
Citation: Zhang, Y.; Jiang, Z.; Li, Y.;

Feng, Z.; Zhang, X.; Zhou, R.; Liu, C.;

Yang, L. The Combined Cultivation

of Feruloyl Esterase-Producing

Strains with CMCase and

Xylanase-Producing Strains Increases

the Release of Ferulic Acid.

Microorganisms 2022, 10, 1889.

https://doi.org/10.3390/

microorganisms10101889

Academic Editors: Carlos Molina-

Santiago and Diego F.

Romero Hinojosa

Received: 29 August 2022

Accepted: 19 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

The Combined Cultivation of Feruloyl Esterase-Producing
Strains with CMCase and Xylanase-Producing Strains Increases
the Release of Ferulic Acid
Yao Zhang 1 , Zhilin Jiang 1, Yunran Li 1, Zhiping Feng 1,2, Xian Zhang 1, Ruiping Zhou 3, Chao Liu 3

and Lijuan Yang 1,2,*

1 College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
2 Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province,

Sichuan University of Science & Engineering, Yibin 644000, China
3 Xufu Distillery Co., Ltd., Yibin 644000, China
* Correspondence: yanglijuan@suse.edu.cn

Abstract: Feruloyl esterase (FAE)-producing micro-organisms to obtain ferulic acid (FA) from natural
substrates have good industrial prospects, and the synergistic effect of multiple bacteria can better
improve the yield of FA. In this study, on the premise of the synergistic effect of FAE, hemicellulose,
and cellulase, the key strain Klebsiella oxytoca Z28 with FAE was combined with CMCase and Xylanase-
producing strains to produce FA. The combination of strains with higher FA production are Klebsiella
oxytoca Z28, Klebsiella pneumoniae JZE, Bacillus velezensis G1, and their FA production can reach
109.67 µg/g, which is 15% higher than that of single bacteria. To explore the effects of temperature,
Ph, inoculum amount, distillers grains concentration and fermentation time on the FAE activity of
the combination of strains in the fermentation process, and determined that temperature, Ph, and
fermentation time were the main influencing factors and optimized through orthogonal design. The
optimized fermentation conditions are 34 ◦C, Ph 8.0, and fermentation days for 6 days, the FAE
activity can reach 270.78 U/L, and the FA yield of the combined strain is 324.50 µg/g, which is 200%
higher than that of single-strain fermentation.

Keywords: ferulic acid; feruloyl esterase; CMCase; xylanase

1. Introduction

The massive use of fossil resources has caused huge pollution to the global environ-
ment, forcing people to consider the use of sustainable raw materials for the production
of industrial raw materials and other necessities. Advanced biological and chemical con-
version technologies convert and produce energy, materials, and organic chemicals from
biomass feedstocks from different sources, in order to reduce environmental pollution
caused by industrial production processes and solve the problem of biomass waste accu-
mulation [1]. Waste lignocellulosic raw materials from agriculture and forestry are good
raw materials for their low cost and large quantities [2].

Lignocellulose has a compact structure and is composed of cross-linked cellulose, hemi-
cellulose and lignin [3]. It is very difficult to dehydrolyze lignocellulose by a single enzyme,
which requires the joint action of cellulase, hemicellulase, and other coenzymes [4]. Ferulic
acid (FA) is a phenolic acid existing in plant cell walls. It has physiological functions, such
as antioxidant, antithrombotic, hypolipidemic, prevention and treatment of coronary heart
disease, antibacterial, and anti-inflammatory, anti-mutation, and anti-cancer. It is widely used
in food additives and in the health products and pharmaceutical industries [5–9]. However,
FA exists mainly in the form of ester bonds in plants, such as grain bran, which hinders
the utilization of FA. At present, physical and chemical methods can be used to extract FA
from plants, which is accompanied by many side reactions and easily causes environmental
pollution [10].
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Feruloyl esterase (FAE) is the key enzyme to degrade the ester bond between polysac-
charide and FA in hemicellulose. FAE derived from different fungi and bacteria were
purified and applied to de-starch wheat bran, corn stover, corn cob and bagasse to release
FA [1,11,12]. Compared with a single enzyme for substrate decomposition, multi-enzyme
synergy can improve catalytic efficiency and increase FA production. When FAE and
xylanase work together to extract FA from starch wheat bran, the synergistic FA yield of
multiple enzymes is 10 times that of a single enzyme [13]. It is speculated that xylanase
first cleaves the backbone of xylan to produce ferulylated xylo-oligosaccharides (FXOS),
then FAE can more easily combine with FXOS to release FA [14]. Although using the
purified enzyme to produce FA is highly efficient and specific, the pre-purification process
is cumbersome, which greatly increases the production cost. Through the co-culture of
bacteria and bacteria, it directly acts on the degradation of lignocellulose and shortens the
purification process of enzymes. At the same time, the cooperation of multiple bacteria can
effectively achieve the degradation of substrates and the generation of products [15,16].

