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Abstract: This paper presents the design of a new flexure-based xy micropositioning stage with a
large hollow platform, which is suitable for practical use with a microscope. The designed mechanism
has a parallel-kinematic structure and is actuated by two voice coil motors. By employing multistage
compound parallelogram flexures, the stage is designed as a four-layer structure, which produces a
motion output platform with a large hollow space and large range of motion. Analytical modeling
was carried out for parametric design of the stage. Evaluation results show that the designed xy
stage exhibits a large safety factor and high natural frequency. Moreover, the large hollow platform is
well-suited for practical applications with a microscope.
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1. Introduction

The micropositioning stage plays an important role in today’s engineering applications.
Differently from conventional stages based on rigid-body joints, the flexure-based compliant
mechanisms deliver strokes by elastic deformations of the material. The micropositioning stage
based on flexure hinges can provide an output movement with desirable properties of no wear, no
friction, no backlash, vacuum compatibility, repeatable motion, and low cost [1–6]. Thus, it has been
widely used in scanning probe microscopy, precision alignment, cell microinjection, etc.

In practical applications, a micropositioning stage with two degrees-of-freedom (2-DOF) of
translational motion, high precision, and a large range of motion has a growing demand in various
fields in recent years. According to previous research, there are two kinds of kinematic structures
which can provide multi-dimensional motion, i.e., the serial-kinematic structure [7–10] and the
parallel-kinematic structure [11–14]. In earlier works, the serial-kinematic structure was widely
adopted. The reason lies in that the serial-kinematic category has a simple structure with an easy
control strategy, as the 2-DOF movements can be handled separately. As the demand of accuracy
becomes higher, parallel-kinematic structure has attracted more attention from researchers, as it
provides lower inertia, smaller cumulative error, and higher resonant frequency [15,16]. With the
moving platform directly connected by multiple limbs, the parallel-kinematic structure can achieve
identical dynamic behavior in the two directions. Concerning the actuation aspect, the voice coil motor
(VCM) is widely used for driving micropositioning stages, because it can provide large linear stroke,
large acceleration, and infinitesimal resolution compared with the piezoelectric actuator (PZT) [15–18].
Therefore, the VCM is capable of delivering a centimeter-level stroke along with a high resolution.

One of the desired performances for a flexure-based xy micropositioning stage is compact physical
size with a large motion stroke. The main challenge is that those two criteria are contradictory. A large
motion stroke requires a narrower and longer leaf flexure, which goes against with the criterion
of compact physical design. Moreover, an excessively slender leaf flexure results in low resonant

Actuators 2020, 9, 65; doi:10.3390/act9030065 www.mdpi.com/journal/actuators

http://www.mdpi.com/journal/actuators
http://www.mdpi.com
https://orcid.org/0000-0002-8865-7271
https://orcid.org/0000-0002-1700-322X
http://www.mdpi.com/2076-0825/9/3/65?type=check_update&version=1
http://dx.doi.org/10.3390/act9030065
http://www.mdpi.com/journal/actuators


Actuators 2020, 9, 65 2 of 13

frequency, and the minimal parameters of leaf flexure are limited by manufacturing. There were
several strategies presented to overcome this issue in previous work. Based on multistage compound
parallelogram flexures (MCPFs), Xu [11] presented an xy micropositioning stage with a two-layered
structure, which is more compact than the designs with one layer. However, if too many MCPFs
are used in the design, the space of one layer may not be taken advantage of fully. Wu and Xu [17]
proposed a more compact xy micropositioning stage, which is composed of bridge-type amplifiers
and right-circular flexure hinges. It combines the compactness and advantages of parallel-kinematic
structure well, but the motion stroke is limited by its piezoelectric actuator. Liu et al. [15] placed the
MCPFs on the z-axis rather than on the xy plane, making it more compact on the xy plane with less
extra structures. However, as the special structure limits the selection of VCMs, a complex driving
program and analytical modeling need to be solved to adapt the special structure. Moreover, the
majority of the available xy micropositioning stages are designed with solid output platforms [19,20].
However, such designs cannot be conveniently used under an inverted microscope or an upright
microscope (common setup in biological micromanipulation) with a bottom light source.

