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Abstract: Hepatitis A virus (HAV) is a serious threat to public health worldwide. We used multiplex
polymerase chain reaction (PCR)-based next-generation sequencing (NGS) to derive information
on viral genetic diversity and conduct precise phylogenetic analysis. Four HAV genome sequences
were obtained using multiplex PCR-based NGS. HAV whole-genome sequence of one sample was
obtained by conventional Sanger sequencing. The HAV strains demonstrated a geographic cluster
with sub-genotype IA strains in the Republic of Korea. The phylogenetic pattern of HAV viral protein
(VP) 3 region showed no phylogenetic conflict between the whole-genome and partial-genome
sequences. The VP3 region in serum and stool samples showed sensitive detection of HAV with
differences of quantification that did not exceed <10 copies/µL than the consensus VP4 region using
quantitative PCR (qPCR). In conclusion, multiplex PCR-based NGS was implemented to define
HAV genotypes using nearly whole-genome sequences obtained directly from hepatitis A patients.
The VP3 region might be a potential candidate for tracking the genotypic origin of emerging HAV
outbreaks. VP3-specific qPCR was developed for the molecular diagnosis of HAV infection. This
study may be useful to predict for the disease management and subsequent development of hepatitis
A infection at high risk of severe illness.

Keywords: hepatitis A virus; multiplex polymerase chain reaction; next-generation sequencing;
phylogenetic analysis; genotypic analysis

1. Introduction

Hepatitis A virus (HAV) infections are the critical etiology of viral hepatitis and impose
a massive socioeconomic burden worldwide [1]. HAV is mainly transmitted via the fecal-
oral route through contaminated food and water. The prevalence rate of HAV in different
countries varies with hygiene levels, and approximately, 1.5 million people are annually
infected with HAV worldwide. In the late 1970s and early 1990s, 85–95% of the population
were serologically positive for anti-HAV immunoglobulin in Republic of Korea (ROK),
China, Japan, Philippines, and Thailand [2]. The seroprevalence of anti-HAV antibodies in
the Korean population rapidly declined from more than 80% in the 1970s to less than 20%
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in 2007 [3,4]. The Korea Disease Control and Prevention Agency received approximately
250,379 reports of HAV infections in 2002–2019. Two endemic outbreaks of HAV occurred
in 2009 and 2019, with 54,576 and 17,635 cases, respectively. While most HAV-infected
children are asymptomatic, older adults with HAV infections exhibit a broad range of
clinical manifestations such as anicteric infection and severe fulminant hepatic failure.

HAV (genus, Hepatovirus; family, Picornaviridae) is a non-enveloped virus with a single-
stranded 7.5 kb genome that contains 5’ and 3’ noncoding regions, one open reading
frame (ORF), and a poly(A) tract [5]. The 5’ untranslated region (UTR) of the HAV RNA
harbors an internal ribosome entry site, which directs the ribosomes to the initiation
codon of the polyprotein. The single ORF is divided into three functional regions: the P1
region that encodes the capsid polypeptides viral protein 1 (VP1) to VP4 and the P2 (2A,
2B, and 2C) and P3 (3A, 3B, 3C, and 3D) regions that encode nonstructural polypeptides
associated with viral replication. Globally spread HAV strains display significant variability
in RNA genomic sequences, despite the limited heterogeneity of amino acids [6]. In 1987,
a genetic analysis of HAV strains was conducted for seven genotypes including human
(I–III and VII) and simian (IV–VI) groups. The HAV strains have six sub-genotypes (IA,
IB, IIA, IIB, IIIA, and IIIB) in humans. Phylogenetic and genotypic analyses of HAV
were performed using partial-genome sequences, including the VP1/P2A junction [5,7],
VP1/P2B junction [8,9], C termini of VP3 [7], N terminus of VP1 [8,10], entire VP1 [11,12],
and 5’ UTR [13] regions. In clinical microbiology, the partial-genome sequences of HAV
exhibited inaccurate assessment of phylogeographic relationships or potential transmission
routes in an outbreak [14]. Therefore, the precise genotypic relationship of global HAV
strains with partial-genome sequences remains to be investigated.

