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Abstract: An active mass damper (AMD) was developed that uses a linear motor and coil spring to
reduce the vertical vibration of a long-period cable-stayed bridge subjected to wind and earthquake
loads. A scaled-down bridge model and AMD were fabricated, and the control effect of the AMD
was investigated experimentally and analytically. The AMD was controlled via a linear quadratic
Gaussian algorithm, which combines a linear quadratic regulator and Kalman filter. The dynamic
properties were investigated using a 1/10 scale indoor experimental model, and the results confirmed
that the measured and analytical accelerations were consistent. A vibrator was used to simulate the
wind-induced vibration, and the experimental and analytical results were consistent. The proposed
AMD was confirmed to damp the free vibration and harmonic load and increase the damping ratio of
the bridge model from 0.17% to 9.2%. Finally, the control performance of the proposed AMD was
numerically investigated with the scaled-down bridge model subjected to the El Centro and Imperial
Valley-02 earthquakes. These results were compared with those of a TMD, and they confirmed that
the proposed AMD could reduce excessive vertical vibrations of long-period cable-stayed bridges
subjected to wind and earthquakes.
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1. Introduction

Long-span bridges such as suspension and cable-stayed bridges are constructed in various forms
to connect islands to the mainland or other islands. However, these slender bridges can have problems
with wind, earthquake, or vehicle vibration because of their low damping ratios. Frequent vibration
of the bridge girders increases the fatigue load and causes user anxiety. Thus, measures are taken to
prevent harmful vibrations (e.g., vortex, buffering, and flutter vibration) during the design stage, which
include aerodynamic and structural dynamic methods. Aerodynamic methods include changing the
flow of air by improving the aerodynamics of the girders with attachments such as fairing, spoilers, or
flaps [1,2]. Structural dynamic methods include using devices such as the tuned mass damper (TMD)
or active mass damper (AMD) to increase the damping of structures. The TMD is a system of mass,
damping, and stiffness that reduces girder vibration by oscillating instead of the girder. The AMD uses
electrical forces such as servomotors or actuators to reduce the structural vibration.

Den Hartog [3] proposed the TMD to optimize the frequency and damping ratios for harmonic
loads; since then, the TMD has been applied by many researchers in various fields such as buildings,
bridges, and industrial facilities to compensate for various external forces [4–7]. Many researchers
have studied developing and applying TMDs to reduce the vibration of bridges subjected to wind
loads [8–11]. Gu et al. [8] designed a TMD with the optimal frequency ratio and damping ratio to
reduce the buffering of a cable-stayed bridge due to wind load and applied it to the full-scale bridge.
Xing et al. [9] used ANSYS to evaluate the displacement of the girder of the Sutong cable-stayed bridge
with auxiliary piers and a TMD and observed a greater damping effect when only the TMD was applied
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without the auxiliary piers. Domaneschi et al. [10] designed a TMD to reduce the damping vibration of
suspension bridges subjected to wind loads and compared the vibration control performance to that of
friction dampers. Wang et al. [11] proposed a single-side pounding tuned mass damper (SS-PTMD) to
reduce vortex vibrations of bridge decks and applied it to a two-dimensional wind tunnel test model,
which reduced the amplitude of the vortex vibration by 94%.

Several studies have focused on reducing the vibration of bridges subjected to external forces such
as vehicles, railways, and earthquakes. Pourzeynali et al. [12] proposed a TMD to reduce the vertical
vibration of a suspension bridge subjected to an earthquake and derived the optimal values by studying
the parameters of the TMD. Fiebig [13] applied a TMD to pedestrian bridges to reduce vibrations and
reviewed the vibration control performance according to the theoretical formula. Debnath et al. [14]
proposed multiple TMDs (MTMD) to reduce the responses in the vertical, horizontal, and torsional
modes of a bridge subjected to vehicle and wind loads and presented the control performance by
using the frequency response function (FRF) of the bridge with and without MTMD. Yin et al. [15]
proposed a pounding tuned mass damper (PTMD) to reduce the dynamic response of the highway to
wind and vehicle loads and numerically simulated the effects of installing multiple PTMDs in each
bridge span on the mid-span reductions in the horizontal and vertical displacements. Chen et al. [16]
studied the horizontal vibration of bridges caused by train operation in the event of an earthquake
and simulated the train and railway bridge with multibody dynamics and a finite element analysis
program. Nugroho et al. [17] proposed a TMD to reduce the vibration of the bridge caused by the
train speed and showed that the response of the bridge with the TMD satisfied the comfort criteria.
Although many studies have focused on reducing the vibration of bridges subjected to external loads,
it is not easy to design a TMD for long-period bridges.

