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Abstract: In this paper, a new analytical method using Lagrange equations for the analysis of magnetic
levitation (MagLev) systems is proposed, using Thomson’s jumping ring experiment. The method
establishes the dependence of the primary and induced currents, and also the equilibrium height of
the levitating object on the input voltage through the mutual inductance of the system. The mutual
inductance is calculated in two ways: (i) by employing analytical formula; (ii) through an improved
semi-empirical formula based on both measurements and analytical results. The obtained MagLev
model was analyzed both analytically and numerically. Analytical solutions to the resulting equations
were found for the case of a dynamic equilibrium. The numerical results obtained for the dynamical
model under transient operation show a close correspondence with the experimental results. The good
precision of the analytical and numerical results demonstrates that the developed method can be
effectively implemented.

Keywords: copper coil; aluminum ring; ferromagnetic material; magnetic levitation; Thomson’s
jumping ring; mutual inductance; analytical methods

1. Introduction

The principles of magnetic levitation (MagLev) are used in many important applications, such as
actuators, power interrupters for eliminating electric arcs, electromagnetic shock absorbers in electrical
vehicles, hybrid suspension systems with active control, levitation of superconductor materials,
sensors and electromagnetic mass drivers [1]. One of the perspective usages of the MagLev systems
in the near future is related to electromagnetic suspension systems and damping shock absorbers.
Automobiles and trucks have shock absorbers with similar geometry to that of Thomson’s ring system.
These systems are used to damper vibrations generated by imperfections of road surfaces [2–5].

Thus, it is an important challenge to be able mathematically and numerically model, analyze,
control and design MagLev devices similar to Thomson’s ring system. There are also highly accurate
density measurements and density-based detection methods applied to MagLev systems with similar
geometries. In [6–8], an experimental study of a single-ring MagLev system was presented, opening up
a wide operational space and enabling object manipulation and density-based measurements.

In the literature, there are works focused on the numerical analysis of MagLev systems
similar to that of Thomson’s ring. Vilchis et al. [9] presented factors that affect 2D finite element
method (FEM) transient simulation accuracy for an axisymmetric model of a Thomson-coil actuator.
Yannan Zhou et al. [10] numerically studied a Thomson-coil actuator applied in a circuit breaker in a
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high-voltage direct current system. Tezuka et al. [11] proposed a novel magnetically-levitating motor,
able to control five degrees of freedom. In all these systems, analytical or hybrid solutions can be
implemented, resulting in accurate and low-demanding computational models.

Dynamic models (DM) of the MagLev systems have been previously developed. TJ-Teo et al. [12]
presented a new electromagnetic actuator which has two degrees of freedom (linear and rotary
motions). Consequently, the developed MagLev system presents two mutual inductances as functions
of linear and rotatory positions. Additionally, Nagai et al. [13] realized a compact actuator system
by a sensor-free approach. They presented the circuit equations for the solenoid, where the mutual
inductance was approximated as a second-order polynomial function.

Here, we present a new and rigorous analytical solution to the dynamic equations of the
MagLev systems, wherein a mutual inductance, which is the key parameter of electromagnetic force,
is calculated analytically. This way, we obtain a method that retains the simplicity of lumped-parameter
models plus the accuracy of analytical methods within a field modeling context. Our approach was
validated using experimental test results obtained from a Thomson’s jumping ring experiment.

2. Model

In this work, a system known as the Thomson’s jumping ring is studied, where an aluminum ring
is used as a levitating object. The experimental setup is shown in Figure 1. The system is composed of
a primary copper coil of 1140 turns, and an aluminum ring that moves freely up and down along a
laminated ferromagnetic core.

Figure 1. Experimental setup.

The equivalent circuit depicted in Figure 2 models this MagLev system.
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Figure 2. Equivalent circuit of the MagLev.