Genomic epidemiology of HAV plays a critical role in identifying the epidemiologic
surveillance, microbial source tracking, and pathogen identification of food-borne out-
break [4]. The genomic epidemiology of emerging HAV in eastern Spain demonstrated a
food-borne origin of the virus that caused the outbreak and patients with hepatitis A [15,16].
Epidemiological analysis of tourists returning from Egypt identified that orange juice was
the source of infection in the hepatitis A outbreak [17]. Genomic epidemiology of HAV IB
genotype reported the causes of an outbreak associated with homelessness and drug abuse
in USA [14]. Epidemiologic investigations of hepatitis A outbreaks revealed that hepatitis A
cases had consumed semi-dried tomatoes in Australia, Netherlands, and England [18–20].
However, identification and sequencing of HAV remains challenging due to the low titer of
pathogens in human or food samples.

Next-generation sequencing (NGS) has a broad range of applications, including si-
multaneous multiple pathogens detection, phylogenetic diversity estimation, and whole-
genome sequencing (WGS) [21–28]. Metagenomic NGS combined with spiked primer
enrichment and/or tiling multiplex PCR recovered viral genomes from coronavirus disease
19 patients, revealing the genetic diversity of severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) and the transmission of virus lineages [29]. Multiplex polymerase
chain reaction (PCR)-based NGS acquired the nearly WGS of Hantaan virus (HTNV) di-
rectly from hemorrhagic fever with renal syndrome (HFRS) patient samples and rodent
tissues [27]. These studies demonstrated the putative infection site of HTNV by phylo-
geographic analysis in HFRS-endemic areas. NGS allowed nearly WGS of HAV in frozen
berries linked to HAV outbreaks in Italy [30].

In this study, multiplex PCR-based NGS facilitated nearly WGS of HAV directly from
samples collected from patients with hepatitis A. The results demonstrated that HAV VP3
gene might be a potential candidate for tracing the genotypic origin of an outbreak, showing
a well-established phylogenic pattern compared with the whole-genome sequences of HAV.
Overall, our findings provide significant insights into the genomic epidemiology, genetic
identification, and molecular diagnosis of hepatitis A infection.
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2. Materials and Methods
2.1. Ethics Approval and Participation Consent

Written informed consent was obtained from all participants, and the Institutional
Review Board of the Korea University Guro Hospital (2008GR0015) approved this study.

2.2. Study Population and Sample Collection

Clinical samples were obtained from the Korea University Guro Hospital, Seoul, Korea.
Hepatitis A infection was diagnosed based on laboratory and clinical tests in five patients.
Serum and stool samples from patients with anti-HAV immunoglobulin M (IgM) antibodies
were used in this study. All clinical samples were collected from patients of 22–38 years
in age.

2.3. Reverse Transcription-PCR (RT-PCR) Assay

Total RNA was extracted using TRI Reagent LS (Ambion, Austin, TX, USA). Reverse
transcription was performed using 1 µg of RNA with a High-Capacity RNA-to-cDNA kit
(Applied Biosystems, Foster City, CA, USA) and random hexamers. Primer sequences
used for RT-PCR included HAV VP3-F1 (forward), 5′-GCT TTG GAT CAG GAA GAT
TGG A-3′; HAV VP3-F2 (forward), 5′-ACT CAT TTT ACT TUT TTG GAC ATC CA-3′; and
HAV VP3-R1 (reverse), 5′-CAT GAT AAA GAG GAG CAA AAC ATT CC-3′. The first
and second RT-PCRs were performed at 94 ◦C for 5 min, followed by six cycles at 94 ◦C
for 40 s, 40–45 ◦C for 1 min, and 72 ◦C for 1–2 min; 32 cycles at 94 ◦C for 40 s, 42 ◦C for
40 s, and 72 ◦C for 1–2 min; and a final cycle at 72 ◦C for 5 min (ProFlex PCR System, Life
Technology, CA, USA).

