
actuators

Review

Advances in Stimuli-Responsive Soft Robots with
Integrated Hybrid Materials

Hyegyo Son 1 and ChangKyu Yoon 1,2,*
1 Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea;

shg10@sookmyung.ac.kr
2 Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
* Correspondence: ckyoon@sookmyung.ac.kr

Received: 26 September 2020; Accepted: 11 November 2020; Published: 14 November 2020 ����������
�������

Abstract: Hybrid stimuli-responsive soft robots have been extensively developed by incorporating
multi-functional materials, such as carbon-based nanoparticles, nanowires, low-dimensional materials,
and liquid crystals. In addition to the general functions of conventional soft robots, hybrid
stimuli-responsive soft robots have displayed significantly advanced multi-mechanical, electrical,
or/and optical properties accompanied with smart shape transformation in response to external
stimuli, such as heat, light, and even biomaterials. This review surveys the current enhanced scientific
methods to synthesize the integration of multi-functional materials within stimuli-responsive soft
robots. Furthermore, this review focuses on the applications of hybrid stimuli-responsive soft robots
in the forms of actuators and sensors that display multi-responsive and highly sensitive properties.
Finally, it highlights the current challenges of stimuli-responsive soft robots and suggests perspectives
on future directions for achieving intelligent hybrid stimuli-responsive soft robots applicable in
real environments.
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1. Introduction

An extensive comprehensive discussion of stimuli-responsive soft robots has been reviewed in
the forms of flexible electronics, sensors, biomedical tools, optics, and actuators [1–7]. In general,
stimuli-responsive soft robots are mainly composed of polymer, hydrogel, or hybrid of them both,
which provide significantly larger swelling than their dehydrated weight due to their inherent porous
nature [8]. Thus, various stimuli-responsive soft robots have displayed smart shape transformation via
the reversible swelling–deswelling process in aqueous environments when triggered by external cues,
such as heat, pH, light, and even sequence of DNAs [2]. When creating the shape-changing soft robots, the
development of engineered stimuli-responsive materials is an indispensable first point to be considered.
One of the elegant approaches to incur shape-changing is to adjust the physiochemical properties of
the swelling–deswelling process by controlling the crosslinking density [8]. Accordingly, this design of
stimuli-responsive materials (e.g., hydrogel-network system) allows the adjustment of a lower critical
solution temperature (LCST) to display unique physiochemical property changes inside a material system
in specified environments [9]. Along with these unique properties of stimuli-responsive soft robots, the
swelling (below the LCST)–deswelling (above the LCST) processes can exhibit a considerable shape
transformation of soft machines in specified aqueous environments. For example, N-isopropylacrylamide
(NIPAM), one of the primarily utilized thermally responsive materials, has shown that LCST-based
properties change between 32 ◦C and 36 ◦C, and they exhibit smart shape-changing near the physiological
temperature [9–11], which can be potentially utilized as smart healthcare soft robots for precise and
non-invasive drug delivery or biopsy [10,11]. The NIPAM-based hydrogels have been extensively utilized
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for shape-changeable thermally responsive soft robots due to the easily accessible heat source [12–15].
These thermally-responsive NIPAM-based soft robots are of continuing interest as they provide intelligent
perspectives on the ease of shape transformation. From a different perspective of shape transformation,
the shape-changing mechanisms of stimuli-responsive soft robots are mainly based on inhomogeneous
configurations, such as bilayer, bi-strip, heterogeneous monolayer, or helical geometries [2,16]. In
particular, bilayering is one of the primary techniques to build shape-changing soft robots [2]. The bilayer,
which is composed of stimuli-responsive and stimuli-non-responsive layers, displays a heterogeneous
response between layers when exposed to stimuli, which enables it to fold, bend, or roll itself into complex
three-dimensional (3D) structures similar to a paper origami. Furthermore, the principles of shape
transformation are dependent on the types of stimuli-responsive materials and the stimuli sources, as well
as on the methodologies used to construct those systems. To develop shape-changing soft robots, a variety
of structuring or patterning techniques have been proposed, including photolithography, 3D printing,
and soft molding [17–19]. Recently, using these techniques, stimuli-responsive hydrogels combined
with nanoparticles or/and low dimensional materials have been developed to realize multi-functional,
multi-responsive, and highly sensitive soft machines.

A variety of comprehensive reviews that focus on stimuli-responsive hydrogels and their
applications have been proposed [4–6,20–23]. In addition, shape changeable stimuli-responsive
machines have been broadly discussed for more comprehensive analysis of soft robotics [1–3,7,24–26].
More recently, reviews of integrated hybrid stimuli-responsive soft robots for multi-scale systems
have been actively discussed [18,19,21,23–28] but most of them have partially discussed the hybrid
stimuli-responsive soft robots combined with multi-functional materials. In this regard, this review
primarily aims to provide the recent progress of hybrid stimuli-responsive soft robots (e.g., actuators
and sensors) combined with functional materials, such as carbon-based nanoparticles, nanowires,
low-dimensional materials, and liquid crystals. In the first part, we summarize the current developments
of various synthesizing strategies for integrating these functional materials with stimuli-responsive
soft machines. In addition, we present several applications of hybrid stimuli-responsive soft machines,
such as multi-responsive, multi-functional, and highly sensitive actuators and sensors. Afterwards,
we provide our perspectives on the recent developments of stimuli-responsive soft robots with
integrated hybrid materials and suggest challenges and possible new areas of interest.