To this end, a novel xy micropositioning stage is presented in this paper, which offers a large,
hollow output platform. It has a parallel-kinematic structure and is actuated by two VCMs. The novel
design takes full advantage of the space on the xy plane and z-axis, and it has a simple structure
actuated by VCMs for achieving a large motion stroke. The stroke structure and motion-decoupling
structure are the same to facilitate straightforward analytical modeling, and a symmetrical structure
is adopted owing to its motion stability. It is notable that the proposed design adopts four identical
layers of flexure structures, which facilitates the fabrication process and improves the compactness
of the xy stage in plane. The reported structure provides a larger platform than previous designs,
along with larger strokes in x and y-axes. The whole structure is compact enough for use with a small
microscope [5]. The xy stage is designed with one of the most fundamental structures as the basic
structure along with novel assembly method to achieve the desired function.

The mechanism design and analytical modeling are presented in Sections 2 and 3, respectively.
The simulation study is described in Section 4; the simulation evaluation revealed the promising
performance of the designed xy stage and also verified the analytical model. The difference between
those results was analyzed in detail. Moreover, a comparison study with the previous designs was
carried out and is described in Section 5. Finally, Section 6 concludes this paper.

2. Mechanism Design

Mechanism design of the proposed xy stage is presented in this section. The designed xy stage
is constructed by four basic structures, two groups of fixtures, a platform, and a base. In this work,
the stage mechanical design and decoupling mechanical design have the same structure (i.e., basic
structure), which offers convenience for manufacturing. The symmetrical structure also provides
benefits on stable and compact design. The details of the structure are presented in the following.

2.1. Basic Structure and Fixture

The basic structure is shown in Figure 1a. This structure provides a large stroke by employing
multistage compound parallelogram flexures (MCPF) [11]. As an improved design of the compound
parallelogram flexures (CPFs), the MCPF has a large range of motion, according to previous research.
MCPF meets the requirement of compactness and adapts to practical manufacturing. The range of
motion of the MCPF depends on the ranges of motion of the basic modules (CPF) and the number N
of basic modules, as shown in Figure 1b.

The basic structure in Figure 1a has two MCPFs with 1.5 basic modules. Differently from the
intuitive structure of MCPF, those two MCPFs were designed to tackle the following three issues.

(a) To make a large output platform, the MCPFs are extended horizontally. In this way, the size of
the platform can reach up to 100 × 100 mm2.
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(b) The module number N of the MCPF is not an integer. This design involves half of CPF, which
can reverse the direction of output motion. In this design, reversing the output motion direction
improves the compactness effectively. Here, 1.5 basic modules provide enough motion, as the range
of motion also depends on CPF. The ranges of motion of CPFs can be improved by using narrower
and longer leaf flexures, as there is still enough space for them. The parameters of this part will
be presented in the simulation study later. All of the motions are realized by leaf flexures of basic
structures and all basic structures are of the same design.

(c) These two MCPFs are connected with each other by leaf flexures of secondary modules, which
are designed to overcome the undesirable bending flexures. Once fixing the output end of the basic
structure, it provides a force along the y-axis. The secondary module of leaf flexures on the top bends
inward, and the secondary module leaf flexures on the bottom will bend outward. It is easy to find
that the directions of bending tendency of the two MCPFs are always contrary. Hence, the connection
can overcome the undesirable bent flexures and ensure a translational displacement.

When a torque is exerted to the basic structure, it also causes undesirable bent flexures. To tackle
this issue, fixtures and a novel assembly method are used. As per previous research on xy stages, the
structures can eliminate the torque by introducing a square-shaped frame. In this design, the square
frame is combined with two basic structures and fixtures. The fixture is shown in Figure 2a. The special
structure of the fixtures locks the two basic structures, which has favorable effect on eliminating the
torque. In this design, there are four layers of basic structures. Using the beams of MCPFs to constitute
frames for leaf flexures reduces the weight of the whole design dramatically, as compared with that
using frames directly. In this way, the assembled stroke structure for one axis is shown in Figure 2b.