2.4. Quantitative PCR (qPCR) Assay

The recombinant plasmid DNA of HAV VP3 gene was isolated using the pTOP Blunt
V2 vector (Enzynomics Co., Ltd., Seoul, Korea). The concentration of recombinant plasmid
DNA was measured by UV absorbance at 260 nm and 280 nm using Nano drop (Thermo
Fisher Scientific, CA, USA). Standard curve was obtained from serial 10-fold dilutions of
recombinant plasmid DNA ranging from 1 × 1010 to 1 × 10 copies/µL. The copy number
of plasmids per microgram of DNA was calculated using the total number of nucleotides
in the plasmid using a previously described formula [31]. The HAV-specific primer set
was designed based on the VP3 region: HAV VP3-qF (forward), 5′-ATG AAG ATG CAA
GGG CAA A-3′ and HAV VP3-qR (reverse), 5′-GGA ATG GAT GTC CAA GTA GTA AA-3′.
Viral RNA quantification was compared with the qPCR assay of the VP4 genomic region
targeting the HAV genotype IA [32]. qPCR was performed at 95 ◦C for 10 min, followed
by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min using a QuantStudio 5 Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA) with a Power SYBR Green PCR Master
Mix (Applied Biosystems, Foster City, CA, USA).

2.5. Multiplex PCR-Based Next-Generation Sequencing

For the whole-genome strategy, we used several sets of primers to amplify overlapping
fragments of 200–500 bp in length spanning the entire viral genome (Table S1). The cDNA
library was enriched using Solg 2× Uh-Taq PCR Smart mix (SolGent, Daejeon, Korea),
according to the manufacturer’s instructions. The reaction mixture of 25 µL contained
12.5 µL of 2× Uh pre-mix, 2 µL of each primer, 9.5 µL of distilled water, and 1 µL of
DNA template. Multiplex PCR was performed at 95 ◦C for 15 min, followed by 40 and/or
25 cycles at 95 ◦C for 20 s, 50 ◦C for 40 s, 72 ◦C for 1 min, and a final cycle at 72 ◦C for
3 min.

DNA libraries were prepared using a TruSeq Nano DNA LT Sample Preparation
Kit (Illumina, San Diego, CA, USA), according to the manufacturer’s instructions. To
obtain size-selected amplicons, cDNA templates were mechanically sheared using an M220
focused ultrasonicator (Covaris, Woburn, MA, USA). The cDNA amplicons were prepared
by size selection, A-tailing, and ligation with indexes and adaptors. The enrichment
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reaction contained 5 µL of PCR primers and 20 µL of the enhanced PCR mixture (Illumina,
San Diego, CA, USA). Library quality was evaluated using a bioanalyzer with an Agilent
DNA 1000 Kit (Agilent Technologies, Santa Clara, CA, USA). NGS was performed using
a 2 × 150 bp MiSeq benchtop sequencer (Illumina, San Diego, CA, USA) with an MiSeq
Reagent Kit V2 (Illumina, San Diego, CA, USA).

2.6. Phylogenetic Analysis

Whole-genome sequences of HAV were aligned using ClustalW in Lasergene 5 (DNAS-
TAR, Madison, WI, USA). The phylogenetic tree was generated using the best-fit general
time reversible+gamma+invariable model of evolution. Support for topologies was as-
sessed using bootstrapping for 1000 iterations. After model optimization for each data set,
the pairwise genetic distance between HAV strains was calculated using MEGA 7.0 [33].

2.7. Tanglegram Analysis for Comparing Different Phylogenies

To compare the phylogenetic patterns in the whole-genome and partial-genome se-
quences of HAV, two phylogenetic trees were generated using the tanglegram algorithm
for matching HAV strains. The auxiliary lines in the center connected the phylogenetic
trees. Tanglegrams were generated for all phylogenetic links between the whole-genome
and partial-genome sequences using the ‘dendextend’ package of R [34].

3. Results
3.1. Clinical Symptoms of HAV-Infected Patients

Five patients exhibited symptoms of acute hepatitis A (Table 1). All patients who tested
positive for anti-HAV IgM showed significant elevation in aspartate aminotransferase, ala-
nine aminotransferase, and alkaline phosphatase. All patients manifested typical symptoms
compatible with acute viral hepatitis A (e.g., icterus, dark urine, anorexia, and malaise). All
five patients manifested hyperbilirubinemia (serum bilirubin levels > 1.2 mg/dl). None
of the participants had other chronic liver diseases such as chronic hepatitis B, chronic
hepatitis C, autoimmune hepatitis, or primary biliary cholangitis.

