Europe and Australia, having originally employed
routine BCG, have discontinued its use. This review article articulates the impacts of those decisions.
The suggested consequences include increased tuberculosis, increased infections caused by non-
tuberculous mycobacteria (NTM), increased autoimmune disease (autoimmune diabetes and multiple
sclerosis) and increased neurodegenerative disease (Parkinson’s disease and Alzheimer’s disease).
This review also offers an emerged zoonotic pathogen, Mycobacterium avium ss. paratuberculosis (MAP),
as a mostly unrecognized NTM that may have a causal role in some, if not all, of these diseases.
Current clinical trials with BCG for varied infectious, autoimmune and neurodegenerative diseases
have brought this century-old vaccine to the fore due to its presumed immuno-modulating capacity.
With its historic success and strong safety profile, the new and novel applications for BCG may lead
to its universal use–putting the Western World back onto the road not taken.

Keywords: Bacillus Calmette-Guérin (BCG); tuberculosis; non-tuberculous mycobacteria (NTM);
nonspecific effects; trained immunity; type 1 diabetes; multiple sclerosis; Parkinson’s disease;
Alzheimer’s disease; Mycobacterium avium ss. paratuberculosis (MAP); molecular mimicry; global
burden of disease

1. Introduction

Humans have had a close relationship with the bacterium that causes tuberculosis, M.
tuberculosis (Mtb) for millennia [1]; discovered by Robert Koch in 1882, Mtb is responsible
for more deaths than any other human pathogen [2,3].

BCG is the only vaccine currently available against tuberculosis (TB) with over four
billion doses, it has been the most widely administered vaccine; in 2020, global BCG
immunization coverage among 1-year-olds was an estimated 85% [4]. The efficacy of
BCG is variable; and although it prevents infants from infection with severe forms of
disseminated TB, it does not protect against the most common form, pulmonary TB [5]. To
boost its protective response, several alternative vaccine candidates, including recombinant
live vaccines for BCG replacement as well as subunit vaccines (viral vectored or based on
adjuvanted recombinant proteins) are under development [6].

The first BCG vaccination was given in 1921 to an infant with an extreme risk of
developing disseminated TB; his recovery spurred further use of BCG [7]. A significant
setback occurred less than ten years later when BCG, contaminated with live M. tuberculosis,
was given to 251 newborns in Lubeck, Germany [8]. Of the 251 inadvertently infected
neonates, 173 developed TB and 72 died. The erroneous concern that BCG had reverted
to a pathogenic bacterium and was responsible for the “Lubeck disaster” led to early
vaccination skepticism about BCG.
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Amplifying this skepticism was a variable response to the different strains of the BCG
vaccine. When evaluating BCG, the United States Public Health Service chose the Tice
strain of BCG vaccine; other countries such as the United Kingdom used the Copenhagen
strain. While the Tice strain showed little benefit in the US trials the Copenhagen strain of
BCG was found to be particularly effective against TB [9].

There were two hypotheses to explain this disparity: there were actual differences in
BCG strains as differing strains have differing properties [10]; and/or different exposures
in the states where the US Public Health Service conducted their trials: Alabama, Puerto
Rico and Georgia. These populations have exposure to environmental mycobacteria. That
exposure, as of the “hygiene hypothesis,” could have provided protection against TB
that could not be improved upon by BCG [11]. This hypothesis suggests that input from
microbes assists in setting up regulation of the immune system. The microbes collectively
are our Old Friends and population from high-income countries with “high hygiene” are
deprived from interaction with these Old Friends. Mycobacteria are a component of the
Old Friends and absent or lessened early life exposure to mycobacteria may be contribute to
the diseases addressed in this paper [12]. The influence of BCG as an Old Friend extendes
to allergic disease as well; introduction of BCG for its immunomodulatory effect is felt to
benefit allergy prevention as well as treatment [13,14].