Actuators 2020, 9, 82 3 of 13

The governing differential equations that govern the dynamics of the circuit represented in
Figure 2 can be obtained from the Lagrangian

L =
l1i21
2

+
l2i22
2

+ Mi1i2 +
mż2

2︸ ︷︷ ︸
kinetic energy

− mgz︸︷︷︸
potential energy

, (1)

where z is the ring height, and i1 and i2 are the electric currents in the primary coil and aluminum
ring, respectively. The parameters l1 and l2 are the primary and secondary circuits’ inductances;
M is the mutual inductance between the coil and ring; and m and g are the aluminum ring mass
and gravitational constant, respectively. Notice that the mutual inductance M(z) is a function of the
distance z between the coil and ring [14]. Thus, the Lagrange equations are as follows:

d
dt

∂L
∂i1
− ∂L

∂q1
= V(t)− R1i1, (2)

d
dt

∂L
∂i2
− ∂L

∂q2
= −R2i2, (3)

d
dt

∂L
∂ż
− ∂L

∂z
= −βż, (4)

where R1 and R2 are the coil and ring resistances; q1 and q2 are the coil and ring electric charges,
respectively; and β is the friction coefficient. The right-hand side terms of the Lagrange equations
are generalized forces, which are considered as independent terms, associated with the generalized
coordinate. Substitution of the Lagrangian (1) into Lagrange equations results in the following system
of differential equations (see also [15,16]):

l1
di1
dt

= V(t)− R1i1 −
d(M(z)i2)

dt
(5)

l2
di2
dt

= −R2i2 −
d(M(z)i1)

dt
, (6)

mz̈ = i1i2
dM(z)

dz
− βż−mg. (7)

3. Formula for the Mutual Inductance

Mutual inductance between a coil and aluminum ring is a function of the system geometry
and the magnetic medium properties between two coils. It can be calculated in two ways:
numerically (using FEM) or analytically. In this section, the linear mutual inductance is analytically
calculated based on the results of [17], where an infinite isotropic core is considered. According to [17],
the mutual inductance can be divided into two parts:

M = Mair + Mcore, (8)

where Mair is the mutual inductance in air, i.e., in the absence of the core, and Mcore is the contribution
of the ferromagnetic core to the whole inductance. The first part of the mutual inductance can be
represented in the form (see [17]):

Mair = µ0
Na

wahawbhb

a+ha∫
a

dA
b+hb∫
b

dB
0∫

−wa

dza

z+wb∫
z

dzb ×
2
√

AB
f

[(
1− f 2

2

)
K( f )− E( f )

]
, (9)



Actuators 2020, 9, 82 4 of 13

where

f =

√
4rarb

(zb − za)
2 + (ra + rb)

2 (10)

is a dimensionless parameter; K( f ) and E( f ) are complete elliptic integrals of the first and second
kind, respectively [18]. Here, (ra, za) and (rb, zb) are pairs of cylindrical coordinates inside the coil and
ring (subindices a and b correspond to the coil and aluminum ring, respectively). Namely, ra and rb are
radii-vectors and za and zb positions on the core. Integration with respect to these variables signifies
that the whole volume of the coil and ring is involved in the calculation of the mutual inductance
between them. Parameters wa and wb are the coil and ring widths; ha and hb are their heights; and a
and b are their internal radii (see Figure 3). Na is the number of turns in the coil. The mutual inductance
caused by the core is as follows:

Mcore = 2µ0
Na

wahawbhb

∞∫
0

dk
k2

×
{

cos (k(z + wb)) + cos (k(z + wa))− cos(kz)− cos (k(z + wa + wb))
}

× π

2k

{
(a + ha)

[
K1 (k(a + ha)) L0 (k(a + ha)) + K0 (k(a + ha)) L1 (k(a + ha))

]
− a

[
K1(ka)L0(ka) + K0(ka)L1(ka)

]} π

2k

{
(b + hb)

[
K1 (k(b + hb)) L0 (k(b + hb))

+ K0 (k(b + hb)) L1 (k(b + hb))
]
−b
[
K1(kb)L0(kb) + K0(kb)L1(kb)

]}
× µrkI1(βR)I0(kR)− βI0(βR)I1(kR)

µrkI1(βR)K0(kR)− βI0(βR)K1(kR)
, (11)

where β =
√

k2 + jωµσ, µ = µ0µr is the absolute permeability of the core material, µr is its relative
permeability and σ is core conductance.