Another approach to minimize the vibration of the bridges is to apply an AMD. The AMD is an
active control, which includes algorithms such as the classical optimal control, neural network control,
fuzzy theory, and mixing method. Active devices include the active tendon, magnetorheological
(MR) damper, and AMD. El Ouni et al. [18,19] numerically and experimentally studied controlling
the vertical vibration of girders by using the active tendon force of the cable with a laboratory-scale
cable-stayed bridge model. Crusells-Girona and Aparicio [20] proposed an active control algorithm
that adjusts the axial force of the cables in a cable-stayed bridge to reduce the girder displacement
and stress. Soneji and Jangid [21] performed finite element analysis and used MR dampers with high
damping rubber bearings to reduce the longitudinal displacement of cable-stayed bridges during
earthquakes. Ok et al. [22] proposed a semi-active fuzzy control algorithm for controlling MR dampers
and compared the control performances of semi-active, active, and hybrid control algorithms for
cable-stayed bridges. Pourzeynali et al. [12] installed an MR damper diagonally between the tower and
girder of a suspension bridge subjected to an earthquake and showed that the vibration was reduced
in numerical simulations. Soto and Adeli [23] applied MR dampers to reduce the displacement of
highway bridges during an earthquake and compared the results with passive, semiactive, and active
controls. Soares et al. [24] applied the neuro-fuzzy and simple adaptive control algorithms to MR
dampers to reduce the shear force of the pylons of a cable-stayed bridge during an earthquake. Scheller
and Starossek [25] used a twin-rotor damper to reduce the vibration of a bridge due to wind loads and
performed a wind tunnel test to show that the damping of the bridge was increased. Zhang et al. [26]
also demonstrated the vibration reduction performance of the twin-rotor damper against wind and
seismic loads. Goorts et al. [27] proposed an electromechanical mass damper (EMD) to reduce the
horizontal vibration of bridges and performed a hybrid simulation using a shaking table test and
simulation results to demonstrate the reduced horizontal displacement. Setio and Gunawan [28]
proposed an AMD that uses an artificial neural network algorithm to control the vertical vibration of a
cable-stayed girder during an earthquake, and their numerical simulations showed that the relative
displacement between the centers of the pylon and girder was reduced.

In this study, an AMD was developed to reduce the vertical vibration of a cable-stayed bridge girder
subjected to wind and earthquake loads. A scaled-down bridge model and AMD were fabricated, and
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the active control performance of the proposed AMD was experimentally and numerically investigated.
Section 2 describes the linear quadratic Gaussian (LQG) control algorithm, which combines a linear
quadratic regulator (LQR) and Kalman filter and was used to control the AMD. Section 3 presents
details on the target bridge, scaled-down bridge model, and AMD. Section 4 presents the equation of
motion, system identification, and numerical and experimental results for verifying the AMD control
performance as well as the effectiveness of the proposed AMD against earthquakes. Finally, Section 5
summarizes the main contents of this study.

2. LQG Control Algorithm

To calculate the proper control force, the AMD needs a control algorithm, which is a series of
processes for calculating the behavior of the control device to control the response of the target system
based on measurements from a sensor or the current state information of the control device. If the
mathematical modeling of the target system is accurate and linear, the LQG linear optimal control
technique can be used, which combines LQR control and the Kalman filter. Figure 1 shows a block
diagram of the LQG controller. The LQR calculates the control gain for optimal control, and the Kalman
filter estimates the state vectors for practical application.

Actuators 2020, 9, x FOR PEER REVIEW 3 of 21 

during an earthquake, and their numerical simulations showed that the relative displacement 
between the centers of the pylon and girder was reduced. 