Table 1. Characteristics and laboratory test results of patients with acute hepatitis A infection in the
Republic of Korea.

Observation HAV KUMC
98-34

HAV KUMC
02-1

HAV KUMC
04-1

HAV KUMC
14-1

HAV KUMC
14-2

Year 1998 2002 2004 2014 2014
Age 28 30 22 38 36

Gender Male Male Female Female Female
Anti-HAV IgM Positive Positive Positive Positive Positive
Anti-HAV IgG Negative Negative Negative Negative Negative

ALT (IU/L) 5431 4672 10,592 2572 456
AST (IU/L) 3447.8 2389 18,912 1872 410
ALP (IU/L) 166 207 184 236 232

Total bilirubin (mg/dl) 4.55 8.00 3.40 3.73 2.98
Prothrombin time (sec) 49 74.2 38.1 89 105

Albumin (g/dl) 3.79 3.63 4.36 3.4 3.1
HBsAg Negative Negative Negative Negative Negative

Anti-HCV Negative Negative Negative Negative Negative

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; anti-IgM, anti-
immunoglobulin M; anti-IgG, anti-immunoglobulin G; HAV, hepatitis A virus; HBsAg, hepatitis B surface antigen;
HCV, hepatitis C virus.

3.2. Molecular Diagnosis and Quantification of HAV Genomes

The viral load of the four serum and stool samples was quantified by HAV VP3-specific
qPCR (Figure 1). The copy number of HAV RNAs was determined using a linear regression
curve with a coefficient of correlation (r) value of 0.993. HAV KUMC 02-1, HAV KUMC
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14-1, and HAV KUMC 14-2 showed Ct values of 27.6–31, corresponding to 101–102 viral
RNA copies/µL in HAV-positive clinical samples, whereas HAV KUMC 04-1 showed a
Ct value of 33, corresponding to <10 copies/µL of viral RNA. The threshold values of the
HAV VP4 region were assessed at 29.2–35.3 with <102 copies/µL of HAV RNA.
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Figure 1. Quantitation of hepatitis A virus (HAV) RNA genome in clinical samples from patients in
the Republic of Korea. Real-time quantitative polymerase chain reaction assay was performed for
molecular diagnosis and quantification of HAV genomes in serum and stool samples. The vertical
axis shows the HAV RNA copy numbers of VP4 and VP3 regions. Each data point represents the
mean threshold cycle (Ct) value obtained from triplicates.

3.3. Whole-Genome Sequencing and Genetic Analysis of HAV by Multiplex PCR-Based NGS

The coverage of HAV genomic sequences was associated with the viral RNA copy
number (Table 2). Nearly whole-genome sequences of HAV (92.3–94.6%) were recovered
from HAV KUMC 14-1, HAV KUMC 14-2, and HAV KUMC 02-1 that contained 10–100 viral
RNA copies/µL. The HAV coverage rate was relatively low (86.1%) in HAV KUMC 04-1,
as it contained only <10 viral RNA copies/µL. HAV KUMC 98-34 was excluded due to
insufficient volume, and the whole-genome sequence was obtained by conventional Sanger
sequencing.

Newly obtained HAV genome sequences were compared with representative HAV
sequences of different sub-genotypes available in the GenBank (Table 3). HAV strains in
ROK showed nucleotide and amino acid similarities with representative HAV strains of the
sub-genotype IA at a rate of 93.8–99.8% and 97.1–99.7%, respectively.
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Table 2. Summary of total reads and read mapping to hepatitis A virus (HAV) genomes by multiplex polymerase chain reaction-based next-generation sequencing.

HAV RNA Copy
Number

(log10 copies/µL)
Sample Sample Type Ct Value HAV Coverage 1 Total Reads

Reads Mapped to
Reference

Sequence 1

Mapping Reads
/Total Reads

Depth of
Coverage 2

2.2 HAV KUMC 14-1 Serum 27.6 94.6% 3,072,916 2,835,008 92.3% 56,719
1.4 HAV KUMC 14-2 Serum 29.8 94% 4,391,220 2,969,551 67.6% 57,894
1 HAV KUMC 02-1 Stool 31 92.3% 2,030,476 1,382,172 68.1% 27,264

0.3 HAV KUMC 04-1 Serum 33.3 86.1% 4,328,092 861,676 19.9% 16,630
1. Virus coverage and reads mapped to a reference sequence were calculated using the LU38 strain from China. 2. Depth of coverage was calculated by the number of mapped reads (read
length × number of reads matching the reference/reference genome size).
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Table 3. Genetic relationship between hepatitis A virus (HAV) from the Republic of Korea and
representative subgroups.