Core

Aluminium RingCoil
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Figure 3. Coil and aluminum ring on an infinitely long core.

The total mutual inductance is a function of the ring position z; i.e., M = M(z). Equations (9)
and (11) are too complicated to be implemented in the dynamical analysis of the MagLev system.
Equations (9) and (11), and FEM calculations, are too complicated and time-consuming to be
implemented in the dynamical analysis of the MagLev system, especially in real-time calculations for
an electromagnetic suspension system. Therefore, equations (9) and (11) must be simplified. In Figure 4,
analytical behavior of the total inductance of the ring height is depicted. It can be seen in Figure 4 that
the total mutual inductance of the system can be approximated by exponential function as follows:

M(z) = α1e−β1z + α2e−β2z, (12)

where α1, α2, β1 and β2 are some empirical parameters to be obtained by fitting function (12) to the
analytical result. The reason for the use of (12), apart from reproducing qualitatively theoretical results
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(9) and (11), is that it provides a correct asymptotic behavior of the mutual inductance at large distances.
A polynomial approximation would diverge at high distances. The numerical values of the parameters
involved in (12) can be obtained from (9) and (11) through the widely-used least squares method [19].
As a result, the following values can be obtained: α1 = 0.000464 H, α2 = 0.000088 H, β1 = 4.77562 m−1

and β2 = 22.74612 m−1. The behavior of the simplified formula for mutual inductance is presented
in Figure 4. The precision of the approximation by (12) is such that both curves (the analytical and
simplified) are indistinguishable. Another advantage of the approximation (12) is that it can be easily
implemented in subsequent analytical calculations.
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Figure 4. Mutual inductance: analytically calculated and exponential approximation.

4. Analytical Solution

In this section, the asymptotic solution of the system of Equations (5)–(7) is found in steady state
conditions. The smallness of the mutual inductance (see parameters α1 and α2) makes possible the
implementation of the perturbation theory (PT). This fact is emphasized using a small dimensionless
parameter ε� 1, which is included in the set of Equations (5)–(7) as follows:

l1
di1
dt

+ R1i1 = V(t)− εM
di2
dt
− εi2

dM
dt

, (13)

l2
di2
dt

+ R2i2 = −εM
di1
dt
− εi1

dM
dt

, (14)

z̈ = ε
i1i2
m

dM
dz
− β

m
ż− ε2g, (15)

where the multiplier ε2 next to the last term on the right-hand side of Equation (15) has been placed in
order to provide the existence of a bounded steady state solution to the equation system (13)–(15).

A harmonic input voltage in the primary circuit is assumed:

V(t) =
1
2

(
Vejωt + V∗e−jωt

)
(16)

where V and V∗ are complex amplitudes (V∗ is the complex conjugate of V). Notice that Equation (16)
gives a cosine-form input voltage. Indeed, complex amplitude V can be represented in the form:
V = |V| ejφ, where φ is the phase. Then, V∗ = |V| e−jφ. Substitution of these expressions into
Equation (16) yields: V(t) = |V| cos(ωt + φ). Although the input voltage is of the cosine form,
higher harmonics in the currents i1(t) and i2(t) and the height z(t) appear due to the fact that
Equations (13)–(15) are nonlinear. According to PT, they can be expanded into a power series with
respect to the small parameter ε as follows:

ik(t) = ik,0(t) + εik,1(t) + ε2ik,2(t) +O
(

ε3
)

, (17)

z(t) = z0(t) + εz1(t) + ε2z2(t) +O
(

ε3
)

, (18)
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where k = 1, 2, andO
(
ε3) refers to the well-known Landau big-O notation. ik,n(t) (where k = 1, 2) and

zn(t) are the nth order PT contributions to the primary and secondary currents and the ring coordinate
(height), respectively.