In this study, an AMD was developed to reduce the vertical vibration of a cable-stayed bridge 
girder subjected to wind and earthquake loads. A scaled-down bridge model and AMD were 
fabricated, and the active control performance of the proposed AMD was experimentally and 
numerically investigated. Section 2 describes the linear quadratic Gaussian (LQG) control 
algorithm, which combines a linear quadratic regulator (LQR) and Kalman filter and was used to 
control the AMD. Section 3 presents details on the target bridge, scaled-down bridge model, and 
AMD. Section 4 presents the equation of motion, system identification, and numerical and 
experimental results for verifying the AMD control performance as well as the effectiveness of the 
proposed AMD against earthquakes. Finally, Section 5 summarizes the main contents of this study. 

2. LQG Control Algorithm 

To calculate the proper control force, the AMD needs a control algorithm, which is a series of 
processes for calculating the behavior of the control device to control the response of the target 
system based on measurements from a sensor or the current state information of the control device. 
If the mathematical modeling of the target system is accurate and linear, the LQG linear optimal 
control technique can be used, which combines LQR control and the Kalman filter. Figure 1 shows a 
block diagram of the LQG controller. The LQR calculates the control gain for optimal control, and 
the Kalman filter estimates the state vectors for practical application. 

 
Figure 1. Block diagram of the linear quadratic Gaussian (LQG) control system. 

If the system is linearly time-invariant, the equation of motion can be expressed in the form of 
a state space [29–32]: 𝑋(𝑡) = 𝐴𝑋(𝑡) + 𝐵 𝑢(𝑡) + 𝐵 𝑓(𝑡) (1) 𝑦(𝑡) = 𝐶𝑋(𝑡) + 𝐷 𝑢(𝑡) + 𝐷 𝑓(𝑡) + 𝑣(𝑡) (2) 

where 𝑋(𝑡) = 𝑥(𝑡) 𝑥(𝑡)  is the state variable vector, 𝑢(𝑡) is the control force, 𝑓(𝑡) is the external 
force, 𝑦(𝑡) is the output vector, 𝐴 and 𝐶 are system matrices, and 𝐵 , 𝐵 , 𝐷 , and 𝐷  are position 
matrices with respect to the control and external forces. The control force is calculated by 
multiplying the state vector and control gain: 𝑢(𝑡) = −𝐾𝑋(𝑡) (3) 

Figure 1. Block diagram of the linear quadratic Gaussian (LQG) control system.

If the system is linearly time-invariant, the equation of motion can be expressed in the form of a
state space [29–32]:

.
X(t) = AX(t) + Buu(t) + B f f (t) (1)

y(t) = CX(t) + Duu(t) + D f f (t) + v(t) (2)

where X(t) =
[
x(t)

.
x(t)

]T
is the state variable vector, u(t) is the control force, f (t) is the external force,

y(t) is the output vector, A and C are system matrices, and Bu, B f , Du, and D f are position matrices
with respect to the control and external forces. The control force is calculated by multiplying the state
vector and control gain:

u(t) = −KX(t) (3)

where K is the control gain and can be calculated with the LQR control algorithm presented in the
next section.
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2.1. LQR Controller

The LQR control algorithm finds the optimal control gain that minimizes the performance index:

J =
∫ t f

0

[
XT(t)QX(t) + uT(t)Ru(t)

]
dt (4)

where Q and R are weight matrices with each magnitude representing the relative importance of the
state value and control force of the system. t f is the final time. To minimize Equation (4), a new
objective function is defined that combines Equations (1)–(4):

L =

∫ t f

0

[{
XT(t)QX(t) + uT(t)Ru(t)

}
+ λT(t)

{
AX(t) + Buu(t) + B f f (t) −

.
X(t)

}]
dt (5)

Summing Equation (5) with the separation of variables method yields

δL(X, u, λ, δX, δu, δλ) =
∫ {(

XTQ + λTA +
.
λ

T)
δX + (uTR + λTBu)δu + δλT

(
AX + Buu + B f f −

.
X
)}

dt = 0 (6)

Since δX, δu, and δλ are all arbitrary values, the following conditional expressions must be
satisfied for Equation (6) to be valid:

.
λ

T
= −2XTQ− λTA (7)

2uTR + λTBu = 0 (8)

AX + Buu + B f f −
.

