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Abstract: Listeria monocytogenes (L. monocytogenes) is the etiologic agent of listeriosis which sig-
nificantly affects immunocompromised individuals. The potential risk of infection attributed to
L. monocytogenes in irrigation water and agricultural soil, which are key transmission pathways of
microbial hazards to the human population, was evaluated using the quantitative microbial risk
assessment modelling. A Monte Carlo simulation with 10,000 iterations was used to characterize the
risks. High counts of L. monocytogenes in irrigation water (mean: 11.96 × 102 CFU/100 mL; range:
0.00 to 56.67 × 102 CFU/100 mL) and agricultural soil samples (mean: 19.64 × 102 CFU/g; range:
1.33 × 102 to 62.33 × 102 CFU/g) were documented. Consequently, a high annual infection risk of
5.50 × 10−2 (0.00 to 48.30 × 10−2), 54.50 × 10−2 (9.10 × 10−3 to 1.00) and 70.50 × 10−2 (3.60 × 10−2

to 1.00) was observed for adults exposed to contaminated irrigation water, adults exposed to contam-
inated agricultural soil and children exposed to agricultural soil, respectively. This study, therefore,
documents a huge public health threat attributed to the high probability of infection in humans
exposed to L. monocytogenes in irrigation water and agricultural soil in Amathole and Chris Hani
District Municipalities in the Eastern Cape province of South Africa.

Keywords: Listeria monocytogenes; listeriosis; irrigation water; agricultural soil; public health; QMRA

1. Introduction

L. monocytogenes is a ubiquitous Gram-positive bacterium naturally occurring in agrar-
ian environments including soil, manure and water [1]. It is psychrotrophic, having the
ability to grow below 7 ◦C under both aerobic and anaerobic conditions and at low levels
of water activity in a wide range of pH (4.0–6.0) [2]. It can also persist under high salt
concentration, hydrostatic pressure, oxidative stress and extreme energy levels [3]. These
tenacious characteristics make L. monocytogenes a potential hazard in the food sector and
a significant public health burden [4]. Once exposed, this pathogen causes severe illness
due to its ability to induce its own phagocytosis and intracellular replication, cross the
epithelial barriers and invade other healthy cells using virulence factors like hemolysins,
phospholipases, internalins and surface protein actin A [5,6]. As a result, L. monocytogenes
has become a model to study intracellular pathogens [7].

L. monocytogenes represents an unprecedented microbial hazard with public health sig-
nificance, despite not being recognized as a popular cause of foodborne related illnesses [8].
It causes the disease listeriosis, which may be mild in healthy individuals or invasive in
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immunocompromised individuals, pregnant women, children and the elderly. While the
mild form of listeriosis is characterized by flu-like symptoms, vomiting and diarrhoea,
the invasive form is characterized by septicemia, meningitis, fetal infection, abortion and
death [9]. The fatality rate of listeriosis is usually high, ranging from 20% to 40%, especially
among the high-risk groups [10]. In South Africa, an astounding total of 1024 cases of
listeriosis with a 28.6% fatality rate was recorded between 1 January 2017 and 24 April
2018, making it the largest listeriosis outbreak reported by the World Health Organization
(WHO) [11].

The incidence rate of listeriosis in the population is generally low compared to other
foodborne diseases. However, the distribution of L. monocytogenes in the environment is
wide, with a high recovery rate in foods [8]. L. monocytogenes has been isolated from several
ready-to-eat (RTE) foods such as ice cream [12], cheese [13], fish [14], meat pâté and meat
products [15]. It has also been isolated from minimally processed fruits and vegetables
such as caramel-apples [16], cantaloupe, bean sprouts [17], frozen vegetables [18] and
packaged salads [19]. This is attributed to its ubiquitous nature in the food processing and
agricultural environments [20].

L. monocytogenes is widely dispersed in the agroecosystem, especially in irrigation
water sources, agricultural soil, vegetation and organic matters [21–23]. Many irrigation
water sources harbour numerous enteric pathogens like L. monocytogenes which are intro-
duced by pollutants like faecal materials, sewage, and soil particles [24]. The soil is also a
known environmental niche for L. monocytogenes. This pathogen has been recovered from
various soil samples in different locations, including mountainous areas, forest areas and
grazing lands [1]. In the soil, L. monocytogenes exist naturally as saprophytes, but become
pathogenic once present in human and animal cells [25].