(a) (b)

Figure 1. Illustrations of (a) basic structure and (b) multistage compound parallelogram flexure (MCPF)
with N modules.

(a) (b)

Figure 2. Illustrations of (a) fixture and (b) assembled stroke structure (top view).
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2.2. Platform and Base

The output platform is designed as a large hollow stage, which adapts for experimental use
under a microscope, including cell microinjection and material micromanipulation. The platform is the
output end of this design. It has 12 fixing points; four points are used for the experimental stage, four
for the x-axis stroke structure, and four for the y-axis stroke structure, as shown in Figure 3. The gaskets
over fixing points of the platform bond the x and y-axis stroke structures directly. The motions of these
two stroke structures are transmitted to the output platform, and the pure motions on x-axis and y-axis
are compounded by the platform.

The base design is shown in Figure 4. There are four fixing points to mount the design on the
experimental bench. Like the platform, the base has gaskets to bond with x and y-axis stroke structures.

(a) (b)

Figure 3. Illustrations of (a) top view and (b) overview of the platform.

Figure 4. CAD model of the base.

2.3. Stage Assembly

The assembled stage is shown in Figure 5. The base is the frame for the whole design, which
provides support to other structures. The stroke structure at the bottom is responsible for the motion
on the x-axis, while the stroke structure at the top is for the motion on the y-axis. The platform is fixed
between the two stroke structures. To present the operating principle of the stage, the four layers of
basic structures are numbered from bottom to top as 1st, 2nd, 3rd, and 4th layer, respectively. From the
rule of these serial layers, the 1st and 2nd layers constitute the x-axis stroke structure, while the 3rd
and 4th layers constitute the y-axis stroke structure. The 1st and 4th layers are connected with the
base directly, so are called stroke mechanical designs. These two layers provide the strokes relative to
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the static base. Then, the strokes are transmitted to the decoupling mechanical designs, i.e., the 2nd
and 3rd layers, by the group of fixtures. The decoupling mechanical designs are connected to the
platform, and the final motion output is given by the platform. As shown in Figure 2b, when defining
the red layer as the decoupling mechanical design and the green layer as the stroke mechanical design,
the operating principle is clear to observe. The fixed points connect the static base, the input point
connects the VCM, and the output points connect the platform; refer to Figure 5a.

(a) (b)

Figure 5. Illustrations of (a) explosive view and (b) CAD model of the assembled xy stage.

As shown in Figure 5b, the linear strokes are provided by two VCMs connecting to the decoupling
mechanical design, whose directions are orthometric to the motion direction of the MCPFs on the 2nd
and 3rd layers. As presented earlier, the beams of the two layers can be treated as a square frame.
The linear stroke on the decoupling mechanical design will be received by the stroke mechanical
design. In this way, the VCMs do not suffer from transverse displacement.

The mechanical design and operating principles have been presented in this section, and analytical
modeling is introduced in the following section.

3. Analytical Modeling

In this section, analytical modeling of the xy micropositioning stage is presented. According to
the description in mechanism design, there is only one structure, i.e., the basic structure, which is used
to realize the function of the stage. As the basic structure is constituted by MCPFs and MCPFs generate
large elastic deformation through the leaf flexures, the modeling is most relevant to the leaf flexure [11].

In previous research, the force–displacement relationship of MCPF has been given; it must be
presented in this section for the mechanism design. After considering the boundary conditions of the
deformation, the stiffness of MCPF can be determined as

KN =
Fx

xN
=

Ebh3

Nl3 (1)

where l and b denote the length and width of the leaf flexure, while h and E are the thickness and
Young’s modulus of the material, respectively.