Meanwhile, public policy in most of the rest of the world recommended routine
vaccination BCG vaccination. Notwithstanding its difficult start, currently BCG vaccination
is given to 140 million infants each year [15]. Noteworthy is a trial detailing the non-waning
efficacy of BCG imparting lasting protection against tuberculosis for 50 to 60 years [16].
Moreover, in addition to BCG as part of the standard-of-care for non-invasive bladder cancer
(discussed later), in a trial with a 60-year follow-up, BCG vaccination was associated with a
significantly lower rate of lung cancer compared to placebo recipients [17]. Furthermore,
direct intralesion BCG injection into metastatic melanoma lesions can be highly effective
for the injected lesion as well as noninjected distal lesions [18]. BCG is derived from M.
bovis, a closely related organism and part of what is termed the Mtb complex. M. bovis is
mostly studied in ruminant animals yet also causes tuberculosis in humans [19]. BCG can
also be protective for animals lessening disease in the animal and reducing the zoonotic
risk [20,21].

Health consequences for those populations not receiving routine BCG are featured
in this article; these include increases in tuberculosis, diseases caused by non-tuberculous
infections, autoimmune disease and neurodegenerative disease (Figure 1).
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teria (NTM). Currently, BCG is being studied in autoimmune diseases T1D and multiple sclerosis 
and in neurodegenerative diseases Alzheimer’s and Parkinson’s. 
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Individual countries continuously monitor the efficacy of their BCG program; an in-

ternational body that gives guidance regarding continuing/discontinuing routine BCG us-
age is the International Union Against Tuberculosis and Lung Disease (IUATLD). This 
policy agency has three indicators it recommends to decide discontinuation of universal 
BCG vaccination: average annual notification rate of sputum smear-positive pulmonary 
TB of ≦5 per 100,000 population over the previous 3 years; average annual notification 
rate of TB meningitis in children under 5 years old of <1 per 10 million general population 
over the previous 5 years; and average annual risk of tuberculosis infection of ≦0.1% [22]. 
Further identification of targeted groups comes via extension of this list compiled by the 
WHO, which aggregates high burden countries into three interrelated groups: high bur-
den of TB, high HIV-associated TB burden countries and high multidrug/rifampin-re-
sistant TB burden countries [23]. With decreasing TB over the past 40 years, several coun-
tries with “low burden” have ceased universal BCG vaccination [24]. Reporting of TB in 
these low-burden countries has been confounded by the fact that many of the cases were 
in patients from other countries-this a consequence of changing immigration policies [25]. 

3. BCG and Non-Tuberculous Mycobacteria 
BCG is an attenuated live vaccine, and thus shares epitopes with mycobacteria other 

than tuberculosis—non-tuberculous mycobacteria (NTM); this provides a mechanism for 
cross-protection against infections from NTM [26]. NTMs are ubiquitous and can cause 
disease in susceptible individuals; there has been an increase in NTM disease in developed 
countries where routine BCG vaccination has been discontinued [27–30]. Cervical lym-
phadenitis is causally attributed to M. avium intracellulare complex (MAC). An NTM dis-
ease, cervical lymphadenitis has significantly increased since stopping BCG vaccination 
in France [31], the Czech Republic [32], Sweden [33] and Finland [34]. 

Leprosy is also caused by an NTM: Mycobacterium leprae. Although it is mostly 
viewed in an historic context, more than 200,000 new cases were recorded by the WHO in 

Figure 1. The Bacillus Calmette-Guérin (BCG) vaccine was originally developed to vaccinate against
tuberculosis. BCG is also known to lessen the disease burden caused by non-tuberculous mycobacteria
(NTM). Currently, BCG is being studied in autoimmune diseases T1D and multiple sclerosis and in
neurodegenerative diseases Alzheimer’s and Parkinson’s.
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2. Tuberculosis after BCG Discontinuation

Individual countries continuously monitor the efficacy of their BCG program; an
international body that gives guidance regarding continuing/discontinuing routine BCG
usage is the International Union Against Tuberculosis and Lung Disease (IUATLD). This
policy agency has three indicators it recommends to decide discontinuation of universal
BCG vaccination: average annual notification rate of sputum smear-positive pulmonary
TB of ≤5 per 100,000 population over the previous 3 years; average annual notification
rate of TB meningitis in children under 5 years old of <1 per 10 million general population
over the previous 5 years; and average annual risk of tuberculosis infection of ≤0.1% [22].
Further identification of targeted groups comes via extension of this list compiled by the
WHO, which aggregates high burden countries into three interrelated groups: high burden
of TB, high HIV-associated TB burden countries and high multidrug/rifampin-resistant
TB burden countries [23]. With decreasing TB over the past 40 years, several countries
with “low burden” have ceased universal BCG vaccination [24]. Reporting of TB in these
low-burden countries has been confounded by the fact that many of the cases were in
patients from other countries-this a consequence of changing immigration policies [25].