The presence of L. monocytogenes in irrigation water and agricultural soil is detrimen-
tal to food safety and public health. A systematic risk assessment is therefore required
to quantitatively predict the health risks posed by the presence of this pathogen in irri-
gation water and agricultural soil using information like the nature of the pathogen, its
exposure routes and the health effects associated with the exposure [26]. To that effect, a
quantitative microbial risk assessment (QMRA) modelling was carried out to predict the
risks of infection attributed to L. monocytogenes in irrigation water and agricultural soil
samples collected from Amathole and Chris Hani District Municipalities, Eastern Cape
Province, South Africa. To the best of our knowledge, this is the first QMRA modelling of
L. monocytogenes in irrigation water and agricultural soil to be carried out in the Province.

2. Materials and Methods
2.1. Study Area

This study was conducted in two District Municipalities of the Eastern Cape Province,
South Africa. The Province is the second largest province in the country and agriculture
is one of its major industries. Samples were collected from 14 sampling sites in Amathole
District Municipality, which is situated in the central part of the province, as shown in
Figure 1. Samples were also collected from five sampling sites in the Chris Hani District
Municipality situated in the northern region of the province, as shown in Figure 2. As of
2016, Amathole District Municipality was made up of 862,000 people (12.3% of Eastern
Cape population and 1.55% of South African population) [27] while Chris Hani District
Municipality was made up of 849,000 people (12.0% of Eastern Cape population and 1.5%
of South Africa population) as of 2017 [28].

2.2. Microbiological Analysis

Using the grab sampling technique, a total of 19 irrigation water samples and 13 agri-
cultural soil samples were aseptically collected from the sampling sites in sterile sample
bottles and plastic bags, respectively. The sampling was done in triplicate across all of
the sampling sites. The collected samples were transported on ice to the laboratory for
microbiological analysis.



Microorganisms 2022, 10, 181 3 of 14

To determine the viable counts of L. monocytogenes, all the samples were subjected
to serial dilution, which was then followed by membrane filtration for irrigation water
samples and the spread plate culture method for soil samples as described in our previous
report [29]. All the analyses were done in triplicates and the culture was done using
Chromogenic Listeria Agar (ISO) Base (Oxoid Ltd., Hampshire, UK) supplemented with
OCLA (ISO) differential supplement (Oxoid Ltd., UK) and the OCLA (ISO) selective
supplement (Oxoid Ltd., UK). The concentration of L. monocytogenes was expressed in
CFU/100 mL of irrigation water samples and CFU/g of agricultural soil samples.

The polymerase chain reaction (PCR) was used to confirm the identities of the isolates
by targeting the prs gene (specific for genus) and prf A gene (specific for species) following
the description of [30]. Nine virulence genes commonly associated with L. monocytogenes
were screened for in the confirmed isolates using PCR assays as described by [31]. These
include inlA, inlB, inlC, inlJ, actA, hlyA, plcA, plcB, and iap. L. monocytogenes ATCC 9525
(ATCC; Manassas, VA, USA) was included in the PCR as a control strain. The primer
sequences, the expected amplicon sizes and the cycling conditions used in all the PCR
experiments are shown in Table 1.
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Table 1. Primer sequence, expected amplicon sizes and cycling conditions used in the detection of
L. monocytogenes and screening of virulence genes.

Primer Sequence (5′-3′) Target Genes Cycling Conditions Amplicon Size
(bp) References

F: GCTGAAGAGATTGCGAAAGAAG
R: CAAAGAAACCTTGGATTTGCGG prs

5 min 95 ◦C 35 [30 s
94 ◦C, 90 s 60 ◦C, 90 s

72 ◦C] 5 min 2 ◦C
370 [30]

F: GATACAGAAACATCGGTTGGC
R: GTGTAATCTTGATGCCATCAG prf A

5 min 95 ◦C 35 [30 s
94 ◦C, 90 s 60 ◦C, 90 s

72 ◦C] 5 min 2 ◦C
274 [30]

inlAF: CCTAGCAGGTCTAACCGCAC
inlAR: TCGCTAATTTGGTTATGCCC inlA

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
256 [32]

inlBF: TGATGTTGATGGAACGGTAAT
inlBR: CTCGTGGAAGTTTGTAGATGC inlB

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
272 [31]
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Table 1. Cont.