Nucleotide (%) Amino Acid (%)

Genotype Strain
HAV

KUMC
98-34

HAV
KUMC

02-1

HAV
KUMC

04-1

HAV
KUMC

14-1

HAV
KUMC

14-2

HAV
KUMC
98-34

HAV
KUMC

02-1

HAV
KUMC

04-1

HAV
KUMC

14-1

HAV
KUMC

14-2

IA

HAV KUMC 98-34 - - - - - - - - - -
HAV KUMC 02-1 96.4 - - - - 99.1 - - - -
HAV KUMC 04-1 97.4 96.2 - - - 98.7 98.7 - - -
HAV KUMC 14-1 97.8 95.7 97.6 - - 99.4 98.8 98.3 - -
HAV KUMC 14-2 96.5 95.5 95.7 96 - 99.2 99.1 98.4 98.9 -

LU38 97.9 96.7 97 97.1 97.4 99.1 99.3 98.5 98.8 99.1
H2 96.3 97.9 96 95.7 95.4 99.6 99.3 98.7 99.1 99.4

AH1 96.4 97.8 95.9 95.7 95.6 99.1 99.3 98.5 98.8 99
HAJFF-Kan12 98.2 96.2 98.2 99.3 96.3 99.7 99.3 98.9 99.4 99.5

GBM 95.7 95.5 95.1 95.1 95 98.6 98.6 97.9 98.2 98.4

IB
HM-175 91.5 91.3 91.4 91.2 90.6 98.8 98.9 98.1 98.4 98.8

MBB 91.6 91.3 91.2 91.1 90.8 98.2 98.3 97.5 97.8 98.2
IIA CF53/Berne 86.1 86.2 85.9 85.9 86 96.5 96.5 95.7 96 96.3
IIB SLF88 86.5 86.3 86.3 86.4 86.1 97.1 97.3 96.5 96.7 97

IIIA Kor-HAV-F 82.9 83.4 82.8 82.7 82.5 94.2 94.6 93.6 93.8 94
IIIB HAJ85-1 83 83.2 82.8 82.8 82.8 94.4 94.5 93.8 93.9 94.1

IA (China: LU38, H2; Japan: AH1, HAJFF-Kan12; Germany: GBM), IB (Australia: HM175; North Africa: MBB),
IIA (France: CF53/Berne), IIB (Sierra Leone: SLF88), IIIA (Korea: Kor-HAV-F), and IIIB (Japan: HAJ85-1).

3.4. Sequence Similarity of HAV Genomes at the Genotype Level

Partial-genome sequences of the 52 HAV strains were assessed for gene homologies
(Figure S1). The whole-genome (1–7477 nt) showed nucleotide similarities of 81.5–86.4%.
The VP0 (VP4/VP2) (735–1469 nt), VP3 (1470–2207 nt), and VP1 (2208–3029 nt) regions
showed sequence similarities of 83.1–87.7%, 82.7–87.2%, and 80.7–86.9%, respectively. The
2A (3030–3242 nt), 2B (3243–3995 nt), 2C (3996–5000 nt), and 2BC (3243–5000 nt) regions
showed nucleotide similarities of 76.1–86.9%, 75.7–87.1%, 80.3–86.5%, and 78.6–86.3%, re-
spectively. The 3A (5001–5222 nt), 3B (5223–5291 nt), 3AB (5001–5291 nt), 3C (5292–5948 nt),
3D (5949–7415 nt), and 3CD (5292–7415 nt) regions showed nucleotide similarities of
73.4–88.3%, 76.8–87%, 74.2–86.3%, 82.3–87.4%, 77.7–85.7%, and 79.7–86.3%, respectively.
The VP1/P2A (2984–3217 nt), VP1/P2B (2896–3289 nt), and entire VP1 (2172–3125 nt) re-
gions showed nucleotide similarities of 77.4–85.9%, 79.2–86.3%, and 78.9–87.2%, respectively.