The present study based on the synergistic ability of FAE, cellulase and xylanase, the
co-cultivation of enzyme-producing bacteria completed the degradation of lignocellulose
and released FA. The key strain Klebsiella oxytoca Z28(Z28), which produced FAE, was
co-cultured with the xylanase-producing strain and then co-cultured with the cellulase-
producing strain. According to the level of three enzyme activities and the amount of FA
production during the co-cultivation period, the optimal strain combination was obtained.
A single factor experiment was used to find the main factors affecting the enzyme activity
of FAE in the co-culture of three bacteria, and then the orthogonal experiment was used
to optimize the fermentation conditions of the co-culture of three bacteria to obtain the
optimal release of FA, which provided an experimental basis for the extraction of FA and
the industrial application of FAE.

2. Materials and Methods
2.1. Experimental Materials

Distillers grains are the mixed solids that remain after the fermented grains are distilled
out of the wine. The main components of distillers grains include: wheat bran and sorghum.
The distillers grains are dried and crushed to a size below 60 mesh. Distillers grains
were collected from a winery in Yibin, China; peptone, yeast extract, NaCl, (NH4)2SO4,
KH2PO4, MgSO4·7H2O, CaCl2·H2O, and FeCl3 were purchased from Kelong Chemical
Co., Ltd.(Chengdu, China); Ferulic acid and ethyl4-hydroxy-3-methoxycinnamate were
purchased from Yuanye Biotechnology Co. Ltd. (Shanghai, China); The strains used in
this study were isolated from the intestines and feces of bamboo rat, Yibin, China, and 16S
Rdna was used to classify and identify these bacteria: Z28, Klebsiella pneumoniae JZE (JZE),
Bacillus mycoides JEF (JZF), Bacillus cereus JZ3 (JZ3), Bacillus velezensis G1 (G1), Siccibacter
colletis G2 (G2), and Bacillus subtilis strain G6 (G6) [17–20]. Isolated strains were grown in
LB medium, kept at 4 ◦C, and subcultured periodically for experiments.

2.2. Culture Conditions

The enrichment medium used for screening is LB medium; Cellulase-producing bacte-
ria screening medium (g/L): CMC-Na 10, disodium hydrogen phosphate 2.5, potassium
dihydrogen phosphate 1.5, peptone 2.5, yeast extract 0.5, Agar 20; Screening medium
for xylanase producing bacteria (g/L): peptone 5 g, (NH4)2SO 4 2, MgSO4 7H2O 0.25 g,
KH2PO4 0.5, xylan 10, agar 20; Cellulase enzyme production medium (g/L): CMC-Na
10, dipotassium hydrogen phosphate 1, magnesium sulfate heptahydrate 0.5, ammonium
sulfate 2, sodium chloride 2.5, yeast extract 2.5, peptone 5; Xylanase enzyme production
medium (g/L): xylan 10, KH2PO4 1.0, MgSO4·7H2O 0.5 g, (NH4)2SO4 2.0 g, peptone
2.5 g; and feruloyl esterase-producing bacteria screening medium (g/L): (NH4)2SO4 1.3,
KH2PO4 0.37, MgSO4·7H2O 0.25, CaCl2·H2O 0.07, FeCl3 0.02 g yeast extract 5.0, 10%
ethyl4-hydroxy-3-methoxycinnamate 5 mL, pH 6.5. The fermentation medium used for
degrading lignocellulose to release FA is composed of (g/L): (NH4)2SO4 1.3, KH2PO4 0.37,
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MgSO4·7H2O 0.25, CaCl2·H2O 0.07, FeCl3 0.02 g yeast extract 5.0, distillers grains 10, pH
6.5. All flasks were incubated at 37 ◦C under continuous rotary shaker at 180 rpm/min.

2.3. Screening and Identification of Strains

After 10 g of bamboo rat intestinal contents was enriched and cultured in LB medium,
the enriched solution was diluted and spread in the selection medium for screening
cellulase-producing bacteria and xylanase-producing bacteria and then cultured at 37 ◦C.
After 48 h, the grown single cells were picked for separation and purification. A total of 1 mL
of activated strain seed medium and 1 mL of 1 mg/mL Congo red solution were added to
cellulase production medium and xylanase production medium at 37 ◦C, 180 r/min. After
7 days of culture, we observed the color change of Congo red in the medium every day, and
selected the strain whose color faded faster and then measured its cellulase and xylanase
activities by 3.5 and Dinitrosalicylic acid colorimetric method (DNS method). A total of 10 g
of distillers grains were added to LB medium (50 mL) for enrichment, then the enrichment
solution was diluted, spread in the feruloyl esterase-producing bacteria screening medium,
and cultivated in a constant temperature incubator at 37 ◦C for 72 h, observing the size of
the hydrolysis circle produced by the strain on ethyl4-hydroxy-3-methoxycinnamate. The
strains with a larger circle diameter were selected, isolated, purified and stored at −80 ◦C.
According to the results of the transparent circle test, strains with larger transparent circles
were selected for subsequent screening. It was inoculated into a re-screening medium
(50 mL) with 2% inoculum, fermented at 180 rpm and 37 ◦C for 72 h. A total of 10 mL of
fermentation broth was centrifuged at 7000 rpm/min (10 min), and the supernatant was
taken as crude enzyme solution. Ethyl4-hydroxy-3-methoxycinnamate was used as the
substrate to detect the FAE activity of the strain. The strain with a higher enzyme activity
was selected for isolation and identification. The whole genome of the strain was extracted
using a bacterial genome rapid extraction kit. PCR amplification was carried out with
16SrDNA universal primers, primer sequences: 27F: 5′-AGAGTTTGATCCTGGCTCAG-3′,
1492R: 5′-TACGGYTACCTTGTTACGACTT-3′, and the products were sent to the biological
company for DNA sequence determination. The National Center for Biotechnology Infor-
mation (NCBI) performed BLAST sequence analysis and comparison and constructed a
phylogenetic tree with MEGA7.1 (Figure S1).