2. Hybrid Materials Selection

The hybridization of stimuli-responsive materials with additives such as nanoparticles, low-dimensional
materials, and liquid crystalline materials has shown new directions for exploiting advanced
stimuli-responsive shape-changing soft machines. In particular, these additives have shown new ways
to reversibly deform material properties with successive shape transformations of soft machines when
exposed to external cues, such as heat and light. Thus, this section reviews several types of additives
and their properties that trigger smart shape-changing stimuli-responsive soft machines. In particular,
the description mainly covers the roles of nanowires, carbon nanotubes (CNTs), carbon-based graphene,
graphene oxides (GOs), molybdenum disulfide (MoS2), liquid crystals, and hybrids to create multi-functional,
multi-responsive, and highly sensitive shape changeable soft machines.

2.1. Nanowires-Stimuli-Responsive Composite Gels

To enhance the electrothermal and optical properties, various nanowire additives have been
extensively adapted to manufacture stimuli-responsive shape-changing soft machines [29–37].
The nanowires can absorb a certain wavelength of light, which transfers to thermal energy, allowing
the shape transformation of thermally responsive soft machines. Based on the selective optothermal
properties of the nanowire additives, Lee et al. presented a single photomechanical nanowire 3D
actuator in nanoscales by azobenzene nanowire photoisomerization (Figure 1A) [29]. In a brief
description, they suggested the meniscus-guided method to fabricate the azobenzene vertically for
creating an untethered photomechanical nanowire tweezer composed of an azobenzene nanowire and
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polystyrene (PS) nanowire. In particular, the asymmetric light response properties of azobenzene (light
responsive) and PS-nanowire (non-light responsive) result in spontaneous bending when exposed
to UV light. The outstanding feature of this tweezing actuator is that the actuation can selectively
respond to only certain ranges of wavelengths, such as visible light based on the plasmonic effect.
Furthermore, Wu et al. proposed a new way to incur shape changing via sliding networks of copper
(Cu) nanowires during the voltage on/off process (Figure 1B) [30]. The Cu nanowire embedded acrylic
elastomeric film actuator was deformed up to an area strain of 200% when 4.8 kV was applied, and Cu
nanowires could slide across each other while maintaining electrical function with feasible reversibility
of operation. They also reported that the transmittance was increased by 4.5 times from 13% to 58%,
which was higher than that of conventional carbon nanotube electrodes.Actuators 2020, 9, x FOR PEER REVIEW 4 of 19 
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American Chemical Society. (C) Electric power generator composed of protein nanowires and a gold 
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polyethylene (LDPE) and polyvinyl chloride (PVC) bilayer films with silver nanowire (Ag NWs) 
percolation networks. Reproduced with permission [32], copyright 2018, Wiley-VCH. (E) Color/shape 
dual responsive actuator composed of tungsten oxide (W18O49) and silver (Ag) nanowires bilayer 
networks. Reproduced with permission [33], adapted with permission under the terms of the Creative 
Commons Attribution Non Commercial License 4.0, copyright 2018, the authors. (F) Multi-stimuli-
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Figure 1. (A) Photomechanical nanowire tweezer composed of an azobenzene nanowire and polystyrene
(PS) nanowire. Reproduced with permission [29]. Adapted with permission under the terms
of the Creative Commons Attribution Non Commercial License 3.0, copyright 2015, the authors.
(B) Shape-changing acrylic elastomer and copper (Cu) composite film via sliding networks of copper
(Cu) nanowires during the voltage on/off process. Reproduced with permission [30], copyright 2013,
American Chemical Society. (C) Electric power generator composed of protein nanowires and a
gold (Au) electrode thin film on a glass substrate. Reproduced with permission [31], copyright
2020, Nature Publishing Group. (D) Biomimetic color-shifting anisotropic soft actuator composed of
low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bilayer films with silver nanowire
(Ag NWs) percolation networks. Reproduced with permission [32], copyright 2018, Wiley-VCH.
(E) Color/shape dual responsive actuator composed of tungsten oxide (W18O49) and silver (Ag)
nanowires bilayer networks. Reproduced with permission [33], adapted with permission under
the terms of the Creative Commons Attribution Non Commercial License 4.0, copyright 2018, the
authors. (F) Multi-stimuli-responsive soft gripper using vanadium dioxide (VO2) nanowires and
carbon nanotube composites. Reproduced with permission [34], adapted with permission under the
terms of the Creative Commons Attribution Non Commercial License 4.0, copyright 2020, the authors.
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Innovative trials have been conducted using living additives directly combined with metallic or
ceramic materials, which exploit new concepts of biological actuators or electric generators. Liu et al.
proposed an enhanced electric power generator using protein nanowires (Figure 1C) [31]. They
developed an electric generator composed of nanoscale proteins and a gold (Au) electrode thin film on
a glass substrate. The biological sensors showed the self-maintained moisture gradient driven energy
harvesting within the film when exposed to humidity in the air. One significant feature of this sensor is
that the current–voltage curve was approximately linear during power output due to the mass protein
nanowires. Moreover, they verified that the electric generator could produce a continuous current for
at least 20 h and could self-recharge.