3.5. Phylogenetic Analysis of Whole-Genome and Partial-Genome Sequences of HAV

The five HAV strains from ROK demonstrated a geographic cluster with the sub-
genotype IA strains from Japan, China, and Mongolia (Figure 2). HAV KUMC 98-34 and
HAV KUMC 04-1 formed a homologous genetic lineage with HAJFF-Kan12 and HA16-
0511 from Japan. HAV KUMC 14-1 was phylogenetically grouped with LU38 from China,
forming a distinct monophyletic branch with TD51, HD9, MNA09-B1141, and MNA06-2130
from China and Mongolia. HAV KUMC 02-1 was closely associated with HAV strains from
Japan, China, and Mongolia, whereas HAV KUMC 14-2 showed the closest relationship
with H2 and MNA10-B1355 from China and Mongolia.
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Republic of Korea (ROK). Nearly whole-genome sequences of HAV from serum and stool samples
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1000 bootstrap iterations. Colored circles indicate specific HAV strains from ROK; red, genotype IA;
blue, genotype IB; orange, genotype IIA; green, genotype IIB; pink, genotype IIIA; sky blue, genotype
IIIB; and violet, genotype V.

The individual HAV genes were estimated as the probability of intersecting clades
compared with the phylogenetic pattern of whole-genome sequences (Figure 3 and Figure
S2). The VP0 (VP4/VP2), VP3, and VP1 regions showed phylogenetic clades with 66.1%
(39/59), 0% (0/59), and 40.7% (24/59) intersections, respectively. The phylogenetic trees of
the 2A, 2B, 2C, and 2BC regions indicated phylogenetic conflicts of 79.7% (47/59), 35.6%
(21/59), 57.6% (34/59), and 64.4% (38/59), respectively. The 3A, 3B, 3AB, 3C, 3D, and 3CD
regions showed phylogenetic clades with 83.1% (49/59), 83.1% (49/59), 88.1% (52/59),
59.3% (35/59), 74.6% (44/59), and 69.5% (41/59) intersections, respectively. The genotypic
tree of the VP3 region had no phylogenetic conflict (100% phylogenetic parallel patterns)
compared with the whole-genome tree. Representative trees of the VP1/P2A, VP1/P2B,
and entire VP1 regions showed phylogenetic conflicts of 76.3% (45/59), 94.9% (56/59), and
35.6% (21/59), respectively.
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Figure 3. Tanglegram of hepatitis A virus (HAV) nucleotide sequences based on the whole- (left)
and partial- (right) genome phylogenies. (A) VP3 region (1470–2207 nt), (B) VP1/P2A region
(2984–3217 nt), (C) VP1/P2B region (2896–3289 nt), and (D) entire VP1 region (2172–3125 nt). Color
indicates individual six sub-genotypes of human and one of sub-genotype of animal in HAV strains.
Whole-genome and partial-genome phylogenies were generated using the maximum likelihood
method. Full lines indicate significant phylogenetic conflicts. Grey lines indicate phylogenetic clade
patterns falling between two different regions.