X = 0 (9)

The control force u(t) is obtained from Equation (8):

u(t) = −
1
2

R−1BT
uλ(t) = 0 (10)

Since the control force is obtained from feedbacking the state vector of the system, it can be written
as follows:

λ(t) = P(t)X(t) (11)

Therefore, the control force can be expressed as follows:

u(t) = −
1
2

R−1BT
u P(t)X(t) = −K(t)X(t) (12)

where P(t) is the Riccati matrix and can be determined with Equations (7), (8), (9), and (11).

2.2. Kalman Filter

LQR control has the constraint that all state variables must be known. However, the displacements
and velocities at all points of a civil structure are not known. Therefore, the control force needs to
be calculated by estimating the overall state variables based on limited measurement information.
The system for estimating state variables is called an observer. In this study, the Kalman filter was used
to estimate the state variables. The state-space equations for the structure and measurement system
are given by

.
X(t) = AX(t) + Buu(t) + B f f (t) (13)

m(t) = CmX(t) + Dmu(t) + υ(t) (14)
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where m(t) are measurement values, υ(t) is sensor noise, and Cm and Dm are system matrices. If the
estimated value of the state variable X(t) is X̂(t), the state-space equation for the estimated state
variable is given by

.
X̂(t) = FX̂(t) + Gm(t) + Hu(t) (15)

where F, G, and H are system matrices. The difference between the state variable and estimated value
of the state variable can be defined as the estimation error:

e(t) = X(t) − X̂(t) (16)

By taking the derivative of time on both sides and substituting Equations (13) and (15) into
Equation (16), the error dynamics is given by

.
e(t) = (A−GCm)e(t) +

[
B f −G

][ f (t)
ν(t)

]
(17)

Finally, the Kalman filter gain must be determined by using the orthogonality principle on
Equation (17).

3. Target Bridge and Scaled-Down Experimental Model

3.1. Cable-Stayed Bridge Model

In this study, the 95% construction stage of a cable-stayed bridge was targeted for controlling the
vertical vibration. The span was 1200 m, the girder width was 29 m, the girder depth was 4.0 m, and
the pylon height was 282 m. The bridge geometry is shown in Figure 2.
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Figure 2. Geometry of the target cable-stayed bridge (unit: mm).

The finite element analysis program MIDAS Civil was used to model the cable-stayed bridge in
the 95% construction stage. Eigenvalue analysis was performed, and the frequency of the first vertical
mode was confirmed to be 0.167 Hz. Figure 3 shows the finite element model of the 95% construction
stage and the first vertical mode shape. To calculate the moving mass of the AMD, it was assumed to
be installed at the tip of the girder, and the mode vector of the installation position was normalized to
1. The modal mass of the girder’s vertical mode was calculated to be 1526 tons. As shown in Figure 3b,
when the AMD was installed, four AMDs with moving mass of 15 tons were required. Specifications
of the actuator for the AMD are shown in Table 1.
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Table 1. Specifications of actuator.

Item Value

Stroke (mm) ±550
Max control force (N) 3600
Frequency range (Hz) 0.1 to 0.3

Mass (kg) 14,000
Power (kw) 11

3.2. Scaled-Down Experimental Model

The dynamic characteristics of the target bridge were reduced to 1/10.17 scale for verification and
simulation of the AMD’s control of the vertical vibration. The mass and frequency of the scaled-down
bridge model were calculated according to the similarity law [33]:

ms =
mp

S3 (18)

fs = fp ×
√

S (19)

where ms and fs are the mass and frequency, respectively, of the scaled-down bridge model and mp

and fp are the modal mass and frequency, respectively, of the prototype bridge. S is the scale ratio.
The mass and frequency of the scaled-down bridge model are given in Table 2.

Table 2. Mass and frequency of the scale bridge model.