Inspired by the shape transformation of biological systems, biomimetic shape-changing hybrid soft
machines combined with nanowire additives have also been extensively developed. Recently, Kim et al.
developed an advanced biomimetic color-shifting anisotropic soft actuator (CASA) composed of
low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bilayer films with silver nanowire (Ag
NWs) percolation networks (Figure 1D) [32]. They adapted an UV laser ablation method to fabricate
thin film structures to achieve a smart biomimetic actuator and an optically color switching function.
In particular, they fabricated a flower-shaped machine composed of eight serially connected domains
as petals that displayed reversible bending and flatting when the voltage (VDC) was applied. They
further demonstrated that it achieved a significantly large curvature, up to 2.5 cm−1, and a notable
performance reliability of over 10,000 operating cycles.

Furthermore, Li et al. proposed a color/shape dual responsive actuator composed of tungsten oxide
(W18O49) and silver (Ag) nanowire bilayer networks on ultrathin poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) (PEDOT:PSS) (Figure 1E) [33]. This multi-responsive actuator displayed a
reversible operation, which responded fast (<5 s), and highly synchronized flexible actuators driven by
the pseudo-capacitance-based reversible lattice contraction/recovery process of W18O49 nanowires.
Chen et al. proposed a multi-stimuli-responsive soft robot using a vanadium dioxide (VO2) nanowire
(Figure 1F) [34]. In particular, they designed an insect-scale gripper consisting of super aligned
VO2 nanowires and a carbon nanotube (CNT) bimorph composite film that was actuated by various
stimuli such as heat, light, and electricity. They demonstrated that the photothermal-driven gripper
could lift a target within 6 s and hold a copper strip (50 times heavier than a gripper) under light
illumination. A variety of these nanowires have been extensively adapted to create highly sensitive and
multi-functional stimuli-responsive shape-changing soft machines due to their excellent electrothermal
and optical properties.

2.2. Carbon Nanotubes (CNT)-Stimuli-Responsive Composite Gels

Carbon nanotubes (CNTs) have been utilized in soft robotics due to their excellent optical,
thermal, electrical, and mechanical properties [38–47]. CNTs have displayed highly enhanced
electrical-to-thermal or optical-to-thermal energy transmissions, triggering the smart shape deformation
of stimuli-responsive soft robots. For example, Zhang et al. proposed a highly versatile photoactuator
composed of single-walled carbon nanotube (SWCNT) and polycarbonate (PC) polymer bilayers
(Figure 2A) [43]. They utilized high light-absorbing SWCNTs that could convert photon energy to heat,
which diffused to the PC layer, resulting in shape deformation of a bilayer sheet. They demonstrated
that the SWCNT/PC bilayers can curl and flatten reversibly according to the light on/off processes.
Specifically, they observed a large bending deflection of SWCNT/PC bilayers with multiple light
illumination (mWcm−2), fast response (~0.5 s), and wavelength-selective response. Hu et al. also
proposed electrically, and optically responsive soft robots composed of tubular CNT/polymer
bilayers [44]. In particular, they developed soft jumping robots actuated via light irradiation (Figure 2B).
They reported that the light-driven energy accumulation in CNT parts was released instantaneously
(3.56 s), leading to the mechanical shape deformation for the jumping motion. They utilized the
photothermal ability in the CNT layer to absorb and convert it to thermal energy to heat up the polymer
layer. These unique electrical and optical properties of CNTs can be utilized to develop a new class of
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highly versatile applications, such as smart actuators, sensors, and oscillators. We discuss in detail
potential applications of multi-functional materials combined with stimuli-responsive soft robots in the
application section. Yamada et al. also introduced a new type of highly stretchable thin film composed
of single-walled carbon nanotubes (SWCNTs) and poly(dimethylsiloxane) (PDMS) (Figure 2C) [45].
They reported that the SWCNT/PDMS thin films exhibited extraordinary durability and stability at
high strain levels for ~3300 mechanical loading and unloading cycles. In particular, they proposed
that their SWCNT/PDMS thin films could be utilized as wearable strain sensors that display high
stretchability and sensitivity with fast response and low creep properties.
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Figure 2. (A) Light responsive actuation of bilayers composed of polycarbonate (PC) and
HiPCO nanotubes. Reproduced with permission [43], copyright 2014, Nature Publishing Group.
(B) Light-responsive soft jumping robots composed of rolled carbon nanotube (CNT) and polymer
bilayers. Reproduced with permission [44], copyright 2017, Wiley-VCH. (C) Carbon nanotube
film-based strain sensor. Reproduced with permission [45], copyright 2011, Nature Publishing
Group. (D) Single-walled carbon nanotube (SWCNT) transporter delivering DNA inside living cells.
Reproduced with permission [46], copyright 2005, National Academy of Sciences. (E) Spontaneous
motion of a triangular biohybrid swimmer composed of CNTs-gelatin methacrylate (GelMA).
Reproduced with permission [47], copyright 2013, American Chemical Society.