3. BCG and Non-Tuberculous Mycobacteria

BCG is an attenuated live vaccine, and thus shares epitopes with mycobacteria other
than tuberculosis—non-tuberculous mycobacteria (NTM); this provides a mechanism for
cross-protection against infections from NTM [26]. NTMs are ubiquitous and can cause
disease in susceptible individuals; there has been an increase in NTM disease in devel-
oped countries where routine BCG vaccination has been discontinued [27–30]. Cervical
lymphadenitis is causally attributed to M. avium intracellulare complex (MAC). An NTM
disease, cervical lymphadenitis has significantly increased since stopping BCG vaccination
in France [31], the Czech Republic [32], Sweden [33] and Finland [34].

Leprosy is also caused by an NTM: Mycobacterium leprae. Although it is mostly
viewed in an historic context, more than 200,000 new cases were recorded by the WHO
in 2018 [35,36]. Protection provided by BCG vaccination against M. leprae is well recog-
nized [37] as BCG decreases the risk of leprosy by 50% to 80% with the benefit improving
with the number of BCG booster doses [38,39]. Another NTM disease, Buruli’s ulcer, caused
by Mycobacterium ulcerans; it is a necrotizing skin disease. Buruli’s ulcer is the third most
prevalent mycobacterial infection after tuberculosis and leprosy [40]. Buruli’s ulcer was
described in 1948 in Australian patients [41]; this NTM disease is found primarily in poor
areas of Africa; the Congo [42] and Uganda [43] and increasingly so in West Africa [44–46].
BCG vaccination of infants protects the recipients as children and later as adults from
the serious osteomyelitis that is associated with Buruli’s ulcer [47]. Protection against Bu-
ruli’s ulcer provided by of BCG, as shown by prospective trials, is significant with overall
protection rate protection of 47% [48,49].

A temptingly parsimonious plausibility is that the BCG-benefited diseases featured in
this article are the indirect result of infection by another NTM that shares antigens with
BCG [50,51]. Associated with autoimmune diabetes, multiple sclerosis and Parkinson’s
disease is Mycobacterium avium ss. paratuberculosis (MAP) [52,53].

MAP has been proposed to have a causal role in Alzheimer’s disease as well [54].
Supporting an infectious contribution to Alzheimer’s is the recognition that the Alzheimer’s-
associated amyloid beta protein is an antimicrobial peptide [55]. Moreover, the pathog-
nomonic Alzheimer’s plaque constructed by microglia parallels macrophage construction
of granulomas and is evocative of mycobacterial granulomas [56].

MAP is thought to have gone through an “evolutionary bottleneck” along with M.
tuberculosis and M. leprae, the agents that cause TB and leprosy [57].

4. BCG and Autoimmune Disease

BCG has newfound therapeutic potential in the common autoimmune diseases type
1 diabetes (T1D) and multiple sclerosis (MS). BCG lowers blood sugar in diabetics and
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delays disease progression in MS possibly via immune stimulation [58]. A world map
demonstrating countries with routine BCG usage is virtually the inverse of the world map
of autoimmune disease prevalence (Figure 2).
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Figure 2. World maps displaying the relative incidence of autoimmune disorders and relative BCG
utilization. (A) World map displaying the relative incidence of autoimmune disease in 2017. Note
that the incidence is greatest in the U.S., Canada, and western Europe, followed by Australia and
South Africa (https://forums.phoenixrising.me/threads/autoimmune-disease-prevalence-in-the-
western-world.51642/ Accessed on 22 September 2022). Permission granted by original author, Joel
Weinstock–Tufts Medical Center. (B) World map displaying the utilization of BCG. a: Countries with
current universal BCG vaccination program. b: Countries that used to recommend universal BCG
vaccination but no longer. c: Countries that never had universal BCG vaccination programs. Note
that BCG utilization is least in U.S., Canada, Europe, Russia, and Australia. Permission granted by
original authors (Dr. Marcel Behr-McGill University, Montreal, QC, Canada) [59]. Composite map
used by permission–Dr. Dow [60].