As the total deformation of output platform on each axis is uniformly distributed on each flexure
hinge of the MCPF, the deformation of each hinge is relatively small. Therefore, the nonlinear stiffness
of MCPF under large deformation is ignored in this paper. Actually, if each flexure hinge undergoes



Actuators 2020, 9, 65 6 of 13

large deformation, the equation of equivalent stiffness Equation (1) does not hold, as the stiffness is
nonlinear. The nonlinear stiffness modeling is beyond the scope of this work.

From Equation (1), the maximum translation of one-sided design is calculated further as

xmax
N =

Fmax
x
KN

=
Nσyl2

3Eh
(2)

where σy is the yield stress of the material. From Equation (2), xmax
N is positively related to l and N,

and negatively related to h. That means that a larger length and smaller width of the leaf flexure
provide larger stroke. In practical applications, the parameters l and h are limited by the manufacturing
tolerance, while N is limited by the compactness requirement. As N increases, the size and weight
of the stage will increase dramatically, because the beam of the additional CPF becomes longer.
xmax

N also depends on the space between different modules in one MCPF, which is not expressed in
Equation (2) directly.

In this design, the module number of MCPF was chosen as N = 1.5 for illustration. Thus, the sum
of two-sided maximum translation is

dmax = 2xmax
1.5 =

σyl2

Eh
(3)

Considering safety and a practical situation, the assigned maximum translation Dmax should be
less than dmax. After confirming the range of the assigned translation, the maximum driving force Fmax

to generate the motion can be calculated accordingly.
The stiffness of the basic structure should be determined. As the structure is constituted by two

MCPFs, the stiffness of the basic structure is 2K1.5. According to the section of mechanism design,
on one axis (x or y-axis), there is one stroke mechanical design for this axis and decoupling mechanical
design for the other axis. The conditions are enough to determine the stiffness of the stage on one axis
as follows.

K =
8Ebh3

3l3 (4)

The maximum driving force occurs on one-sided maximum translation, which is half of Dmax.
Considering Equation (2), Fmax is calculated by

Fmax =
1
2

DmaxK =
4Ebh3Dmax

3l3 (5)

In this design, to provide enough driving force, the VCMs are selected to provide larger maximum
force than Fmax.

For the three most important parameters in this study, which are the maximum translation on one
side (x), safety factor (s), and resonant frequency ( f ), the equations are derived in the following.

Considering Equations (1) and (4), the equation of maximum translation on one side should be
presented as

x =
K
F
=

3l3F
8Ebh3 (6)

For the safety factor, considering Equations (1) and (2), Fmax
x satisfies the equation

Fmax
x =

σybh3

3l
(7)

which proves that F ∝ σ in this structure. The equation of s is as follows.

s =
σy

σ
=

Fmax
x
F

(8)
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Define dx and dy as the deformations on two axes, respectively. Considering the motion
decoupling of mechanical design, the mechanical system can be simplified as a two-dimensional
mass-spring system. Thus, the free motion equation (in the absence of external forces) is
shown as follows: [

m 0
0 m

] [
d2dx
dt2

d2dy
dt2

]
+

[
K 0
0 K

] [
dx

dy

]
=

[
0
0

]
(9)

where K can be calculated by Equation (4), and m is the equivalent mass of the moving block for the
stage. Then, the resonant frequency has the relationship with the parameters given below.

f =
1

2π

√
K
m

(10)

Equations (6), (8), and (10) will be used to calculate the analytical results of the design for
comparison study with the simulation results in the next section.

4. Simulation Study

The case study design of the structure parameters and a finite-element simulation study with
ANSYS software are described in this section, which verify the performance of the designed stage.

Several parameters of the xy stage have been presented in analytical modeling, which is not
sufficient to obtain an accurate result. The stage has four layers with a complex structure. and different
factors are involved which influence the result. The ANSYS Workbench provides a solid model with a
fine mesh instead of a traditional mathematical model [17]. By defining the solid model, objectives,
and constraints, a more accurate result can be obtained.