Moreover, carbon nanotubes (CNTs) have shown multifunctionalities, which are capable of being
utilized in biological systems [46,47]. For example, Kam et al. developed biological cargo systems
using single-walled carbon nanotubes (SWCNTs) functionalized with phospholipid (PL)-polyethylene
glycol (PEG) molecules [46]. They particularly demonstrated the selective targeting and killing of
cancer cells by using functionalized SWCNTs via the PL-PEG-folic acid (FA) terminal group (Figure 2D).
They developed SWCNT functionalization schemes with specific ligands recognizing and destroying
tumor cells with low laser power (1.4 W/cm2) and short radiation times, which is possible due
to the high near-infrared (NIR) absorbance properties of carbon nanotubes. Moreover, Shin et al.
fabricated CNT-embedded gelatin methacrylate (GelMA) cardiac patches [47]. They demonstrated
that GelMA hydrogels significantly improve electrophysiological and mechanical properties with the
addition of multi-walled CNTs. They systematically adjusted the mechanical modulus and electrical
conductivity of the GelMA hydrogel based on their dependence on different CNT concentrations. They
engineered CNT-GelMA triangular biohybrid actuators that can swell spontaneously under electrical
stimulation (Figure 2E). They exhibited highly linear displacement of the CNT-GelMA swimmer
under a square waveform of 1 V/cm, frequency of 0.5–3 Hz, and 50 ms pulse width. They proposed
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advanced CNT-embedded GelMA cardiac constructs and bioactuators together by utilizing the fibrous
morphologies and excellent optical, electrical, and mechanical properties of CNTs.

2.3. Graphene/Graphene Oxides (GO)-Stimuli-Responsive Composite Gels

Regarding the multi-functional and multi-environmental responsive shape-changing soft robots,
stimuli-responsive materials have been combined with carbon-based materials, such as graphene,
graphene oxide sheets (GOs), or their hybrids due to their high electrical, thermal, and optical
properties [48–54]. To fold, bend, or roll two-dimensional atomic scale paper, various elegant scientific
and engineering strategies have been developed. For example, Teshima et al. introduced a swift and
easy way to spontaneously bend or roll thin poly (chloro-p-xylylene) (parylene-C) film by transferring
monolayer graphene onto the parylene thin layer (Figure 3A) [48]. They demonstrated that the
self-folding actuation of this bilayer was induced by reconfiguration of the molecules within the
crystalline graphene, and other elements, such as 2D geometry design and thickness. They developed
various spatial 3D geometries and transformed flower-shaped graphene/parylene-C bilayers into
cage-shaped grippers that were expected to be utilized for the encapsulation and manipulation of
living cells. Wang et al. proposed a photo-thermal responsive actuator using reduced graphene oxide
(rGO) nanosheets and elastin-like polypeptides (ELPs) (Figure 3B) [49]. They fabricated a finger-shaped
hydrogel machine, and its joint section was folded under an NIR laser spot similar to real hands.
They developed bending direction manipulation by rastering the laser in a line across a hydrogel
in different directions. Furthermore, the crawling functioned actuator was produced, and it moved
forward by approximately 3 mm for each cycle.

Miskin et al. proposed origami fabrication using graphene sheets, silicon dioxide, and rigid panels
of a photoresist (Figure 3C) [50]. Their graphene–glass biomorphs consisted of two parts: the folding
and unfolded-flat. The rigid panels acted as a flat part during the attachment of graphene sheets and
silicon oxide by non-reacting to stimuli, such as pH or heat. However, the folding parts consisting of
graphene sheets and silicon oxide, not combined with rigid panels, can react to such stimuli. Moreover,
they developed numerous 3D structures using these bimorphs at the micro scale, such as book shapes
and mountain-valley shapes. Mu et al. proposed another fast self-folding origami using functionalized
graphene oxide (GO) (Figure 3D) [51]. Specifically, they programmed dual vertical and lateral gradients
to the GO nanoscale building blocks, which could shape-change in a few seconds. They observed that
the nanostructures absorbed and desorbed water easily through photothermal triggering. In addition,
they showed that the cross-shaped graphene paper could fold and unfold itself reversibly under
near-infrared (NIR) light on/off processes with the rising and drop in temperature, respectively.

Xu et al. proposed a flexible self-folding platform using graphene and silver nanocubes (Ag NCs)
in poly N-isopropylacrylamide (PNIPAM) hydrogels (Figure 3E) [52]. They developed a thermally
responsive self-folding and encapsulating actuator. They demonstrated that the hybrid graphene skin
wrapped MDA-MB-231-breast cancer cells, which adhered well to this graphene skin. The temperature
(37 ◦C) of the cell culture was sufficient to induce the folding of the thermal-responsive skin. Joung et al.
proposed another self-assembly process of 2D materials into 3D structures using graphene/graphene
oxides (GOs) (Figure 3F) [53]. They selected a photo definable SU8 epoxy as a frame to support
the graphene membranes with SPR 220 photoresist polymer hinges. They pointed out that the
graphene/GOs structures self-fold when heated up to 100 ◦C to the melting point of SPR 220 hinges,
which generates a surface tension force that induces a 3D self-assembly process. In particular, they
demonstrated a self-folding cubic-shaped structure that possessed nontrivial spatial distribution of
electron fields due to 3D plasmon hybridization.
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Figure 3. (A) Spontaneously bending or rolling thin poly (chloro-p-xylylene) (parylene-C) film through
the transferring monolayer graphene process. Reproduced with permission [48], copyright 2018,
American Chemical Society. (B) Controlled motion of hydrogel actuators composed of reduced graphene
oxide (rGO) nanosheets. Reproduced with permission [49], copyright 2013, American Chemical
Society. (C) Microscale graphene–glass bimorph three-dimensional (3D) structures. Reproduced with
permission [50], adapted with permission under the terms of the Creative Commons Attribution
Non Commercial License 4.0, copyright 2018, the authors. (D) A self-folding box driven by a light.
Reproduced with permission [51], adapted with permission under the terms of the Creative Commons
Attribution Non Commercial License 4.0, copyright 2015, the authors. (E) Wrapping of live breast cancer
cells inside the G-PNIPAM-G-Ag skin. Reproduced with permission [52], copyright 2018, American
Chemical Society. (F) 2D nets and 3D self-assembled graphene and graphene oxide (GO)-based cubes
with surface patterns. Reproduced with permission [53], copyright 2017, American Chemical Society.