Primer Sequence (5′-3′) Target Genes Cycling Conditions Amplicon Size
(bp) References

inlCF: AATTCCCACAGGACACAACC
inlCR: CGGGAATGCAATTTTTCACTA inlC

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
517 [33]

inlJF: TGTAACCCCGCTTACACAGTT
inlJR: AGCGGCTTGGCAGTCTAATA inlJ

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
238 [33]

actAF: CCAAGCGAGGTAAATACGGGA
actAR: GTCCGAAGCATTTACCTCTTC actA

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
650 [34]

hlyF: ATCATCGACGGCAACCTCGGAGAC
hlyR: CACCATTCCCAAGCTAAACCAGTGC hlyA

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
404 [31]

plcAF: CTCGGACCATTGTAGTCATCTT
plcAR: CACTTTCAGGCGTATTAGAAACGA plcA

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
326 [34]

plcBF: AATATTTCAATCAATCGGTGGCTGA
plcBR: GGGTAGTCCGCTTTCGCTCTT plcB

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
289 [31]

iapF: ACAAGCTGCACCTGTTGCAG
iapR: TGACAGCGTGTGTAGTAGCA iap

5 min 94 ◦C 35 [35 s,
94 ◦C; 30 s, 52 ◦C; 1 min,

72 ◦C] 10 min 72 ◦C
131 [35]

2.3. Microbial Risk Modelling

The probability of infection associated with L. monocytogenes in irrigation water and
agricultural soil from Amathole and Chris Hani DMs was estimated using a four-step
science-based approach including hazard identification, hazard characterization, exposure
assessment and risk characterization as described by Codex Alimentarius Commission
(CAC) [36].

2.3.1. Hazard Identification

L. monocytogenes was selected to predict the health risks associated with contaminated
irrigation water and agricultural soil. This pathogen was selected due to its high prevalence
in the agricultural and food processing environments and its ability to be transmitted to
the food chain where it can instigate severe foodborne related listeriosis. L. monocytogenes
was also selected due to its significance in South Africa, having been implicated in the most
severe form of listeriosis outbreak ever experienced globally [37].

2.3.2. Hazard Characterization

Hazard characterization was carried out to access the negative health outcomes associ-
ated with the occurrence of L. monocytogenes in irrigation water and agricultural soil, based
on the assumption that a single cell of L. monocytogenes would cause an infection. This anal-
ysis defines the relationship between the dose of L. monocytogenes and the corresponding
negative health effects on the exposed population [38]. The following equation [39] was
used to determine the ingestion dose of L. monocytogenes.

D = (Iv ×Mc) (1)

where D represents the ingestion dose of L. monocytogenes, Iv represents the ingested
volume of irrigation water and agricultural soil and Mc represents the mean viable counts
of L. monocytogenes.
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An “exponential dose-response model” [40] was used to evaluate the risk linked to
L. monocytogenes as shown in the following equation;

Pinf = 1 − exp −rD (2)

where Pinf represents the probability of infection that will occur in an individual exposed to
a particular dose (D) of L. monocytogenes. D represents the ingestion dose of L. monocytogenes
and r represents the probability that a single cell of L. monocytogenes will cause invasive
listeriosis. In this equation, r is 1.91 × 10−10 which is constant for L. monocytogenes [41].

2.3.3. Exposure Assessment

Exposure assessment was carried out to describe the possible ways by which suscepti-
ble human populations are exposed to L. monocytogenes in irrigation water and agricultural
soil as well as to model the number of exposures that exist between humans and L. mono-
cytogenes. Factors such as the counts of pathogen in the environmental matrix, ingested
volumes of the matrix, the viability of the pathogen, and the recovery efficacy of the
methods were considered in the Exposure (E) assessment using the following equation [42]:

E = CR−1 IM (3)

where E represents Exposure, C represents the counts of L. monocytogenes per 100 mL of
irrigation water samples or per gram of soil samples, R represents the recovery efficacy of
the isolation method, I represents the fraction of L. monocytogenes capable of causing severe
infection, and M represents the amount of irrigation water and soil ingested unintentionally
per day. Recovery efficacy (R) was considered to prevent the underestimation of the
concentration of the pathogen as well as the exposure [42]. It was estimated using the
equation below:

R = (Po − P/Po) × 100 (4)

where “Po” represents the presumptive counts of L. monocytogenes isolates in irrigation
water and agricultural soil samples and “P” represents the confirmed isolates following
cultural and molecular methods. The parameters inputted for exposure assessment are
shown in Table 2

Table 2. Parameters inputted for exposure assessment in adults and children.