4.1. Design Variables

In this study, the leaf flexures of the basic structure were the only objectives, as the elastic
deformations only occur on them. Other structures (fixture, platform, and base) were approximately
treated as rigid bodies, whose stiffnesses are much larger than those of the leaf flexures. From
Equations (6), (8), and (10), the performance mainly depends on parameters h, l, b, and the material of
the leaf flexures. The material of the basic structure was chosen to be Al-7075, i.e., a popular flexible
material, whose mechanical properties are listed in Table 1. Considering the compactness requirement
of the design, b was set as 5 mm, which is almost the minimum value to ensure a high stiffnesses of the
beams on the basic structures. In this way, the parameters of the leaf flexures that can be used for the
case study include l and h.

Table 1. Mechanical properties of Al-7075 material.

Property Value

Density 2810 kg m−3

Young’s Modulus 71.7 GPa
Poisson’s Ratio 0.33
Bulk Modulus 70.29 GPa
Shear Modulus 26.96 GPa

Tensile Yield Strength 503 MPa
Compressive Yield Strength 503 MPa

Tensile Ultimate Strength 572 MPa
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As a result, the design objectives of the xy stage were to tune two design variables under
constraints. To enhance the performance and compactness of the stage, there were three objectives
as follows. 

Total De f ormation : Maximum(
√

2x)

Sa f ety Factor : Minimum(s)

Resonant Frequency( f )

(11)

The relationship of the variables can be summarized below.

XY Stage(x, s, f ) = f (l, h) (12)

4.2. Setup and Result of Case Study

The parameter setup is shown in the following, which are the conditions of a case design with
better performance. 

√
2x ≥ 5 mm

s ≥ 1

Maximize f

30 mm ≤ l ≤ 50 mm

0.5 mm ≤ h ≤ 0.7 mm

(13)

The conditions were selected due to the following reasons. In this study, the objectives were to
design a large-range-of-motion xy stage with a large platform. Thus, x had to be guaranteed. By setting
the maximum translation of the whole stage to be greater than or equal to 5 mm, the range of motion
of the stage could reach up to ±3.54 mm. The safety factor s was set by taking into account the
compactness requirement. As an overly high s induces structure redundancy, the initial parameter of
s was not set too high. To avoid over-constraints which cause no solution, no upper limitation for s
was set in Equations (13). In this way, the possible minimum value of s in the case study result was
adopted in this study. Another noteworthy parameter is h.

The relationships of thickness and length of the leaf flexure with x, sm and f are shown in Figure 6.
It indicates that x increases with the increase in l and decrease in h. At the same time, s and f decrease.
The change law and tendency are consistent with those of the analytical model results.

The result of the best case is indicated by l = 32 mm and h = 0.6 mm, which is the point that well
satisfies the conditions in Equations (13).

0
0.7

10

0.65 50

20

√

2
x
(m

m
)

45

30

h (mm)

0.6

l (mm)

40

40
0.55 35

0.5 30

(a)

1
0.7

2

0.65 50

3s

45

4

h (mm)

0.6

l (mm)

5

40
0.55 35

0.5 30

(b)

Figure 6. Cont.
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Figure 6. The relationships of thickness and length of the leaf flexure with (a) total deformation,
(b) safty factor, and (c) resonant frequency.

4.3. Simulation Results

The simulation results were obtained by ANSYS Workbench software. The same setup was used
for the case study. The setup is shown in Figure 7, which reveals three analysis settings. Considering
the presentation in mechanism design, the force A simulated the actuator along x-axis, while the force
B simulated the actuator on the y-axis. The forces acted on the decoupling mechanical designs of x and
y-axes, respectively. The fixing support was applied on the base.

That way, the simulation diagrams of the total deformation on x-axis, safety factor, and resonant
frequency are shown in Figures 8a,b and 9, respectively. The operating principles of the stroke
mechanical designs and decoupling mechanical designs are clearly illustrated in Figure 8a,c,d, which
indicate that the objectives of large stroke and motion decoupling were attained, as there was almost
no undesired deformation.