4.1. BCG and Type One Diabetes (T1D)

T1D is mostly a disease of childhood and young adults and occurs with immune-
mediated destruction of the insulin-producing cells of the pancreas [60]. In 2018, Dr. Denise
Faustman presented favorable data regarding BCG vaccination in T1D patients at the
American Diabetes Association (ADA) Scientific Sessions; her study subsequently was
published in the medical journal npj Vaccines [61]. The Harvard scientist reported a follow-
up study of participants with long-standing type 1 diabetes (T1D) that were treated with
the BCG vaccine. This repurposed use of BCG was an extension of her previous work using
BCG in an animal model of T1D [62].

BCG restored blood sugars to near normal; remarkably, this was seen even in patients
with advanced disease of greater than twenty years duration. Mechanistically, this effect
was proposed to have been driven by a reset of the immune system accompanied by a
shift in glucose metabolism; this shift is from oxidative phosphorylation in which there is
minimal sugar utilization for energy production to aerobic glycolysis in which there is high
glucose utilization for energy production [63].

4.2. BCG and Multiple Sclerosis (MS)

MS is a central nervous system (CNS), immune-mediated, inflammatory disease char-
acterized by demyelination [64]. Worldwide, MS affects more than 2.8 million individuals
and it most often afflicts young adults [65]. Pathologically, T and B lymphocytes that are
activated in the periphery migrate to the CNS where they produce demyelination and local

https://forums.phoenixrising.me/threads/autoimmune-disease-prevalence-in-the-western-world.51642/
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inflammation [66]. Animal studies testing BCG against the pathology of MS have used the
valuable experimental autoimmune encephalomyelitis (EAE) model of MS [67].

Though the cause of MS is unknown, studies have shown that BCG vaccination imparts
beneficial reduction in MS disease activity by modulating T cell-mediated immunity [68].
In clinical trials, administration of a single dose of BCG reduced the magnetic resonance
imaging (MRI) activity in relapsing–remitting MS patients, a common form of MS [69].
Clinically isolated syndrome (CIS) is an initial presentation of characteristic inflammatory
demyelination that has not progressed to fulfill the diagnosis of MS; in CIS, when studied
over a 5-year period, BCG vaccination delayed the second demyelinating episode [70].

5. BCG and Neurodegenerative Disease

Accumulating data suggest a critical role played by the immune system in neurode-
generative Alzheimer’s and Parkinson’s diseases [71]. Exposure to BCG in elderly adults
showed 58% reduced risk of developing AD and 28% reduced risk of developing PD [72].

5.1. BCG and Alzheimer’s Disease (AD)

Worldwide, the most common cause of dementia is AD [73]. AD is characterized
by abnormal protein deposits: the extracellular cerebral deposition of β-amyloid (Aβ)
peptides and intracellular neurofibrillary tangles of tau with a juxtaposition of cerebral
inflammation [73].

In a recent population study an inverse relationship was found between the incidence
of Alzheimer’s disease and vaccination with BCG. In countries with high BCG usage, even
after adjusting for factors such as longevity and wealth, there was a lower prevalence of
AD. A beneficial modulation of the immune system imparted by BCG was the authors’
hypothesis resulting in a decreased prevalence of AD [74]. This is supported by animal
studies where BCG vaccination was associated with an increase in anti-inflammatory CNS
response resulting in an improvement in cognitive function [75].

Intravesicular BCG is part of the standard-of-care for bladder cancer in which the
cancer has not invaded the bladder muscle [76]. The course of bladder cancer patients who
received BCG were compared to bladder cancer patients for whom BCG was not part of
their recommended treatment [77]. The results showed bladder cancer patients treated with
BCG were significantly less likely to develop AD compared to those not similarly treated.
The bladder cancer mean age was 68 years and the mean age for AD diagnosis was 18 years
later, at 84 years. A dramatic reduction was seen in AD risk was seen in those receiving
BCG: BCG treatment imparted four-fold less risk for developing AD compared to those not
treated with BCG. The authors suggested that confirmation of their retrospective population
study would support prospective studies of BCG in AD [77]. In a follow-up, multi-cohort
study again it was shown that intravesicular BCG imparted a protective benefit against
risk of AD; interestingly, it also showed protection against Parkinson’s disease [72]. A
recent open-label, non-placebo-controlled study employing BCG in cognitively normal
participants showed a reduction of AD risk as measured by plasma amyloid [78].