Irrigation Water Agricultural Soil

Parameter Data Source Parameter Data Source

Concentration (C) of
L. monocytogenes
(CFU/100 mL)

Min: 0.00
Mean: 11.96 × 102

Max: 56.67 × 102
This study

Concentration (C) of
L. monocytogenes

(CFU/g)

Min: 1.33 × 102

Mean: 19.64 × 102

Max: 62.33 × 102
This study

Recovery efficiency
(R) (%) 93 This study Recovery efficiency

(R) (%) 93 This study

Proportion (I) of
L. monocytogenes

capable of causing
severe infection (%)

100 This study

Proportion (I) of
L. monocytogenes

capable of causing
severe infection (%)

100 This study

Amount (M) of water
ingested during

farming (mL/day)
10 [43]

Amount (M) of soil
and dust ingested by

adults (mg/day)
50 [44]

Amount (M) of water
ingested by children

during farming
Not given

Amount (M) of soil
and dust ingested by
children (mg/day)

100 [44]

Min: Minimum, Max: Maximum.
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2.3.4. Risk Characterization

Risk characterization was done to predict the annuitized risk of infection based on haz-
ard identification, hazard characterization and exposure assessment using the annuitized
probability of infection (Pinf/y) equation [39] as shown below.

Pinf/y = 1 − (1 − Pinf)
E (5)

where Pinf/y represents the yearly probability of infection, Pinf represents the probability
of infection due to a single exposure to an ingested dose (D) of L. monocytogenes and E
represents the exposure.

The risk associated with a single exposure to L. monocytogenes was evaluated using
a Monte Carlo simulation with 10,000 iterations. The modelling was performed using R
software version 3.0.3 (Development Core Team from Vienna, Austria) with the application
of the R package (fitdistrplus) to fit the distribution of pathogen concentrations.

3. Results and Discussion
3.1. Hazard Identification and Concentration of L. monocytogenes in the Samples

In this study, the mean concentration of L. monocytogenes in irrigation water samples
was 11.96 × 102 CFU/100 mL ranging from 0 to 56.67 × 102 CFU/100 mL as shown in
Figure 3. This exceeded 0.0 CFU/100 mL standard set by the South African Department of
Water Affairs (DWAF) for faecal coliforms in domestic water [45] and ≤100 CFU/100 mL
standard set by the World Health Organization (WHO) for coliforms in wastewater used
for agriculture and aquaculture [46]. This suggests that the irrigation waters within the
study sites are not of great quality for agricultural activities, hence posing health risks
to the exposed population. The findings are also consistent with our previous study
which assessed the prevalence of Listeria spp. in river and irrigation water in the Eastern
Cape Province of South Africa [47]. A higher mean concentration of L. monocytogenes was
recorded in the agricultural soil samples, estimated at 19.64× 102 CFU/g and ranging from
1.33 × 102 CFU/g to 62.33 × 102 CFU/g, as shown in Figure 3. This is not surprising, as
L. monocytogenes is widely dispersed in the soil, also posing human health risks.
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Of the 117 presumptive L. monocytogenes recovered from irrigation water samples and
183 presumptive L. monocytogenes isolated from agricultural soil samples, eight (6.8%) and
12 (6.6%) isolates were confirmed, respectively, following the molecular analyses. These
findings are lower than the results of a previous study that recovered 11.2% L. monocytogenes
from surface water used to irrigate fresh produce, [48] and a study that recovered 4 to
11% L. monocytogenes from the soil of fresh leafy produce production fields [49]. Although
L. monocytogenes is almost always recovered in low numbers, they can cause a high rate of
infection, especially among the immunocompromised population.

Interestingly, each of the confirmed isolates in this study harbored all the screened
virulence genes, indicating that they are highly pathogenic and can cause severe infections
in potential exposed populations. This corroborates previous studies that assessed the
prevalence of virulence genes in L. monocytogenes isolated from various food and envi-
ronmental matrices [31,50–53]. Generally, virulence genes in L. monocytogenes are usually
implicated in the various phases of infection induced by the pathogen. For instance, hlyA,
prf A and actA genes are involved with the spread of the pathogen between the cells of the
host, the inlA, inlB, and inlJ genes are involved with invasion and adhesion, the plcA and
plcB genes facilitate the release of the pathogen from bound vacuoles and the hlyA gene is
also involved the release of the bacterial cells into the cells of the host [54].