2.4. Combined Fermentation Culture of Micro-organisms

Different strains of FAE, CMCase, and xylanase were screened in the early stage of
the experiment for combined cultivation (there is no antagonism between the strains). The
feruloyl esterase-producing strain (Z28) and the xylanase-producing strain (JZE, JEF, JZ3)
were inoculated into the fermentation medium (1:1) after activation in the LB medium
co-culture. The inoculum was 2%. The enzyme activities of FAE, xylanase, and CMCase
after 7 days of fermentation were detected, and the yield of FA after 7 days of fermentation
was also detected at a wavelength of 320 nm. The above-mentioned optimal bacterial
species combination and cellulase-producing strains (GW1, GW2, GW6) were inoculated
into the fermentation medium according to the ratio of 1:1 for co-culture fermentation, the
enzyme activities of fermentation FAE, xylanase, and CMCase were detected, as well as
the yield of FA after 7 days of fermentation, and finally a strain combination with a higher
yield of FA was obtained.

2.5. Single Factor Experiment

The purpose of this section is to explore the factors that affect the activity of FAE
during fermentation by microbial combinations. The optimal bacterial strain combinations
Z28, JZE, and GW1 were subjected to single factor experiments to explore the effects of
temperature, pH, inoculum size, fermentation time, and the addition of distillers grains on
FA production. The culture temperature was controlled to be 25 ◦C, 28 ◦C, 31 ◦C, 34 ◦C,
37 ◦C, and 40 ◦C; the initial pH of the medium was adjusted to 4.0, 5.0, 6.0, 7.0, and 8.0;
the inoculation amount was 5%, 7.5%, 10%, 12.5%, 15%, and 17.5% inoculated into the
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fermentation medium. The adjustment gradient of the distillers grains concentration was
2.5 g/L, 5 g/L, 7.5 g/L, 10 g/L, 12.5 g/L fermentation culture, and the fermentation time
was controlled to be 4, 5, 6, 7, and 8 d. We detected the changes of FAE activity under
various factor conditions.

2.6. Orthogonal Experiment

According to the single factor experiment results, temperature, pH, and fermentation
time were selected as the influencing factors, and the conditions for increasing the release
of FA to the highest level were further searched. Three different levels were selected for
these three factors. The design factor level table is shown in Table 1.

Table 1. Factors and levels of orthogonal experiments.

Level Fermentation Time/d pH Temperature/◦C

1 6 7.0 31
2 7 8.0 34
3 8 9.0 37

2.7. Enzyme Activity Determination

For enzyme activity analysis, 10 mL of fermentation broth was centrifuged at 7000 rpm/min
(10 min), and the supernatant was collected as the crude enzyme. CMCase activity was de-
termined by spectrophotometry with CMC-Na as substrate. Incubating the crude enzyme
solution (1 mL) in 4 mL of 50 mM sodium citrate buffer containing 1% CMC Na (pH 5.0) at
50 ◦C for 30 min, add 1.5 mL DNS to terminate the reaction, and measure the amount of
reducing sugar with a spectrophotometer at 540 nm [21]. One unit (U) of CMCase activity
was defined as the required enzyme amount for releasing 1 µmol reducing sugar in 1 min
under the standard conditions above. Xylanase activity was determined by spectrophotom-
etry with beech xylan as substrate. The crude enzyme solution (1 mL) was added to 2 mL
of 50 mM sodium citrate buffer containing 1.0% beech xylan (pH 5.0), incubated at 50 ◦C
for 10 min, and 2 mL DNS was added to terminate the reaction. The production of xylose
was measured with a spectrophotometer at 540 nm [22]. One unit (U) of xylanase activity
was defined as the required enzyme amount for releasing 1 µmol xylose in 1 min under the
standard conditions above. The enzyme activity of FAE was determined by spectropho-
tometry with ethyl4-hydroxy-3-methoxycinnamate as substrate. FAE enzyme activity was
determined by spectrophotometry with ethyl4-hydroxy-3-methoxycinnamateas substrate.
The crude enzyme solution (1 mL) was added to 2 mL of 100 mM Tris HCl (pH 9.0) buffer
solution containing 1% ethyl ferulate. After incubation at 37 ◦C for 2 h, the reaction was
terminated in ice bath for 10 min. The resulting FA was measured with a spectrophotometer
at 320 nm. The above enzyme activity determination methods take the substrate without
enzyme as the control.