The substitution of the expansions (17) and (18) into the system (13)–(15) leads to an infinite chain
of equations. According to PT, it can be truncated at a certain term. As a result, the zero order of
PT yields:

l1
di1,0

dt
+ R1i1,0 = V(t), (19)

l2
di2,0

dt
+ R2i2,0 = 0, (20)

z̈0 = − β

m
ż0. (21)

The general solution to Equation (21) is

z0 = C1 + C2e−βt/m, (22)

where C1 and C2 are constants. In can be seen in (22) that the unique steady state solution to
Equation (21) is

z0 = const. (23)

This solution represents the equilibrium position of the ring. The explicit form of z0 will be found
below for higher orders of PT.

After taking into account the solution (23), the system of Equations (13)–(15) in the first order of
PT becomes:

l1
di1,1

dt
+ R1i1,1 = −M(z0)

di2,0

dt
, (24)

l2
di2,1

dt
+ R2i2,1 = −M(z0)

di1,0

dt
, (25)

z̈1 =
i1,0i2,0

m
M′(z0)−

β

m
ż1. (26)

Finally, second order of PT leads to:

l1
di1,2

dt
+ R1i1,2 = −M(z0)

di2,1

dt
−M′(z0)z1

di2,0

dt
−M′(z0)ż1i2,0, (27)

l2
di2,2

dt
+ R2i2,2 = −M(z0)

di1,1

dt
−M′(z0)z1

di1,0

dt
−M′(z0)ż1i1,0, (28)

z̈2 =
1
m

[
i1,0i2,0M′′(z0)z1 +

(
i1,0i2,1 + i1,1i2,0

)
M′(z0)

]
− β

m
ż2 − g. (29)

The input voltage (16), in the dynamic equilibrium state, produces periodic currents ik(t) and a
periodic coordinate z(t), so that each term of the expansions (17) and (18) can be in turn expanded
respectively in Fourier series as follows:

ik,n(t) =
∞

∑
p=−∞

i[p]k,nejpωt, k = 1, 2 (30)

zn(t) =
∞

∑
p=−∞

z[p]n ejpωt, (31)
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where i[p]k,n and z[p]n are complex amplitudes. Equations (17) and (18) should be substituted into
Equations (19)–(29), and the amplitudes of their respective harmonics should be equated in both parts
of each equation. As a result, we will obtain a system of algebraic Equations that connect Fourier
coefficients i[p]k,n and z[p]n with the input voltage amplitude |V|. Substitution of (30) into Equations (19)
and (20) yields:

∞

∑
p=−∞

(
jpωl1 + R1

)
i[p]1,0ejpωt =

1
2
(
Vejωt + V∗e−jωt), (32)

∞

∑
p=−∞

(
jpωl2 + R2

)
i[p]2,0ejpωt = 0. (33)

The solutions to these equations are:

i[p]1,0 =
1
2

Vδp,1 + V∗δp,−1

R1 + jpωl1
, (34)

i[p]2,0 = 0, (35)

where δp,l is the symbol of Kronecker. After substituting these results into (30), the form of the currents
in the time domain in the zero order of PT can be obtained:

i1,0(t) = Re
{

Vejωt

R1 + jωl1

}
, (36)

i2,0(t) = 0. (37)

Similarly, first and second orders of PT are calculated as:

i1,1(t) = 0, (38)

i2,1(t) = Im
{

ωM(z0)Vejωt

(R1 + jωl1)(R2 + jωl2)

}
, (39)

z1 = const, (40)

i1,2(t) = −Re
{

ω2M2(z0)Vejωt

(R1 + jωl1)2(R2 + jωl2)