2.4. MoS2-Stimuli-Responsive Composite Gels

Meanwhile, a semiconductor, molybdenum disulfide (MoS2), has demonstrated its relevant
functionality to stimuli-responsive soft robots as intelligent actuators, sensors, and phototransistors.
For specific examples, Lei et al. proposed a dual-responsive flexible actuator based on MoS2 when
exposed to heat and light sources (Figure 4A) [55]. They developed a thermally responsive actuator
utilizing a tough poly N-isopropylacrylamide (PNIPAM) hydrogel matrix with a tunable volume phase
transition temperature (VPTT). They fabricated a self-folding robot controlled by an untethered NIR
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laser. In particular, they demonstrated that each anisotropic architecture part of the soft machine can
bend when lights are applied and can finally grab a ball. In addition, they further observed that the
MoS2-based hydrogel actuator could retain its shape even after the lights were turned off. The property
regarding the generation of mechanical force is also an important factor for actuators if they have
to catch something and retain its state. Acere et al. proposed electrode films made of 1T MoS2 [56].
The films are capable of lifting masses that are more than 150 times that of the electrode over several
millimeters and for hundreds of cycles when the voltage from−0.3 V to +0.3 V is applied. It can generate
about 17 MPa of mechanical stresses and is also fully reversible and stable in a broad frequency range.
The thin films are able to change the curving direction and degree of curvature by the intercalation of
charging and discharging. Recently, Xu et al. also proposed reversibly actuated three-dimensional
(3D) optoelectronic structures based on monolayer MoS2 (Figure 4B) [57]. They designed differentially
photo-crosslinked thin polymer (SU8) films for swelling gradients, which resulted in self-folding
in the solvent exchange environment. In particular, they fabricated a photodetector composed of
MoS2, Au electrodes, and SU8 films using various high-throughput fabrication methods, such as
photolithography, thermal evaporation, and direct MoS2 transfer. They demonstrated that the diverse
MoS2/SU8 composite structures were self-folded when immersed in aqueous environments.

2.5. Liquid Crystals-Stimuli-Responsive Composite Gels

Liquid crystals mainly consist of liquid crystal elastomers (LCEs) or liquid crystal polymer
networks (LCNs) that can transform into smart shapes when exposed to external stimuli, such
as heat and light [58]. In general, the stimuli-responsive shape morphing of LCN- or LCE-based
structures is based on the alignment of molecules (e.g., twisted nematic and splay configuration)
and crosslinking density [59]. These stimuli-responsive liquid crystalline-based soft robots have
been developed by specifically tuning the photo aligning properties. For example, Ware et al.
designed mechanically multi-stable and shape-programmable soft actuators composed of LCE films
(Figure 4C) [60]. They developed a remarkable strategy to imprint topological defects inside LCEs,
which can display heterogeneous reversible shape morphing according to defect displacement and
temperature. They particularly developed spontaneous and reversible actuating 3D soft robots
composed of LCEs by controlling the surface alignment and crosslinking density. Additionally,
Yu et al. developed a liquid crystalline embedded polymeric thin film that shows programmable
directed bending through the orientation of linearly polarized light (Figure 4D) [61]. They showed
that the bending direction of the LCN film moves anticlockwise by 0◦, 45◦, 90◦, and 135◦ along with
the polarization direction of light at 366 nm to 0◦, −45◦, −90◦, and −135◦, respectively. Moreover,
they demonstrated that the bending of LCN films reversibly turned back flat by using visible light with
wavelengths longer than 540 nm. Recently, Liu et al. invented another smart, humid responsive soft
actuator composed of cross-linked liquid crystal polymers (Figure 4E) [62]. They developed LCN films
demonstrating a worm-line motion via humidity gradients. Specifically, they observed that the bottom
surface could absorb more moisture than the top surface, which underwent asymmetric swelling along
the thickness, in order for the LCN films to be bent or rolled.
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shapes. Reproduced with permission [55], copyright 2016, Royal Society of Chemistry. (B) Self-folding
molybdenum disulfide (MoS2)−SU8 structures with different shapes. Reproduced with permission [57],
copyright 2019, American Chemical Society. (C) Thermally responsive liquid crystal elastomer
(LCE) with mechanical multi-stability. Reproduced with permission [60], copyright 2015, AAAS.
(D) Photoinduced soft actuators composed of liquid crystal polymer networks (LCNs). Reproduced
with permission [61], copyright 2015, Nature Publishing Group. (E) Humidity-induced actuator
composed of crosslinked liquid crystal polymers (CLCPs). Reproduced with permission [62], copyright
2017, Wiley-VCH.