2.8. Experimental Analysis

After 7 days of fermentation, 70% absolute ethanol (50 mL) in the fermentation broth
(50 mL) was extracted in the rotary shaker at 37 ◦C, 180 r/min for 30 min, and then the
extract was taken into a centrifuge tube. After centrifugation at 7000 r/min for 10 min,
taking out the supernatant and using a 0.22 µM filter membrane filtration for LC-MS
analysis of phenolic acid types and FA content. LC-MS conditions: Waters Acquity UPLC
Beh C18 1.7 µm 2.1 mm × 50 mm; Eluent: 10% 0.1% acetic acid water, 90% methanol,
column temperature 25 ◦C, flow rate: 0.2 mL/min; Mass Spectrometry conditions: TEM
500 ◦C, IS-4500v, CUR 25 psi, GS1 50 psi, GS2 50 psi, detection mode MRM, ferulic acid
192.9 > 134, DP-43v, EP-11V, CE-16V, CXP-5V.
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2.9. Data Processing

The experiments in this study had three replicates. Data processing used software
such as Excel 2016 (Microsoft Corporation, Albuquerque, NM, USA) and SPSS Statistics
25.0 (IBM Corporation, Armonk, NY, USA).

3. Results
3.1. Combination Culture of Feruloyl Esterase-Producing Strains and Xylanase-Producing Strains

When Z28 was co-cultured with hemicellulase-producing strains JZE, JZF, and JZ3,
we measure the enzymatic activity changes of key enzymes, such as FAE, Xylanase, and
CMCase (Figure 1A). It was observed that Z28 was cultured alone and combined with
different strains, the enzyme activity of FAE did not change significantly, and the enzyme
activity of FAE remained stable in the range of 300.51~314.86 U/L. We thought that the
enzyme activity of FAE of Z28 during fermentation could be improved by adding a new
strain, but we actually observed that co-cultivation had no effect on the FAE activity. In
all three combinations, enhancement of the enzyme activity of xylanase and CMCase was
detected. The enzyme activity of CMCase of Z28 combined with JZF was the highest,
reaching 247.71 U/L; the enzyme activity of xylanase of Z28 combined with JZF was the
highest, reaching 283.72 U/L. After examining the changes in the enzyme activities of the
combined cultures, we checked the release of FA by the combination of strains (Figure 1B).
Compared with single bacterial culture, the FA release of the three different combinations
increased by nearly three times. The combination with the highest FA release was Z28
and JZE, whose concentration can reach 150.78 µg/L. Combining the changes in enzyme
activity after co-cultivation in Figure 1A with the FA production in Figure 1B, we believe
that the presence of CMCase and xylanase can significantly increase the amount of the FA
release. Comparing the strain combination Z28 + JZE and the strain combination Z28 + JZF,
the release of FA from the combination of Z28 + JZE strains was slightly higher than that
of the combination of Z28 + JZF strains, which might be caused by the higher cellulase
activity in the combination of Z28 + JZE strains than in the combination of Z28 + JZF strains.
Comparing the strain combination Z28 + JZF and the strain combination Z28 + JZ3, in the
process of multi-enzyme synergy, the amount of cellulase and hemicellulase added may
affect the release of FA.
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3.2. Combination Culture of Feruloyl Esterase-Producing Strains and Xylanase and Cellulase
Producing Strains

We selected the combination Z28 + JZE with higher FA production and the cellulase-
producing strain for co-cultivation, and measured the enzymatic activity changes of key
enzymes, such as FAE, Xylanase and CMCase (Figure 2A). Compared with the single
bacteria, the G6 was added to the combination Z28 + JZE, and the FAE activity was
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reduced to a certain extent, but its xylanase was the highest level. The cellulase activity of
combination of the Z28 + JEZ + G1 strains combination increased, and the cellulase activity
of the combination of Z28 + JZE + G2 strains combination also increased, but its xylanase
activity decreased. For the newly obtained three strain combinations, the production of FA
after fermentation was analyzed (Figure 2B). The combination of Z28 + JEZ + G1 strains
and the combination of Z28 + JZE + G6 strains showed good synergy, and the combination
of Z28 + JZE + G1 strains had the highest FA yield of 210.89 µg/L, which was 2.39 times
that of a single strain. Then, the combination of Z28 + JZE + G2 strains showed reduced FA
production. Combining the changes in enzyme activity after co-cultivation in Figure 2A
with the FA production in Figure 2B, wee believe that the increase of CMCase and Xylanase
enzyme activities in the combination of Z28 + JZE + G1 strains directly affects the increase
of FA production, and the xylanase activity of the combination of Z28 + JZE + G2 strains
combination shows a significant downward trend, which is a direct cause of the decrease
in FA production. The reason further explained that the presence of cellulase and xylanase
was beneficial to the release of FA.
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3.3. Single Factor Experiment