}
, (41)

i2,2(t) = z1Im
{

ωM′(z0)Vejωt

(R1 + jωl1)(R2 + jωl2)

}
. (42)

Substitution of (30) into Equation (29) with solutions (36)–(42) taken into account results in the
following equation after some simplifications:

z̈2 = − jωM(z0)M′(z0)

4m

{
V2ej2ωt

(R1 + jωl1)2(R2 + jωl2)

− V∗2e−j2ωt

(R1 − jωl1)2(R2 − jωl2)
− 2jωl2|V|2

(R2
1 + ω2l2

1)(R2
2 + ω2l2

2)

}
− β

m
ż2 − g (43)

Equation (43) has a solution that linearly increases with time. To avoid this instability, it is
necessary to equate the constant part on the right-hand side of (43) to zero. As a result, the following
equation can be obtained:

− ω2l2M(z0)M′(z0)|V|2

2m(R2
1 + ω2l2

1)(R2
2 + ω2l2

2)
− g = 0. (44)
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This equation associates the equilibrium height z0 with the input voltage amplitude |V|. In order
to establish the dependence of the ring position on the input voltage amplitude, the simplified formula
for mutual inductance (12) should be substituted into Equation (44). Therefore, we come across with
the following transcendental equation:

ω2l2|V|2

2m(R2
1 + ω2l2

1)(R2
2 + ω2l2

2)

(
α1e−β1z0 + α2e−β2z0

)
×
(

α1β1e−β1z0 + α2β2e−β2z0
)
= g, (45)

which can be numerically solved with respect to the ring position.
After taking into account (44), the solution to Equation (43) can be found in the form:

z2(t) = −M(z0)M′(z0)

4
Re
{

V2e2jωt

(R1 + jωl1)2(R2 + jωl2)(β + 2jmω)

}
. (46)

The approximate time-behaviors of the currents i1(t), i2(t) and the ring height z(t) are finally
as follows:

i1(t) = Re
{

Vejωt

R1 + jωl1

(
1− ω2M2(z0)

(R1 + jωl1)(R2 + jωl2)

)}
, (47)

i2(t) = Im
{

ωM(z0)Vejωt

(R1 + jωl1)(R2 + jωl2)

}
, (48)

z(t) = z0 −
M(z0)M′(z0)

4
Re
{

V2e2jωt

(R1 + jωl1)2(R2 + jωl2)(β + 2jmω)

}
. (49)

5. Simulations and Comparison with Experimental Results

5.1. Equilibrium Position of the Ring

The experiment was designed to validate the dynamic model (5)–(7) and the obtained equations
(12) and (52) for mutual inductance. The dynamic simulations were performed by solving the system
of Equations (5)–(7) employing the standard Runge–Kutta method. The values of the parameters used
in the simulations are given in Table 1.

Table 1. Parameters of the model.

Parameter Symbol Value

Coil resistance R1 10.200 Ω
Coil inductance l1 36.303 mH
Ring resistance R2 61.277 µΩ
Ring inductance l2 58.200 µH
Ring mass m 0.053 kg
Friction coefficient β 0.404 N s m−1

Voltage amplitude V 120–180 V
Frequency f 60 Hz

Parameters of the α1 464.000 µH
mutual inductance α2 88.000 µH
(analytical formula) β1 4.776 m−1

β2 22.746 m−1

Parameters of the γ 1377.91 V m−1

mutual inductance δ 41.04 V
(semi empirical)
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The parameters of the model were obtained by means of laboratory measurements and
manufacturing data [16].

In Figure 5 a schematic diagram illustrating the experimental setup used to measure the aluminum
ring height is shown. A camera was installed in front of the Thomson’s ring system at a distance T > z,
registering the ring position in a slow-motion mode 120 fps (frames per second).

&

Core

Aluminium Ring

Coil

Measuring Tape

Tripod

Camera

#

Figure 5. Schematic diagram of position measurement using a camera.