Item Prototype Scaled Model

Mass (ton) 1526 1.509
Frequency (Hz) 0.170 0.542

Figure 4 shows the experimental model, which was fabricated from two 6.1-m-long H-beams
(450 mm × 300 mm × 11 mm × 18 mm). The yellow circle on the right side of the figure shows the
hinge, around which the bridge model could rotate up and down. In addition, the bridge model was
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connected to the tension spring in the blue frame, and the frequency in the vertical direction was
adjusted according to the number of springs and distance from the hinge. The additional mass on the
left side of the figure was used to fine-tune the frequency. Two AMDs are shown on the left side of the
figure. The first AMD was used as an exciter to simulate wind excitation, and the second AMD was
used as a controller to reduce wind vibration. An accelerometer at the tip of the bridge model was
used to provide input to the AMD.
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3.3. AMD Design and Fabrication

The AMD was designed and fabricated to reduce the vertical vibration of the scaled-down bridge
model. The moving mass of the AMD was determined to be 50 kg (3.8%), and the position of the
moving mass was adjusted by using tension coil springs to assist the power of the AMD motor.
Figure 5 shows the AMD assembly process, which consisted of tension springs, a frame, and a motor.
The specifications of the fabricated AMD are given in Table 3.
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Table 3. Specifications of the AMD.

Item Value

Moving mass (kg) 50
Stroke (mm) ±70

Force (N) 38.8

4. Verification of the Control Performance

4.1. Definition of the Equation of Motion for the Entire System

Figure 6 shows a block diagram of the scaled-down bridge system for deriving the equations
of motion of the entire system. To simulate the wind load, AMD No. 2 was used as a vibrator to
vibrate the bridge model, and AMD No. 1 was used to control the vibration of the bridge model. This
AMD was placed at the end of the bridge, where the greatest displacement occurred. Considering the
realistic conditions, only the acceleration at the tip was measured for the bridge response.
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Designing an LQG controller requires mathematical modeling of the system. The energy of the
system is needed to solve its equations of motion [34,35]:

T =
1
2

Ib
.
θ

2
b +

1
2

m0
.
x2

b +
1
2

ma
.
x2

a (20)

V =
1
2

kb(Lbθb)
2 (21)

Q = −cb

(Lb
L

)2 .
xb + f (22)

where T, V, and Q are the kinetic energy, potential energy, and non-conserved power, respectively; Ib,
m0, and ma are the mass moment of inertia, added mass, and moving mass of the AMD, respectively;
and θb and xb are the rotational displacement of the bridge and vertical displacement at the tip,
respectively. If the rotational displacement is small, it can be approximated as xb = Lθb. L and Lb are
the length of the bridge and distance from the hinge to the spring, respectively. kb and cb are the stiffness
and damping, respectively, of the bridge. f is an external force. xa is the absolute displacement of the
moving mass of the AMD and can be expressed by xa = xb + za, which is the sum of the displacement
xb at the tip of the bridge and the relative displacement za of the moving mass of the AMD.

Equations (20)–(22) can be applied to Lagrange’s equation, given in Equation (23), to derive the
equation of motion of the entire system, given in Equation (24).

d
dt

(
∂T
∂

.
x

)
−
∂T
∂x

+
∂V
∂x

= Q (23)

( Ib

L2 + m0 + ma

)
..
xb(t) + cb

(Lb
L

)2 .
xb(t) + kb

(Lb
L

)2
xb(t) = −ma

..
za(t) + f (t) (24)

Equation (24) can be simplified to

mt
..
xb(t) + ct

.
xb(t) + ktxb(t) = −ma

..
za(t) + f (t) (25)

where mt, ct, and kt are the mass, damping, and stiffness, respectively, of the entire system. Equation (25)
can be represented as a state-space equation, given in Equation (26), which can then be simplified to
Equation (27).{ .

xb(t)
..
xb(t)

}
=

[
0 1

−kt/mt −ct/mt

]{
xb(t)
.
xb(t)

}
+

[
0

1/mt

]
f (t) +

[
0

−ma/mt

]
..
za(t) (26)
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.
Xb(t) = AtXb(t) + B f f (t) + Bc

..
za(t) (27)