These studies mirror investigations that show benefit of a variety of vaccinations in
AD [78–82].

5.2. BCG and Parkinson’s Disease (PD)

PD is the second most common neurodegenerative disease [83]. The neuropathology
of PD is characterized by a loss of specific pigmented dopaminergic neurons in regions of
the brain associated with PD, the substantia nigra pars compacta (SNc); this is accompa-
nied by an abnormal accumulation of α-synuclein protein called Lewy bodies—a form of
intraneuronal inclusions present in PD and another neurodegenerative disease, Lewy body
dementia [84]. Accumulating evidence supports a role for the inflammatory response in
PD pathogenesis characterized by highly active microglia [85].

A murine model of PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated
mice, has become a widely used and valuable model for PD investigations [86]. In the
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MPTP model, BCG vaccination induces Treg responses that suppress inflammation and
preserve the striatal dopaminergic system in BCG-treated mice; in doing so, BCG offers
neuroprotection in this animal model of PD [87].

While there are no current trials employing BCG in PD [88], the promising population
study showing a significant reduced risk of PD after BCG [72] suggests the value of such a
trial. Novel blood-based PD biomarkers will likely aid in the assessment of interventional
use of BCG [89].

6. Discussion

The BCG vaccine was developed over one hundred years ago; it is the most employed
vaccine and has not undergone modifications. Notwithstanding, the BCG vaccine has
protected many millions from the severe, disseminated forms of TB. Moreover, via cross-
mycobacterial effects against non-tuberculous mycobacteria, BCG has protected against
diseases caused by NTM. Increasingly recognized is BCG’s off-target effects against other
infections and diseases; these are referred to as non-specific or heterologous effects. This
was seen in the early use of BCG; in 1931, Calmette reported a 4-fold reduction in deaths due
to nontuberculous infection during the first year of life in children immunized with BCG [7].
In the decades that followed, a reduction in all-cause childhood mortality associated with
BCG was found in several studies [90]. This beneficial effect was also found in the elderly
who were hospitalized for infection; BCG protected the elderly who received BCG or
placebo from new infections in at the time of discharge [91].

In 2014, the state of BCG expanded therapeutic use was articulated by Netea:

“. . . despite the epidemiological evidence for heterologous protective effects of
BCG vaccination, the perceived lack of biological plausibility has been a major
obstacle in recognizing and in investigating these effects.” [92]

What then is the biological plausibility as to how BCG exerts its benefits on this wide array
of seemingly unrelated diseases? In addition to immunologic memory induced via the
adaptive immune response, BCG imparts heterologous protection via the innate immune
response. This includes vaccine-induced immune and metabolic alterations and epigenetic
reprogramming of innate white cell populations resulting in heightened responses to
subsequent stimuli, this has been named “trained immunity” [93]. The specific change
in cellular metabolism associated with immune activation involves a shift from oxidative
phosphorylation to glycolysis [94].

The global burden of disease (GBD) is a comprehensive effort to assess worldwide
disease epidemiologic levels and trends the results of which are meant to inform policy-
makers. Below are the results from a cursory internet search for the GBD for each of the
primary diseases featured in this article:

6.1. T1D

There is good evidence that the incidence of type 1 diabetes among children is increas-
ing in many parts of the world. The International Diabetes Federation’s Diabetes Atlas, 5th
edition, estimates that increase to be 3% per year [95].

6.2. MS

“Multiple sclerosis is not common but is a potentially severe cause of neurological
disability throughout adult life. Prevalence has increased substantially in many
regions since 1990.” [96]

6.3. AD

“We estimated that the number of people with dementia would increase from
57.4 million cases globally in 2019 to 152.8 million cases in 2050.” [97]
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6.4. PD

“Over the past generation, the global burden of Parkinson’s disease has more
than doubled as a result of increasing numbers of older people, with potential
contributions from longer disease duration and environmental factors. Demo-
graphic and potentially other factors are poised to increase the future burden of
Parkinson’s disease substantially.” [98]

These sobering assessments coupled with the knowledge that BCG, with its newfound
broad utility and a hundred-year safety history, should prompt large-scale clinical trials
attempting to bend the curve away from the projected global disease burden from T1D, MS,
PD and AD. Regardless of genetic and/or environmental contributions to these diseases,
BCG vaccination may be just the thing to pave the road to improved global health.
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