3. Applications of Hybrid Soft Robots

A variety of futuristic applications of stimuli-responsive soft robots have been proposed in the
forms of flexible electronics, sensors, biomedical tools, optics, and actuators [1–7,24–26]. Furthermore,
hybrid stimuli-responsive soft robots combined with multi-functional nanoparticles, low-dimensional
materials, or liquid crystals have also displayed promising applications in flexible electronics,
mechanical sensors, smart actuators, and biomedical systems [18–21,23–28]. This section particularly
describes advanced applications of hybrid stimuli-responsive soft robots focusing on extensively
multi-responsive and multi-functional actuators (e.g., manipulators, grippers, and walkers) and sensors
(e.g., wearable electronics, strain sensors, biosensors, and gas sensors).

3.1. Hybrid Soft Actuators

Hybrid stimuli-responsive soft robots have been extensively validated as multi-functional and
multi-responsive smart soft actuators or manipulators. While many soft actuators have been developed,
most of them can only respond to mono-stimulus, and it is difficult to develop multi-responsive and
functional advanced soft actuators. To overcome these limitations, many functional materials such as
carbon-based materials, nanowires, and liquid crystals have been hybridized with stimuli-responsive
soft actuators. For example, Xu et al. proposed a self-folding 3D graphene actuator combined with
a thermally responsive poly N-isopropylacrylamide (PNIPAM) hydrogel [63]. They particularly
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developed an elegant strategy to fold and unfold the ultrathin atomic scale graphene layer reversibly
by utilizing self-foldable PNIPAM-based precursors induced by the temperature increase and decrease
processes. Regarding the formation of a smart soft actuating system, they fabricated a thermally
responsive hybrid flower-shaped gripper that could encapsulate live cells specifically through the
heating/cooling processes, which has proven the concept of futuristic application of smart untethered
microscale gripping robots in biomedical engineering (Figure 5A). Ma et al. introduced a thermally
responsive biomimetic flower-shaped actuator with color-tunable fluorescence functions (Figure 5B) [64].
As described previously, to generate mechanical deformation, such as bending, rolling, wrinkling,
or folding, many geometrical strategies that generate gradients have to be developed. Among many
strategies to obtain shape transformation, bilayer systems composed of heterogeneous properties
are primarily considered to exhibit time-dependent shape transformation when exposed to external
environments. More comprehensive reviews for diverse mechanisms of shape transformation have
been introduced [2,6,16,21]. In particular, they developed an anisotropic bilayer actuator composed of
graphene oxide (GO)/poly(N-isopropylacrylamide) (PNIPAM) and perylene bisimide-functionalized
hyperbranched polyethylenimine (PBI-HPEI). They specifically accomplished dual thermal and
pH-responsive smart bilayer soft actuators with color-changing functions.

The heat source is one of the easily adapted conventional triggering sources to generate the
shape transformation of soft actuators. Due to the high electric-to-thermal transferring properties of
nanowires and nanoparticles, most shape-changing hybrid soft actuators are capable of being operated
via heating up and cooling down processes. However, the heat source has a limitation of having
to be utilized selectively at the specified areas due to its continuous reactivity. To overcome this
limitation, another feasible approach to increase the selectivity of a stimulus at the local positions is
to manage the optical properties of stimuli sources. The light is untethered and can be controlled
from an exterior side of the systems. Along with this optical advantage, photo-to-thermal responsive
multi-functional soft robots have been extensively developed [41,65–73]. For example, Cheng et al.
developed a rectangular-shaped graphene oxide (GO) film walker in response to an infrared (IR) light
on/off process (Figure 5C) [65]. They demonstrated that the walker could move on a ratchet paper
via an IR light-induced thermal response from the GO film. Furthermore, they exhibited a simple
way to fabricate a GO-based walker by direct casting along with verifying the multi reactivity of the
walker via external heat, light, and moisture cues. These optically responsive LCEs and LCNs have
also been extensively combined with stimuli-responsive materials to form multi-functional advanced
soft robots [66,73–77]. Wani et al. demonstrated a light-driven actuator composed of LCEs, for example
(Figure 5D) [66]. It is essential to know that the shape transformation of the LCE-based actuator is based
on tuning the alignment of molecules within the LCEs when exposed to the light source [78,79]. Using a
similar approach, they fabricated a light-induced splay-aligned LCE actuator with a transparent optical
fiber attachment at the center position for the path of emitted light.