Using temperature, fermentation days, inoculum volume, pH, and waste particle
concentration as experimental factors, the changes of FAE activity of the combination
of Z28 + JZE + G1 strains were examined to infer the fermentation conditions for high
FA production. The effect of different culture temperatures on FAE activity during the
fermentation process was explored (Figure 3A). It can be observed that at 28–34 ◦C, the FAE
activity in the fermentation broth increases with the increase of temperature, and when the
temperature reaches 34 ◦C, the FAE activity reaches the maximum value. Then, with the
increase of temperature, the enzyme activity of FAE decreased continuously, and the high
temperature was not conducive to the growth and metabolism of the three strains, thus
affecting the production of FAE. When the fermentation time was between 4 and 6 days, the
enzyme activity of FAE was low for three consecutive days, but the FAE showed a sharp
increase trend on the 7th day, and the FAE activity decreased on the 8th day (Figure 3B). It
is because the nutrients present in the fermentation medium are not unique.
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In the early stage of fermentation, the micro-organisms mainly use substances such
as yeast powder, amino acids and polysaccharides in the medium. When the amount of
these substances is reduced, they degrade and use distillers grains to provide energy for
their own growth and metabolism. The effect of the initial inoculum amount of the strain
on the FAE activity during the fermentation process was explored (Figure 3C). It can be
seen that when the inoculum amount is 6%, the enzyme activity of FAE is the highest.
When the inoculum amount was 9%, 12%, 15%, and 18%, the relative enzyme activity of
FAE was stable between 60% and 80%. It is speculated that over-inoculation will lead to a
decrease in FAE activity. The effect of the initial pH of the fermentation broth on the FAE
activity during the fermentation of the strain combination was studied (Figure 3D). When
the initial pH of the fermentation broth was in the range of 4.0–7.0 and 9.0, the relative
enzyme activity of FAE was stable in the range of 50–70%. When the pH was 8.0, the FAE
was significantly higher than other pH levels. It can be concluded that the initial pH of
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fermentation is 8.0, which is favorable for FAE release. The effect of discard concentration
on FAE activity during fermentation was analyzed (Figure 3E). It can be found that the
FAE activity of the fermentation broth can maintain more than 70% of the enzyme activity
detected by different concentrations of discarded grains. By comparison, it can be seen that
the concentration of discarded grains exceeding 10 g/L will inhibit the activity of FAE to a
certain extent.

3.4. Orthogonal Experiment on Production Rule of Feruloyl Esterase by Strain Combination

The purpose of this part of the study is to obtain the optimal conditions for the highest
FAE enzymatic activity of the microbial combination. According to the results of the single
factor experiment, it is concluded that five single factors have an effect on the FAE activity
of the microbial combination. Among them, the inoculum amount and the concentration of
distillers grains are too high to inhibit the FAE activity. The conditions (pH, fermentation
time, and temperature) that had a significant and stable effect on FAE activity were selected
for orthogonal experiments to optimize the fermentation conditions (Table 2). According to
the comparison of RB > RA > RC in Table 2, it can be concluded that the influence condition
of FAE activity is fermentation time > pH > temperature. According to the comparison
of K1, K2, and K3 values calculated by orthogonal experiments, it is concluded that the
optimal fermentation enzyme production condition is fermentation time of 7 days, pH of
8.0, and a temperature of 34 ◦C. Under the optimized culture conditions, the FAE activity
of the microbial combination could reach 270.78 U/L. Compared with the highest FAE
activity of 215.94 U/L in Table 2, the optimized FAE activity was increased by 20%.

Table 2. The results of the orthogonal experiment.

Test No. A pH B Fermentation
Time/d

C
Temperature/◦C FAE/U/L

1 7 6 31 163.05
2 7 7 34 111.91
3 7 8 37 124.96
4 8 6 34 215.94
5 8 7 37 107.33
6 8 8 31 146.47
7 9 6 37 179.26
8 9 7 31 121.43
9 9 8 34 143.65

K1 133.31 186.08 143.65
K2 156.58 113.56 157.17
K3 148.11 138.36 137.18
R 23.27 72.53 19.98

3.5. Comparative Analysis of FA Yield before and after Optimization of Optimal Combination
Fermentation Conditions

The production of FA was quantitatively detected by LC-MS compared with the pro-
duction of FA before and after optimization of single bacteria and fermentation conditions
(Figure 4). It can be found that through the co-cultivation of FAE-producing strains and
CMCase-producing and xylanase-producing strains, the FA production has been improved
to a certain extent, from the previous 95 ug/g to 109.67 µg/g. Through the optimization of
the fermentation conditions of the orthogonal experiment, the FA yield of the co-culture
can reach 324.50 µg/g, which is 200% higher than that of the single bacterial culture.
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4. Discussion

Due to the generation time of fungi, it is not recommended to cultivate fungi to release
FA in a short period of time [23]. The bacteria with a generation time to release FA also has
the problem that the enzyme activity of FAE is low. During the co-cultivation process, the
FAE activity did not change significantly, and the co-culture environment had no obvious
effect on the FAE activity. However, under the optimal combination, the FA release can be
increased by 4 times using co-culture. Compared with Duan’s use of FAE and xylanase
to synergize the FA release of de-starched wheat bran by 10 times [13], the increase in FA
production in this study was lower. However, the study provides a mixed culture method
to improve FA production. The enzymatic activities of cellulase and xylanase increased,
and the FA production also increased. This result is consistent with the previously reported
results that the synergistic effect of xylanase, FAE, and cellulase improves the hydrolysis
efficiency of lignocellulose [24]. In Figure 2, when the activities of the three enzymes were
found to be relatively similar, only the microbial combination Z28 + JZE + G1 had a 4-fold
increase in FA production. This result indicates that other enzymes may be included in
lignocellulose decomposition and directly increase the production of FA, which may be
derived from some other enzymes (α-glucuronidase, acetylesterase) secreted by the G1 to
assist in the decomposition [25].