In Figure 6, the experimental and analytical behavior of the ring height vs. the RMS voltage is
presented. It can be observed in Figure 6 that, in general, both curves are correlated. Nevertheless,
a complete match was not attained. This may have been due to the approximation of an infinitely long
core that was adopted to obtain the Equations (9) and (11). In the real experimental setup, as shown in
Figure 1, we dealt with a core of a finite height. In this real case, a less number of magnetic lines were
concentrated in the core due to dispersion through the upper cross-section of the core. As a result,
the magnetic flux through the ring was less than in the case of the infinitely long core. Therefore,
the inductance was less than that theoretically calculated in (9) and (11).

Experimental

Analytical

60 80 100 120 140 160 180 200
0.00

0.05

0.10

0.15

0.20

Voltage Vrms, [V]

P
os
iti
on
z
,[
m
]

Figure 6. Ring position vs. RMS voltage.

5.2. Semi-Empirical Formula for the Mutual Inductance

The analytical calculation of the realistic inductance corresponding to the experimental setup
(see Figure 1) is a complicated mathematical task due to its nontrivial geometry. Nevertheless,
a different strategy can be adopted in order to estimate the mutual inductance between the coil
and ring. In Figure 6, it can be seen that the experimental dependence of the ring position on the RMS
voltage is almost linear within the interval of variation of the ring position. This fact can be used to
determine the semi-empirical form of mutual inductance. First, assuming the linear behavior of the
RMS voltage shown in Figure 6, we can write:

Vrms = γz + δ, (50)
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where the values of γ and δ can be estimated using the least squares method. The results of estimation
are shown in Table 1. The relative L2-error of this estimation calculated according to the formula:

Error =

√√√√∑10
k=1
(
Vk − γzk − δ

)2

∑10
k=1 V2

k

× 100%,

is about 2.87% which is considered good enough. The resulting empiric RMS voltage behavior is shown
in Figure 7, where a good match between both the experimental and empiric curves can be observed.

Consequently, Equation (44) can be represented in the form of the following differential equation:

dM2(z)
dz

= −
2mg(R2

1 + ω2l2
1)(R2

2 + ω2l2
2)

ω2l2V2
rms(z)

, (51)

where Vrms = |V|/
√

2 is the RMS voltage. By substituting the empirical formula (50) into Equation (51),
this equation can be easily solved with respect to the mutual inductance by integrating with the
boundary condition M(z)→ 0 as z→ ∞. The result of integration of Equation (51) is the following:

M(z) =

√
2mg(R2

1 + ω2l2
1)(R2

2 + ω2l2
2)

ω2l2γ(γ|z|+ δ)
. (52)

The obtained semi-empirical mutual inductance (solid line) and its analytical counterpart
(dashed line) as functions of the distance z are shown in Figure 8 (notice that it is not possible
to implement a sensor to directly measure the mutual inductance). It can be observed that, as expected,
the semi-empirical inductance obtained based on the experiments is lower than that provided by
analytical calculations.

Experimental

Semi empirical

Analytical

60 80 100 120 140 160 180 200
0.00

0.05

0.10

0.15

Voltage Vrms, [V]

P
os
iti
on
z
,[
m
]

Figure 7. RMS voltage vs. ring position: experimental results and empirical approximation.

semi-empirical

analytical

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

0.00055

Position z, [m]

M
(z
),
[H
]

Figure 8. Mutual inductance: semi-empirical approximation and analytically calculated.