4.2. System Identification

Figure 7 shows the block diagram for the entire system. The response (y) of the bridge model is
generated by the external force, and the acceleration (m) is measured at the tip of the bridge model.
This acceleration signal is input to the Kalman filter after the high-frequency noise signal is removed
by the noise filter. The state vectors of the bridge model are estimated with the Kalman filter and
multiplied by the control gain (G) to calculate the control signal. The moving mass of the AMD works
up and down to reduce the vibration of the bridge model according to the control signal.
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To design a controller consisting of the Kalman filter and LQR, each system needed to be identified.
First, the bridge model was identified from its free vibration signal. Figure 8 shows the vibration
acceleration data of the bridge model. Based on the measured data, the frequency and damping ratio
of the bridge model were found to be 0.531 Hz and 0.17%, respectively. The measured and simulated
accelerations of the bridge model were found to match closely.
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Second, sinusoidal sweep signals at 0.1–5 Hz were used to investigate the relationship (AMD
dynamic model) between the input and the output of the AMD. The sinusoidal signal was defined as
the input, and the measured displacement of the AMD moving mass was used as the output. Figure 9a
shows the input and output signals (displacement) of the AMD. The transfer function of the two signals
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was based on MATLAB’s system identification toolbox and is shown in Figure 9b [36]; this function is
given as

HAMD(s) =
7330.3s2

s2 + 89.1s + 7331.4
(28)
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Third, the acceleration signal at the tip of the bridge model contains a high-frequency signal noise
that must be removed. A second-order infinite impulse response (IIR) Butterworth filter was designed
so that noise can only pass in the frequency range of 0.05–2 Hz. The designed noise filter is given by

HNoiseFilter(s) =
0.058s2 + 12.283s

s2 + 12.283s + 3.958
(29)
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4.3. Verification of the AMD Design and Control Performance

Experimental and numerical analyses were performed to verify the control performance of the
LQG controller for the scaled-down bridge model. Generally, wind loads are divided into turbulence
flow and laminar flow according to turbulence intensity. Since long bridges are mainly located in
the sea, vortex vibration due to laminar flow may occur. In the case of this vortex vibration, since
the vibration occurs at a frequency corresponding to the natural frequency of the bridge, this study
generated this vibration using an exciter instead of wind in testing. The vibration of the girder caused
by the wind load appeared as sinusoidal waves, and therefore, AMD No. 2 was used to simulate this
vibration. Thus, AMD No. 2 was used as a vibrator to vibrate the bridge model to simulate wind loads,
and AMD No. 1 was used to control the vibration of the bridge model. Figure 10 shows the simulation
and experimental results for the bridge model and AMD. The bridge model was vibrated by AMD No.
2 for only 27 s, and AMD No. 1 operated after being stopped for 28 s. The blue dotted line represents
the simulation results, and the red line represents the experimental results. The experimental behavior
and analytically predicted results were almost identical, which verifies the validity of the designed
LQG controller. The sampling time was 0.01 s in the experimental and numerical studies. Further,
the time delay was not considered because of using the transfer function of AMD.
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(b) displacement of the moving mass of AMD No. 1.
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The proposed AMD was confirmed to effectively control the free vibration and harmonic load of
the bridge model. Figure 11 shows the analysis results before and after control of the free vibration after
excitation. Figure 11a shows the uncontrolled response to the excitation by AMD No. 2 (amplitude
of 15 mm at 0.53 Hz for up to 27 s) and the controlled response with AMD No. 1. Figure 11b shows
the displacements with the vibrating and controlling AMDs in operation. The blue line indicates
the displacement when the model was excited with AMD No. 2 for 27 s, and the red line shows the
displacement when the model was gradually controlled by AMD No. 1 after 27 s. AMD No. 1 did
not immediately exert a large amount of control because a sudden control force could considerably
affect the bridge model. This was performed using a rate limiter. The damping ratio was calculated by
selecting only the free vibration section in Figure 11a and was found to increase from 0.17% to 9.2%
when the model was controlled by AMD No. 1. Figure 12 shows the results before and after control
with AMD No. 1 when the model was excited for 60 s with AMD No. 2. In Figure 12a, the blue line
represents the uncontrolled acceleration of the bridge model, and the red line represents the controlled
acceleration. When a sinusoidal force was induced by AMD No. 2, the amplitude of the bridge model
did not increase by more than a certain amount despite the excitation from AMD No. 2. Figure 12b
shows the displacement with AMD No. 2 as the vibrator and AMD No. 1 as the controller. When the
model was excited at a frequency of 0.53 Hz and amplitude of 15 mm by AMD No. 2, the amplitude of
AMD No. 1 was also maintained at 15 mm.
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A numerical analysis was also performed on the vertical vibration control of a cable-stayed scaled
bridge during an earthquake. The El Centro earthquake and Imperial Valley-2 earthquake were used
for the earthquake simulation. Figures 13 and 14 show the time history and response spectra of the
El Centro and Imperial Valley-2 earthquakes, respectively. The number of AMDs was increased to
six to simulate large loads such as earthquakes. To compare the vibration control performance of
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the AMD, a simulation was performed on the bridge with a TMD installed under both earthquakes.
Figure 15 shows the simulation results for the bridge model with the El Centro earthquake using the
AMD and TMD. In Figure 15a, the blue line represents the uncontrolled displacement of the bridge
model, and the red line and green dot line represent the controlled displacement when the AMDs and
TMD were in operation. Figure 15b shows the acceleration responses of the bridge model; Figure 15c,
the control forces of the AMD and TMD; and Figure 15d, the displacement of the AMD and TMD
when in operation. Figure 16 shows the analytical results for the bridge model with the Imperial
Valley-2 earthquake. Similarly, Figure 16a,b shows the displacement and acceleration of the bridge
model, respectively, and Figure 16c,d shows the displacements of the AMD and TMD, respectively.
The acceleration and displacement of the bridge model for each earthquake are summarized in Table 4.
The maximum displacement of the bridge model during the El Centro earthquake was 55 mm, which
was reduced by 36% to 35 mm when the AMDs were in operation. The maximum acceleration was
reduced by 59% from about 320 gal to 132 gal. With the Imperial Valley-02 earthquake, the maximum
displacement of the bridge model decreased by 59% from 49 to 20 mm. The maximum acceleration was
reduced by 63% from 73 to 26 gal. The decreasing rate of the maximum displacement and acceleration
by TMD were 11.8% and 0.7% under the El Centro earthquake, respectively. The decreasing rate
of the maximum displacement and acceleration by TMD were 57.1% and 51.6% under the Imperial
Valley-2 earthquake, respectively. The TMD shows good vibration control performance only for the
Imperial Valley-2 earthquake; however, the proposed AMD shows the excellent vibration control
performance for both earthquakes. The vibration control performance of the AMD was confirmed for
the cable-stayed bridge model through indoor experiments and analytical simulations. The results
confirmed that the proposed AMD could sufficiently reduce the vertical vibration of a bridge subjected
to wind and seismic loads.
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Table 4. Analytical results for the bridge model with each earthquake.