Temperature and pH are important factors affecting the enzymatic activity of FAE.
Zhenshang Xu found that FAE derived from Lactobacillus has the best enzymatic activity
at pH 7.0~8.0 [26]. Ziyang WU found that the optimal fermentation conditions for FAE
from Acetobacter were pH 7.0, temperature 30 ◦C, inoculum size 10%, and fermentation
time of 24 h [27]. Similar to the previous study, the maximum temperature of FAE activity
in this study was 34 ◦C and the optimum initial pH was 8. Adjusting of temperature
and initial pH can increase FAE activity during fermentation. The difference is that the
highest inoculum amount for the study of enzyme activity is 6%, and an inoculum amount
that is too high will reduce the enzyme activity of FAE. In addition, the increase of the
concentration of distillers grains will increase the viscosity of the culture, affect the growth
of the bacteria during the culture process, and reduce the enzyme activity of FAE. The
microbial combination in this study reached the highest value of FAE activity on the 6th
day, and studies have reported that the optimal enzyme production cycle depends on the
properties of substrates, organic matter, and micronutrients [28].

A previous study showed that the FA extracted from de-starch wheat bran by alkali
extraction was 4.04 mg/g, and the FA released by enzymatic reaction was 2.8 mg/g [29].
Xu obtained a maximum release of 199 µg of FA from 0.2 g of de-starched wheat bran
using purified FAE [30]. Under the optimized mixed culture conditions in this study, the
release amount of FA can reach 324.50 ug/g, which is three times that of single bacterial
culture. However, the amount of FA released from co-culture is still lower than that of
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alkaline extraction and recombinase. Therefore, subsequent studies can use transcriptome
sequencing technology to research the FA metabolic pathway of microbial assemblages
during co-culture, and reveal the release mechanism of FA. At the same time, a higher
release of FA can be obtained by changing the different treatment methods of the substrate
or by screening and domesticating new microbial consortia.

5. Conclusions

At present, most research on FA production use crop bran as the raw material. Liquor
discarded grains also contain crop raw materials, and lignocellulose and other resources
are not utilized after liquor production. Using discarded grains as the raw material for
FA production solves the problem of the accumulation of discarded grains of liquor and
provides a new way of high-value utilization of discarded grains of liquor. This study
effectively increased the release of FA by means of mixed bacterial culture and provided a
new way to increase the release of FA. In the follow-up, the metabolism of micro-organisms
during the co-cultivation process can be specifically studied to reveal the release rule of FA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10101889/s1, Figure S1: Identification of Feru-
loyl Esterase-producing strains(A) with and Xylanase-producing Strains(B-C), CMCase-producing
Strains(D-E) by 16SrRNA sequencing after constructing the phylogenetic tree using the Neighbor-
joining method at 500 replicates of bootstrap value.

Author Contributions: Y.Z. and L.Y. conceived and designed the experiment. Z.J., Y.L. and Y.Z.
completed most of the experimental work. R.Z. and C.L. carried out the material pretreatment. Y.Z.
analyzed the experimental results and wrote and received the manuscript. X.Z. assisted in data
analysis. L.Y. and Z.F. supervised the overall work and revised the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Graduate Innovation Fund Project (y2021038), the Liquor
Making Bio-Technology & Application of Key Laboratory of Sichuan Province Fund (NJ-2021-04),
and the Natural Science Foundation of Sichuan Province (2022NSFSC0246).

Data Availability Statement: Date is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, R.; Yang, J.; Jin, M.J.; Liu, J.; Yuan, H. Efficient ferulic acid and xylo-oligosaccharides production by a novel multi-modular

bifunctional xylanase/feruloyl esterase using agricultural residues as substrates. Bioresour. Technol. 2019, 297, 122487. [CrossRef]
[PubMed]

2. Ubando, A.T.; Felix, C.B.; Chen, W.H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020, 299,
122585. [CrossRef]

3. Shibafuji, Y.; Nakamura, A.; Uchihashi, T.; Sugimoto, N.; Fukuda, S.; Watanabe, H.; Samejima, M.; Ando, T.; Noji, H.; Koivula, A.;
et al. Single-molecule imaging analysis of elementary reaction steps of trichoderma reesei cellobiohydrolase i (Cel7A) hydrolyzing
crystalline cellulose Iα and IIII. J. Biol. Chem. 2014, 289, 14056–14065. [CrossRef] [PubMed]

4. Sethupathy, S.; Morales, G.M.; Li, Y.; Wang, Y.; Jiang, J.; Sun, J.; Zhu, D. Harnessing microbial wealth for lignocellulose biomass
valorization through secretomics: A review. Biotechnol. Biofuels 2021, 14, 154. [CrossRef] [PubMed]