3.2. Dose Modelling and Hazard Characterization

Table 3 shows the results of the dose modelling and hazard characterization of L.
monocytogenes in irrigation water and agricultural soil in the study areas. A 2.30 × 10−6

daily risk (probability) of infection was estimated for adults ingesting 11.97 × 103 doses
of L. monocytogenes from irrigation water. The daily risk of infection was 1.10 × 10−5

at maximum ingestion dose of 56.67 × 103 and 0.00 at minimum ingestion dose of 0.00.
These estimates were based on the assumption that adults intentionally or unintentionally
ingest 10 mL of contaminated irrigation water per day [43]. A higher daily risk of infection
(4.12 × 10−3) attributed to E. coli in unprotected spring water was recorded in a previous
study assuming the ingestion volume was 500 mL [55]. This shows that ingestion volume
is correlated to the daily risk of infection. The probability of infection in children was not
recorded in this study because the parameter for the ingested volume of irrigation water by
children was not available.

Table 3. The daily probability of infection based on hazard characterization in irrigation water and
agricultural soil samples.

Parameter Irrigation Water Agricultural Soil

Min Mean Max Min Mean Max

Ingestion dose (D) in adults 0.00 11.97 × 103 56.67 × 103 6.67 × 103 98.21 × 103 311.67 × 103

Ingestion dose (D) in children - - - 13.33 × 103 196.41 × 103 623.33 × 103

Probability of infection (Pinf)
in adults (daily risk) 0.00 2.30 × 10−6 1.10 × 10−5 1.30 × 10−6 1.90 × 10−5 6.00 × 10−5

Probability of infection (Pinf)
in children (daily risk) - - - 2.50 × 10−6 3.80 × 10−5 1.20 × 10−4

Min: Minimum, Max: Maximum.

Also, a 1.90× 10−5 daily risk of infection was recorded for adults ingesting 98.21 × 103

doses of L. monocytogenes from agricultural soil. The probability of infection was 1.30 × 10−6

at minimum ingestion dose of 6.67 × 103 and 6.00 × 10−5 at maximum ingestion dose
of 311.67 × 103. These estimates were based on the assumption that adults intentionally
or unintentionally ingest 50 mg of contaminated soil per day [44]. These estimates were
lower than those obtained in a previous study for other enteric pathogens like E. coli
(6.38 × 10−2) and Salmonella spp. (2.43 × 10−1) in contaminated soil [55]. In children, a
3.80 × 10−5 probability of infection was recorded at an ingestion dose of 196.41 × 103.
The probability of infection was 2.50 × 10−6 at minimum ingestion dose of 13.33 × 103
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and 1.20 × 10−4 at maximum ingestion dose of 623.33 × 103. These estimates were also
based on the assumption that children intentionally or unintentionally ingest 100 mg of
contaminated soil per day [44].

It has been shown that the probability of infection attributed to pathogens in the
environment depends on certain factors such as the pathogenicity of the pathogen, the
ingestion dose of the pathogen, and the exposure routes to the pathogen [55].

3.3. Exposure Assessment

In this study, the patterns of human exposure to L. monocytogenes in irrigation water
and agricultural soil is shown in Figure 4. One of the common routes of exposure is
via the ingestion of fresh produce contaminated by L. monocytogenes in irrigation water
and agricultural soil. This potentially puts the lives of farmers, their family members,
consumers, distributors and processors in danger. Steele et al. indicated that contaminated
irrigation water is a significant source of fresh produce contamination, correlating to
the rise in the frequency of foodborne infections [56]. Smith et al. also indicated that
L. monocytogenes in the soil can be transferred to fresh produce via splashes of soil during
rainfall or irrigation, human activities, direct contact of plant surfaces with the soil and
through machinery [57]. Other possible exposure routes include the unintentional ingestion,
inhalation and dermal contact of contaminated irrigation water and soil particles, therefore
putting the lives of farmers, their family members and co-workers at risk. Furthermore,
children and community members playing in the soil, swimming and collecting water from
irrigation water sources for other domestic purposes have their lives at risk when exposed
to L. monocytogenes via ingestion, dermal contact and inhalation.
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Considering the parameters inputted for the evaluation of exposure, a 12.87 × 103

exposure with a range of 0.00 to 60.93 × 103 was documented for adults exposed to
L. monocytogenes in irrigation water as shown in Table 4. Alternatively, a 105.60 × 103

exposure with a range of 7.17 × 103 to 335.13 × 103 was documented for adults exposed
to L. monocytogenes in agricultural soil, while a 211.19 × 103 exposure with a range of
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14.34 × 103 to 670.25 × 103 was recorded for children exposed to L. monocytogenes in
agricultural soil as shown in Table 4. Numerically, this indicates that people, especially
children are more likely to be exposed to L. monocytogenes in agricultural soil than in
irrigation water, thus increasing their risks of infection.