In addition, a chemically responsive actuator can be operated by the transformation of chemical
energy into mechanical energy as a chemomechanical deformation [24,74]. Stimuli-responsive polymers,
hydrogels, or hybrids of them have the ability to locally and selectively diffuse targeted chemicals
in-and-out and reversibly. This diffusion can be induced by external cues, such as organic solvents,
ionic strengths, acids, bases, and water molecules. These external triggers involve a variety of chemical
reactions inside a material system that causes mechanical stress, allowing the shape transformation of
soft robots. Recently, chemically responsive soft actuators have also been developed by integrating
multi-functional materials. Deng et al. introduced solvent-driven self-folding graphene/SU8 bilayer
structures (Figure 5E) [80]. They developed a new method to combine multi-functional graphene-based
materials with a stimuli-responsive SU8 photoresist. Specifically, they patterned crosslinking gradients
SU8 onto few-layered graphene (FLG), which displayed self-bending, -folding, or -rolling when
immersed in acetone. In addition, the FLG/SU8 bilayer structures could reversibly flatten when
exposed to water. This self-folding mechanism of FLG/SU8 is rationalized by the fact that low UV light
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exposure generates crosslink gradients along a thickness, and thus less-crosslinked areas display large
mass changes compared to the completely crosslinked areas during acetone conditioning [81].Actuators 2020, 9, x FOR PEER REVIEW 11 of 19 
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Figure 5. (A) Encapsulation of live cells within the functionalized flower-shaped thermally responsive
graphene/poly N-isopropylacrylamide (PNIPAM) gripper. Reproduced with permission [63], adapted
with permission under the terms of the Creative Commons Attribution Non Commercial License
4.0, copyright 2017, the authors. (B) Thermally responsive flower-shaped color displaying soft
actuator. Reproduced with permission [64], copyright 2018, Wiley-VCH. (C) GO film walker in
response to the IR on/off processes. Reproduced with permission [65], copyright 2016, American
Chemical Society. (D) A light driven liquid crystalline elastomer (LCE)-based biomimetic flytrap
gripper. Reproduced with permission [66], adapted with permission under the terms of the Creative
Commons Attribution Non Commercial License 4.0, copyright 2017, the authors. (E) Solvent-driven
soft gripper composed of few-layered graphene (FLG)/SU8 bilayers. Reproduced with permission [80],
copyright 2015, AIP publishing. (F) Multi-responsive ionic polymer actuator driven by solvent
molecule absorption/desorption processes. Reproduced with permission [82], copyright 2014, Nature
Publishing Group.

Hybrid stimuli-responsive actuators can also react to water. Humidity driven hydrogel actuators
have been reported as biomimetic walkers, grippers, or artificial muscles [6,20,36,83–87]. Similar to the
opening and closing systems of plants [88–90], biomimetic hybrid stimuli-responsive soft robots can



Actuators 2020, 9, 115 12 of 19

bend, fold, or curl due to changes in humanity. For example, Zhao et al. introduced a multi-responsive
polymer actuator that exhibited reversible closing and opening of a biomimetic flower-shaped actuator
in response to humidity (Figure 5F) [82]. They also demonstrated that the membrane was rolled and
flattened in acetone vapor and air exposure, respectively.

3.2. Stimuli-Responsive Hybrid Sensors

Hybrid stimuli-responsive soft robots have also extensively addressed the key possible applications
of smart mechanical stress/strain sensors [31,40,91–97]. First, hybrid stimuli-responsive soft robots are
advantageous for smart sensors because of their extensive shape-changing capabilities. For example,
Amjadi et al. proposed a cost-effective stretchable strain sensor based on a reversible microcrack in
graphite thin films (Figure 6A) [98]. They demonstrated that the high performance of sensors was
developed by self-organized microcracks in films coated on soft elastomer films and acrylic plates.
They further reported that their strain sensors detected deformation from 0.1% to more than 50%
with high sensitivity and different distinguished sound intensities. Thus, they suggested that this
strain sensor could be utilized for relatively stronger stress points, such as the joint movement of a
finger. They finally proposed that it could be employed for monitoring human physiological activity
with significantly low hysteresis. In addition, Choi et al. proposed another ionic-liquid-based strain
sensor (Figure 6B) [99]. They combined ethylene glycol and sodium chloride as the ionic liquids.
They particularly developed an ionic-liquid-based wavy (ILBW) sensor that showed a low value of
hysteresis (0.15% at 250%) compared to other strain sensors based on the same materials. They utilized
a wavy fluidic channel to diminish the hysteresis of the sensor. Moreover, they demonstrated that the
ILBW sensor showed a high performance of low overshot (1.7% at 150% strain) and high reversibility
(3000 cycles at 300% strain). In addition to graphene oxide-based or ionic liquid-based sensors,
Li et al. described a highly stretchable and conductive hybrid strain sensor composed of thermoplastic
polyurethane (TPU), multi-walled carbon nanotubes (MWNTs), and single-walled carbon nanotubes
(SWCNs) (Figure 6C) [100]. They observed that when it was fully stretched, the relative resistance
increased and reached a maximum value, and it decreased at its relaxation state. They noticed that the
TPU/MWNT/SWCN composite sensor specifically possessed high stretchability, a large workable strain
range (100%), and great cycle stability (2000 cycles). Finally, they applied this highly conductive and
stretchable sensor for monitoring human joint motion as wearable strain sensors or wearable textile
electronics without any assistance.