5. Kawabata, K.; Yamamoto, T.; Hara, A.; Shimizu, M.; Yamada, Y.; Matsunaga, K.; Tanaka, T.; Mori, H. Modifying effects of ferulic
acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 2000, 157, 15–21. [CrossRef]

6. Choi, J.-H.; Park, J.-K.; Kim, K.-M.; Lee, H.-J.; Kim, S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J.
Biochem. Mol. Toxicol. 2018, 32, e22004. [CrossRef] [PubMed]

7. Stead, D. The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts J. Appl.
Bacteriol. 1995, 78, 82–87. [CrossRef]

8. Anabela, B.; Carla, F.; Saavedra, M.J.; Manuel, S. Antibacterial activity and mode of action of ferulic and gallic acids against
pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265.

9. Anabela, B.; Saavedra, M.J.; Manuel, S. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic
bacteria. Biofouling 2012, 28, 755–767.

10. Nieter, A.; Kelle, S.; Linke, D.; Berger, R.G. Feruloyl esterases from Schizophyllum commune to treat food industry side-streams
Bioresour. Technol. 2016, 220, 38–46.

https://www.mdpi.com/article/10.3390/microorganisms10101889/s1
https://www.mdpi.com/article/10.3390/microorganisms10101889/s1
http://doi.org/10.1016/j.biortech.2019.122487
http://www.ncbi.nlm.nih.gov/pubmed/31812598
http://doi.org/10.1016/j.biortech.2019.122585
http://doi.org/10.1074/jbc.M113.546085
http://www.ncbi.nlm.nih.gov/pubmed/24692563
http://doi.org/10.1186/s13068-021-02006-9
http://www.ncbi.nlm.nih.gov/pubmed/34225772
http://doi.org/10.1016/S0304-3835(00)00461-4
http://doi.org/10.1002/jbt.22004
http://www.ncbi.nlm.nih.gov/pubmed/29077251
http://doi.org/10.1111/j.1365-2672.1995.tb01677.x


Microorganisms 2022, 10, 1889 11 of 11

11. Damásio, A.R.L.; Braga, C.M.P.; Brenelli, L.B.; Citadini, A.P.; Mandelli, F.; Cota, J.; de Almeida, R.F.; Salvador, V.H.; Paixao, D.A.A.;
Segato, F.; et al. Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Appl. Microbiol. Biotechnol.
2013, 97, 6759–6767. [CrossRef] [PubMed]

12. Wu, H.; Li, H.; Xue, Y.; Luo, G.; Gan, L.; Liu, J.; Mao, L.; Long, M. High efficiency co-production of ferulic acid and xylooligosac-
charides from wheat bran by recombinant xylanase and feruloyl esterase. Biochem. Eng. J. 2017, 120, 41–48. [CrossRef]

13. Duan, X.; Dai, Y.; Zhang, T. Characterization of Feruloyl Esterase from Bacillus pumilus SK52.001 and Its Application in Ferulic
Acid Production from De-Starched Wheat Bran. Foods 2021, 10, 1229. [CrossRef] [PubMed]

14. De Oliveira, D.M.; Finger-Teixeira, A.; Rodrigues Mota, T.; Salvador, V.H.; Moreira-Vilar, F.C.; Correa Molinari, H.B.; Craig
Mitchell, R.A.; Marchiosi, R.; Ferrarese-Filho, O.; Dantas dos Santos, W. Ferulic acid: A key component in grass lignocellulose
recalcitrance to hydrolysis. Plant Biotechnol. J. 2015, 13, 1224–1232. [CrossRef] [PubMed]

15. Liang, J.; Fang, X.; Lin, Y.; Wang, D. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and
chlorophenols detoxification J. Hazard. Mater. 2018, 347, 341–348. [CrossRef]

16. Wang, Y.; Zhao, C.; Zhang, D.; Zhao, M.; Zheng, D.; Peng, M.; Cheng, W.; Guo, P.; Cui, Z. Simultaneous degradation of aflatoxin
B1 and zearalenone by a microbial consortium. Toxicon 2018, 146, 69–76. [CrossRef]

17. Guo, W.; Zhang, Y.; Zhang, X.; Yang, L. Screening of acid cellulase strain degradation resistance in bamboo rats and study on
enzymatic properties. Feed Res. 2021, 44, 65–69.

18. Zhang, Y.; Yang, L.; Zhang, X.; Feng, Z.; Yang, L. Screening ofAlkaline Tolerant Xylanase Strains in Bamboo Rat Intestines and
Study on Enzymatic Properties. Sci. Technol. Food Ind. 2021, 42, 118–125.

19. Malhotra, G.; Chapadgaonkar, S. Production of thermo-alkali-stable xylanase from bacillus licheniformis isolated from natural
hot water geyser. J. Microsc. Ultrastruct. 2021, 9, 131–135.

20. Li, F.; Xie, Y.; Gao, X.; Shan, M.; Sun, C.; Niu, Y.D.; Shan, A. Screening of cellulose degradation bacteria from Min pigs and
optimization of its cellulase production. Electron. J. Biotechnol. 2020, 48, 29–35.

21. Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 2013, 59, 257–268. [CrossRef]
22. Ding, C.; Li, M.; Hu, Y. High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation

and xylooligosaccharides production. Int. J. Biol. Macromol. 2018, 117, 72–77. [CrossRef] [PubMed]
23. Liu, S.; Bischoff, K.M.; Anderson, A.M.; Rich, J.O. Novel Feruloyl Esterase from Lactobacillus fermentum NRRL B-1932 and

Analysis of the Recombinant Enzyme Produced in Escherichia coli. Appl. Environ. Microbiol. 2011, 82, 5068–5076. [CrossRef]
[PubMed]

24. Wang, H.; Xianghui, Q.; Gao, S.; Zhang, Y.; An, Y. Biochemical characterization of an engineered bifunctional xylanase/feruloyl
esterase and its synergistic effects with cellulase on lignocellulose hydrolysis. Bioresour. Technol. 2022, 355, 127244. [CrossRef]

25. Yang, Y.; Zhu, N.; Yang, J.; Lin, Y.; Liu, J.; Wang, R.; Wang, F.; Yuan, H. A novel bifunctional acetyl xylan esterase/arabinofuranosidase
from Penicillium chrysogenum P33 enhances enzymatic hydrolysis of lignocellulose. J. Microb. Cell Factories 2017, 16, 166. [CrossRef]

26. Xu, Z.; He, H.; Zhang, S.; Guo, T.; Kong, J. Characterization of Feruloyl Esterases Produced by the Four Lactobacillus Species: L.
amylovorus, L. acidophilus, L. farciminis and L. fermentum, Isolated from Ensiled Corn Stover. Front. Microbiol. 2017, 8, 941.
[CrossRef]

27. Wu, Z.; Yang, S.; Xu, L.; Li, H.; Sun, J.; Xu, Y.; Huang, M.; Sun, B. Screening and identifying microorganisms with feruloyl esterase
activity in Chinese sesame-flavour baijiu fermentation materials (Jiupei). J. Food Compos. Anal. 2021, 102, 104069. [CrossRef]

28. R. F.H, D. Bioconversion of hemicellulose: Aspects of hemicellulase production by Trichoderma reesei QM 9414 and enzymic
saccharification of hemicellulose. Biotechnol. Bioeng. 1983, 25, 1127–1146. [CrossRef]

29. Long, L.; Wu, L.; Lin, Q.; Ding, S. Highly Efficient Extraction of Ferulic Acid from Cereal Brans by a New Type A Feruloyl Esterase
from Eupenicillium parvum in Combination with Dilute Phosphoric Acid Pretreatment. Appl. Biochem. Biotechnol. 2020, 190,
1561–1578. [CrossRef]

30. Zhenshang, X.; Ting, W.; Susu, Z. Extracellular secretion of feruloyl esterase derived from Lactobacillus crispatus in Escherichia
coli and its application for ferulic acid production. Bioresour. Technol. 2019, 288, 121526.

http://doi.org/10.1007/s00253-012-4548-4
http://www.ncbi.nlm.nih.gov/pubmed/23229566
http://doi.org/10.1016/j.bej.2017.01.001
http://doi.org/10.3390/foods10061229
http://www.ncbi.nlm.nih.gov/pubmed/34071417
http://doi.org/10.1111/pbi.12292
http://www.ncbi.nlm.nih.gov/pubmed/25417596
http://doi.org/10.1016/j.jhazmat.2018.01.023
http://doi.org/10.1016/j.toxicon.2018.04.007
http://doi.org/10.1351/pac198759020257
http://doi.org/10.1016/j.ijbiomac.2018.05.128
http://www.ncbi.nlm.nih.gov/pubmed/29792957
http://doi.org/10.1128/AEM.01029-16
http://www.ncbi.nlm.nih.gov/pubmed/27260363
http://doi.org/10.1016/j.biortech.2022.127244
http://doi.org/10.1186/s12934-017-0777-7
http://doi.org/10.3389/fmicb.2017.00941
http://doi.org/10.1016/j.jfca.2021.104069
http://doi.org/10.1002/bit.260250419
http://doi.org/10.1007/s12010-019-03189-6

	Introduction 
	Materials and Methods 
	Experimental Materials 
	Culture Conditions 
	Screening and Identification of Strains 
	Combined Fermentation Culture of Micro-organisms 
	Single Factor Experiment 
	Orthogonal Experiment 
	Enzyme Activity Determination 
	Experimental Analysis 
	Data Processing 

	Results 
	Combination Culture of Feruloyl Esterase-Producing Strains and Xylanase-Producing Strains 
	Combination Culture of Feruloyl Esterase-Producing Strains and Xylanase and Cellulase Producing Strains 
	Single Factor Experiment 
	Orthogonal Experiment on Production Rule of Feruloyl Esterase by Strain Combination 
	Comparative Analysis of FA Yield before and after Optimization of Optimal Combination Fermentation Conditions 

	Discussion 
	Conclusions 
	References