El Centro Imperial Valley-02

Displacement
(mm)

Acceleration
(gal)

Displacement
(mm)

Acceleration
(gal)

AMD
Uncontrolled 54.9 320.5 49.1 73.5

Controlled 35.1 132.0 19.9 26.7
Decreasing rate 36.1% 58.8% 59.4% 63.7%

TMD
Uncontrolled 54.9 320.5 49.1 73.5

Controlled 48.4 318.3 21.1 35.6
Decreasing rate 11.8% 0.7% 57.1% 51.6

5. Conclusions

In this study, an AMD was developed that uses a linear motor and coil spring, and the vibration
control performance was experimentally and analytically investigated for excessive vertical vibrations
that may affect a cable-stayed bridge. The following conclusions were drawn:

1. The basic theory of LQG control, which combines an LQR and Kalman filter, was used to control
the AMD.

2. A scaled-down bridge model and AMD were fabricated, and the analytical responses of the
bridge model and AMD agreed with the experimental results.

3. When the bridge model was subjected to free vibration and a harmonic load, the proposed AMD
rapidly reduced the vibration and significantly increased the damping ratio of the bridge from
0.17% to 9.2%.

4. Numerical analysis showed that the proposed AMD reduced the acceleration of the bridge model
by about 60% during the El Centro earthquake and the Imperial valley-02 earthquake;

5. Moreover, in the case of the TMD, the vibration control performance was shown only for a special
earthquake; however, the proposed AMD showed excellent vibration control performance for
both earthquakes.

In this study, only the first vertical mode response was used for the vibration control of the
scale-down bridge model. However, the control performance of the proposed AMD in response to
various modes also needs to be considered in future research.
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