Table 4. The exposure parameters in adults and children.

Irrigation Water Agricultural Soil

Parameter Data Data

Exposure (E) in adults
Min: 0.00

Mean: 12.87 × 103

Max: 60.93 × 103

Min: 7.17 × 103

Mean: 105.60 × 103

Max: 335.125 × 103

Exposure (E) in children Not determined
Min: 14.34 × 103

Mean: 211.19 × 103

Max: 670.25 × 103

Min: Minimum, Max: Maximum.

3.4. Risk Characterization

The annual risk of infection in adults exposed to L. monocytogenes from irrigation water
was 5.50 × 10−2 with a range of 0.00 to 48.30 × 10−2 as shown in Table 5. This exceeded the
WHO permissible standard for the annual tolerable reference level of human health risk
attributed to drinking water (1 × 10−4) [58] and that attributed to excreta and greywater
used for agricultural activities (1 × 10−6 DALY) [59]. This suggests that the irrigation water
in this study is of unacceptable quality and poses health risks to the exposed population. A
similar finding was recorded in a previous study that used rotavirus as a model organism
to estimate the annual risk of infection attributed to irrigation water [60]. Furthermore,
a QMRA simulation predicted a high mean risk of infection (8.10 × 10−6 per month)
attributed to L. monocytogenes in RTE vegetables [61]. The finding was attributed to the
pervasiveness of L. monocytogenes in the environment, which is consistent with our findings.

Table 5. The annual risk of infection due to ingestion of Listeria monocytogenes in irrigation water and
agricultural soil.

Parameter Irrigation Water Agricultural Soil

Min Mean Max Min Mean Max

Annual risk
(Pinf/y) in adults 0.00 5.50 × 10−2 48.30 × 10−2 9.10 × 10−3 54.50 × 10−2 1

Annual risk
(Pinf/y) in children - - - 3.60 × 10−2 70.50 × 10−2 1

Min: Minimum, Max: Maximum.

The annual risk of infection in adults exposed to L. monocytogenes from agricultural soil
was 54.50 × 10−2 with a range of 9.10 × 10−3 to 1.00, while the annual risk of infection in
children exposed to L. monocytogenes from agricultural soil was 70.50 × 10−2 with a range
of 3.60× 10−2 to 1.00 as shown in Table 5. A similar annual risk of 5.47× 10−1 attributed to
other enteric pathogens like E. coli in open space contaminated soil, which is a playground
for children, was documented in a previous study [55]. However, a much higher annual
risk of 9.65 × 10−1 attributed to Salmonella spp. in the same soil was documented [55].

The odds of listeriosis occurring while infected with L. monocytogenes is low. However,
this pathogen is more likely to cause more devastating effects on pregnant women and their
neonates, elderly ones and those with a weakened immune system [62]. Unfortunately,
the Eastern Cape Province of South Africa is the second-largest province, yet the most
impoverished [63]. The province has a high burden of diseases such as HIV, tuberculosis
(TB), HIV/TB coinfection and multidrug-resistant TB (MDR-TB) [64]. This predisposes the
residents to the worst outcomes of listeriosis, whose probability of occurring is high and
thus calls for urgent attention from relevant stakeholders and risk managers.
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To the best of our knowledge, this study was the first to be conducted in the Eastern
Cape Province, South Africa. It was not, however, without limitations. The study employed
a more general approach by assuming that every exposed individual will ingest the same
amount of contaminated irrigation water and agricultural soil, thus having the same risk
of infection. This is, however, not always the case, since certain factors such as age and
behaviour can affect the amount of contaminated irrigation water and agricultural soil
that is ingested. Moreover, certain factors such as age, immune status, infectious dose,
gender and co-morbidities can influence the outcome of exposure to pathogens in the
environmental matrix [58]. Since the model predicts the risk per annum, the sample size
was low, and the grab sampling did not factor in potential exposure fluctuations due
to seasonality.

4. Conclusions

The findings of this study indicated that the concentration of L. monocytogenes in
irrigation water and agricultural soil samples collected from Amathole and Chris Hani
District Municipalities were high, consequently leading to a high annual risk of infection
among the exposed population. This poses a huge public health risk and requires urgent
control measures. Outcomes from the study may help risk managers apply appropriate
and timely interventions to control the health risks.
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