In addition, the excellent chemical and optoelectrical properties of functional materials have
exhibited potential for advanced possibilities when combined with the stimuli-responsive soft robots.
For example, Xing et al. developed a chemically responsive nano-junction using electro-migration
of a silver nanowire (Figure 6D) [101]. They demonstrated that exposing the chemically responsive
junction (CRJ) nanowire to ammonia (NH3), water vapor, or nitrogen dioxide (NO2) induced reversible
resistance change from −10% to 138%. They fabricated a nanogap between the CRJ nanowire via
electro-migration with a minimum width of 5 nm. In particular, the chemical sensor was expected to
increase the selectivity for the detection of specific molecules of highly miniaturized sensors or sensor
arrays. In addition, Lopez-Sanchez et al. proposed ultrasensitive photodetectors using single layers of
MoS2 and other silicon or silicon oxide substrates. (Figure 6E) [102].

Due to the direct bandgap of the MoS2 monolayer, a photo-responsivity of 880 AW−1 can
be achieved, which is a significant improvement over former MoS2 monolayer phototransistors.
The device responded to voltage induced by two gold electrodes (90 nm thick) only when the laser
light (λ = 561 nm) was turned on with an illumination power of 15 µW. When four different bias
voltages (from 1 V to 8 V) were applied, there was a difference in the trend of the photocurrent’s
increase and decrease after the laser beam was switched on/off. The device exhibited the potential to
be utilized in sensors for fluorescence imaging and fabrication of inexpensive, highly sensitive, and
flexible MoS2 optoelectronic devices. This chemical or optoelectrical sensitivity of multi-functional
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nanowires, nanoparticles, and two-dimensional materials has demonstrated the possibility for the
development of more advanced stimuli-responsive hybrid chemical and optoelectrical sensors.Actuators 2020, 9, x FOR PEER REVIEW 13 of 19 
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(MWNT)/thermoplastic polyurethane (TPU) yarn (SMTY) strain sensors. Reproduced with
permission [100], copyright 2018, Royal Society of Chemistry. (D) Tracking the formation of a
chemically responsive junction (CRJ) using AFM. Reproduced with permission [101], copyright 2012,
American Chemical Society. (E) Monolayer MoS2 phototransistor layout and photocurrent dynamics.
Reproduced with permission [102], copyright 2013, Nature Publishing Group.
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In addition, MoS2 is the proper material for fabricating a sensor, especially a gas detector. Kim et al.
presented a volatile organic compound (VOC) sensor by using thiolated ligand in conjugation with
MoS2 [103]. It is notable for the application of lung cancer diagnosis through breath analysis and because
it highly sensitively showed positive responses to oxygen-functionalized VOCs. The normalized ranges
of resistance changes can be characterized depending on the types of VOCs, such as toluene, hexane,
ethanol, propionaldehyde, and acetone. Likewise, Kumar et al. proposed a sensor for detecting NO2

gases [104]. They fabricated it based on MoS2 grown by the chemical vapor deposition (CVD) technique
and used photo-thermal energy with photo-excitation to enhance the sensitivity and response time
compared to the state of room temperature with no lights. The sensor showed a relative response to
100 ppm of the gases with resistance change up to 30%, and it can react to the gas in about 29 s and
recover completely at RT, under UV illumination.

Furthermore, MoS2 has a lot of potential for useful E-skin, a wearable application. Park et al.
demonstrated a prototype of the conformal MoS2 tactile sensor [105]. They solved the problem
regarding high hysteresis, nonlinearity, and poor repeatability in existing sensors through integrating
MoS2 with a graphene electrode. This ultrathin sensor shows mechanical flexibility over a strain of
1.98% and optical transparency over 80%. It can retain linearity in the relative resistance changes when
the strain from −2% (compressive) to 2% (tensile) was applied and it can retain its reversibility after
10,000 cycles.

4. Conclusions

Stimuli-responsive soft robots integrated with hybrid functional materials have attracted significant
attention as a new class of intelligent systems applicable in multi-functional and multi-responsive
actuators or sensors. Hybrid stimuli-responsive soft robots composed of nanomaterials, 2DLMs,
or liquid crystals display excellent mechanical, electrical, chemical, and optical properties with
programmable smart shape transformation when exposed to external environmental cues. However,
there are many challenges impeding the practical applications of these robots. One of the challenges is
that nonlinear abnormal effects, such as the snapping or bucking of stimuli-responsive soft robots, have
not been extensively studied. Thus, the mechanical and chemical prediction of shape transformation
must be studied together. In addition, the sensitivity feedback and response time from external cues
have to be developed to obtain instantly reactive actuators, walkers, or sensors.

Most advanced hybrid stimuli-responsive soft robots stay within their conceptual states. To achieve
integrated practically applicable soft robots, more precise navigation and transformation of these
stimuli-responsive soft robots must be developed. In particular, multiscale stimuli-responsive soft
robots have to be validated under further real environmental conditions, such as deep in vivo locations.
To realize the autonomous navigation and transformation of hybrid stimuli-responsive soft robots,
other rarely explored cues, such as ultrasound and magnetic resonance have to be studied as well
in real models. To realize advanced multi-functional and multi-responsive hybrid soft robots, all
material selections and synthesis, 3D fabrication strategies, and precise controlling systems have to
be developed in parallel. Thus, hybrid stimuli-responsive soft robots offer significant prospects to
facilitate the realization of intelligent multi-functional and multi-responsive soft actuators and sensors
as smart soft robots.
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