Of course, in Equation (50), instead of a linear function, we could use a polynomial of order N:

V(z) =
N

∑
k=0

δkzk, (53)
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where N is the number of experimental points in Figure 6—thereby obtaining voltage that better
fits with the measured points. However, our aim was not only to reach a better fit in Figure 4,
but also to solve Equation (51) analytically and obtain a suitable formula for calculating the mutual
inductance. On the one hand, substitution of different values of N into Equation (53) shows that
the higher the number N, the more complicated the solution to Equation (51). On the other hand,
the use of polynomials to approximate functions is valid only within certain intervals. Out of these
intervals, the divergence is higher by as much as the order N of the polynomial (53). Therefore,
the implementation of polynomials in finding the mutual impedance (52) could lead to divergence for
higher distances z. At the same time, Equation (6) provides an acceptable approximation; it results in
Equation (51) being easy to integrate; the solution to Equation (51) (see Equation (52)) is an elementary
function, which provides correct asymptotic behavior of the mutual inductance at long distances.

5.3. Dynamic Behavior of the Ring

The dynamic behavior of the ring in the transient case was obtained from numerical simulations
of Equations (5)–(7) for two different values of the input voltage amplitude, (a) 180 and (b) 120 V
(Figure 9), and two different expressions (analytical and semi-empirical) for the mutual inductance
M(z). The dashed and solid lines correspond to simulation based on Equations (5)–(7), whereas the line
with points shows the experimental behavior of the ring height. The numerical results corresponding
to the dashed-line (“Analytical”) were obtained using approximation (12) for the mutual inductance,
based on the idealized model of an infinitely long core and analytical expressions (9) and (11).
The numerical results represented by the solid-line (“Semi-empirical”) were computed based on
the improved semi-empirical formula (52). The semi-empirical formula (52) approximates the mutual
impedance much better than the idealized expression (12), which, in turn, has reflected in the
fact that the “Semi-empirical” continuous lines better fit the experimental waveforms. Moreover,
simulated results using (52) led to equilibrium state heights 0.0794 and 0.147 m for 120 and 180 V,
respectively, which is an excellent match with the analytical results obtained from (44). The latter
means that the obtained analytical solutions represent the steady-state behavior of the aluminum ring
with a good precision.
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Figure 9. Experimental results versus dynamic simulations: (a) V = 180 V and (b) V = 120 V.

According to the solutions (47)–(49), the interaction force between the coil and aluminum ring,
averaged over an oscillation period, has the form:

fAS = i1i2M′(z) = − ω2l2M(z0)M′(z0)|V|2

2m(R2
1 + ω2l2

1)(R2
2 + ω2l2

2)
,
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which according to (44) equals the gravitational force:

fAS = mg. (54)

Similarly, the RMS currents i1rms and i2rms can be obtained from (47) and (48) up to the terms of
the order ∼M2(z0):

i1rms =
Vrms√

R2
1 + ω2l2

1

(
1− ω2M2(z0)(R1R2 −ω2l1l2)

(R2
1 + ω2l2

1)(R2
2 + ω2l2

2)

)
, (55)

i2rms =
M(z0)Vrms√

(R2
1 + ω2l2

1)(R2
2 + ω2l2

2)
. (56)

6. Conclusions

In this work, an analytical method of solving the dynamical model of a MagLev system was
proposed. The method permits finding the dynamical equilibrium of the Thomson’s jumping ring
system. The precision of the calculation of the equilibrium state is closely related to the accuracy of the
formula for estimating the mutual inductance between the coil and ring. A widely-known formula for
the mutual inductance between two coils placed on an infinitely long cylindrical core was corrected and
adapted for analytical calculation of the inductance of the system. However, the geometry considered
in calculating the mutual inductance does not faithfully reproduce the considered MagLev system
(in the Thomson’s jumping ring system the core is of a finite length). The analytical method of analysis
of the considered MagLev system was essentially improved by implementing a new semi-empirical
formula for the mutual inductance between the coil and aluminum ring, which was obtained based on
measurements and the analytical solution for the equilibrium state. The obtained dynamical model
presents with good precision the transient-state dynamics of the system. The resulting analytical
solution—and particularly Equation (4)—can be effectively implemented in the dynamical control of
the ring height. Consequently, the developed model can be implemented for electromagnetic shock
absorbers and suspension systems.
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