4. Discussion

The genomic epidemiology of food-borne viruses plays a critical role in identifying
and tracking the source of pathogens during outbreaks [35–42]. Partial-genome sequences
are suitable for investigating the presence of a virus and its genotypic diversity but not
for identifying the geographical origin or tracing back the source of an outbreak. In 1990,
WGS was applied for analyzing the molecular epidemiology of a prototype norovirus [26]
and revealed the periodic emergence of globally spreading variants as well as the origin
of food-borne outbreaks [36]. The WGS of hepatitis E virus revealed the transmission
source in infected animals or humans, associated with food intake, such as of contam-
inated shellfish, salad, or vegetables [35,39]. However, the clinical use of WGS using
Sanger sequencing and NGS is limited due to the low levels of viral RNA in human sam-
ples [21,43–46]. Sanger sequencing requires a markedly long time to yield whole-genome
sequences from patient samples with ultra-low viral loads. The application of WGS is often
limited by the lack of NGS technology and the high diagnostic test cost. However, NGS has
revolutionized the acquisition of whole genomes by generating high-yield genomic data
from small-concentration samples. For instance, novel NGS methods, such as the shotgun
metagenomics-based workflow and target enrichment, were used for identifying SARS-
CoV-2 in clinical samples [23,24]. The nanopore sequencing method was used to obtain
nearly whole-genome sequences of HAV from cultured cells [25]. However, NGS-based
WGS has not yet been attempted for detecting HAV in patient samples [37,46,47]. Here,
multiplex PCR-based NGS was developed to ensure high genome coverage of HAV in
clinical samples containing a relatively low viral load. Target-enriched NGS is an essential
method for successfully obtaining genome sequences of HAV directly from patient samples.
Our results suggested that multiplex PCR-based NGS of HAV clinical samples could help
investigate the genotypic diversity and tracking of HAV in global outbreaks.
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Human-to-human transmission of hepatitis A poses a critical public health threat
owing to a high proportion of men who have sex with men (MSM) [48]. In 2015–2020, the
widespread outbreaks of hepatitis A among MSM have been reported in Taiwan, Berlin,
Netherlands, and United States [49–54]. Genomic epidemiology of MSM-associated HAV
outbreaks allows to detect the infection origin, transmission chains linked to outbreaks
or sporadic cases, and populations at high risk. In phylogenetic studies, whole-genome
sequences are required to interpret fundamental phylogenetic and genotypic identifica-
tion of HAV in humans, as well as animals and plants [24,26,35,39,55]. Whole-genome
sequencing of the viruses become increasing overall phylogenetic support, while the phy-
logeny of partial-genome sequences yielded the incomplete lineage sorting in each genomic
region [56–58]. The construction of phylogenetic conflict signals may be associated with evo-
lutionary biological mechanisms such as recombination, host-switching and co-speciation
events [6,59–65]. A previous phylogenetic analysis of the hepatitis B virus showed that
partial-genome sequences were insufficient for defining phylogeographical links owing
to phylogenetic branches with low support, despite identifying new genotypes [56]. The
partial-genome with high genomic variability of HAV, such as VP1/P2A and VP1/P2B junc-
tions, has been used to identify and classify HAV genotypes worldwide [38,41,42,46,57,66].
Here, the accuracy of genotyping to describe the phylogenetic relationship of HAV strains
has not been studied using partial-genome sequences. In this study, the partial genomic
sequence of VP1/P2A, VP1/P2B, and entire VP1 regions showed 35.6–94.9% phylogenetic
conflicts compared to the whole-genome sequences of HAV. These highly variant regions
might be useful for categorizing HAV genotypes but not for identifying reliable phylo-
genetic relationships or infection sources. In contrast, the partial genomic sequence of
HAV VP3 region demonstrated a significantly no phylogenetic conflict (100% phylogenetic
parallel patterns) compared with that of the whole-genome sequences, indicating that
it might be useful for distinguishing viral genotypes and detecting the source of viral
infection in emerging HAV outbreaks. Furthermore, the VP3 gene could be used for the
rapid molecular diagnosis of hepatitis A by real-time qPCR, as differences in quantification
with the consensus VP4 gene. Therefore, these findings would allow the rapid and accurate
molecular detection, genotypic identification, and monitoring of emerging HAV. The limita-
tion of our study is the paucity of clinical samples for various HAV strain comparisons, and
thus, further research is needed to characterize the VP3 region and evaluate its accuracy in
viral surveillance.

5. Conclusions

Nearly whole-genome sequences of HAV using multiplex PCR-based NGS facilitate
definition of the genetic diversity, molecular epidemiology, and origin of outbreaks. The
VP3 gene might serve a representative genetic marker for tracking the infectious origin
and molecular diagnosis of emerging HAV outbreaks. Thus, this study provides significant
insights into the disease control and preparedness of hepatitis A patients at high risk of
severe illness.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms10010100/s1, Table S1: Primers for whole-genome sequencing of hepatitis
A virus. Figure S1: Comparison of nucleotide similarities within various hepatitis A virus (HAV)
genome segments at the genotype level. Figure S2: Tanglegram of hepatitis A virus (HAV) sequences
based on whole- (left) and partial- (right) genome phylogenies.
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