In addition, the setup in Figure 8c,d employs the force A and the fixing support, which is the
same setup as that in Figure 7. The result in Figure 8c shows that the influence (of employing the force
B on y-axis) was less than 0.001 mm on the x-axis deformation. The result in Figure 8d shows that the
actuator on one axis causes undesired deformation of less than 0.062 mm on the z-axis, which is far
less than the deformation on the desired axis, i.e., 3.4877 mm. The largest deformation appeared on the
platform, which was the resultant deformation of all the deformations on x and y-axes. The simulation
results confirm the fine motion decoupling property of the xy stage.

Figure 8b shows that the safety factor is large, which is especially steady on the leaf flexure.
The parameters are given in Table 2. In addition, to provide appropriate force for the deformation,
the actuators should be selected carefully. As a result, an xy micropositioning stage with a large hollow
platform can be produced. The compactness and range of motion can be ensured by the parameters,
as shown in the simulation result in Table 2.

Table 2. Simulation result of performance for the xy stage.

Parameter Value

Dimension of the stage 158 × 158 × 56.5 mm3

Dimension of the platform 100 × 100 mm2

Motion range on one axis ±3.5437 mm
Safety factor minimum 3.0993

Resonant frequency 33.657 Hz
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Figure 7. Analysis settings of finite-element simulation study.

(a) (b)

(c) (d)

Figure 8. Finite-element simulation results. (a) Total deformation on x-axis, (b) safety factor, (c) result
of motion decoupling, and (d) result of undesired deformation.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

Figure 9. (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 5th, and (f) 6th modes of resonant frequencies obtained by
finite-element simulation.

The comparison of the results from the analytical model and simulation study is shown as follows.
Considering Equation (6), if the driving forces are set to 20 N, the maximum translation on one side is
3.1746 mm. This result is approximate to the deformation result of simulation study, i.e., 3.5437 mm.
As the calculation process treated the beams on basic structures as rigid bodies, the analytical model
result was slightly smaller than the simulation result.

Under the same settings with the calculation process of the maximum translation, the calculation
result of the safety factor was 3.9297, which was obtained by Equation (8). The discrepancy may have
been caused by the larger deformation in the process of simulation.

As the volume of the moving block was 49.22 cm3, the mass m can be calculated by combining
the density shown in Table 1, which gives the value of 0.2416 kg. In this way, the analytical model
result of resonant frequency was 33.9735 Hz, which approximates to the 1st and 2nd modes of resonant
frequency of the simulation result. It indicates that the resonant frequency can be easily predicted
by the analytical model, even with extra load added. Moreover, as shown in Figure 9, the moving
directions of the 1st and 2nd modes of resonant frequency in the simulation result are consistent
with the two available moving dimensions of the proposed stage, and the value of the 3rd mode of
resonant frequency is over three times the 1st and 2nd modes of resonant frequency. It indicates that
the proposed stage exhibits a stable motion performance.

5. Comparison Study

The comparison among the performances of this design and previous designs using VCM drives
is shown in Table 3. Differently from the previous studies, the proposed design has a hollow platform,
which provides convenience to pass light though samples on the platform. Therefore, it is more
suitable to be used along with a microscope. Meanwhile, the larger size caused by the hollow platform
is acceptable since there is a 95 × 95 mm2 hollow area. Moreover, as compared with the previous work,
the range of motion on one axis is smaller and the resonant frequency is larger. Since the maximum
actuation force of this work is much lower and the minimum safety factor is much larger than the
required values, it can further improve the range of motion at the cost of increasing the maximum
actuation force and decreasing the minimum safety factor if a larger range of motion is required.
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Table 3. Performance comparison versus the previous xy stages with voice coil motor (VCM) driving.

Proposed Stage Xu [11] Liu et al. [15]

Dimension 158 × 158 mm2 120 × 120 mm2 133 × 133 mm2

Platform Hollow (95 × 95 mm2) Solid Solid
Maximum actuation force on one axis 20 N 117 N 90 N

Motion range on one axis 7.0873 mm 11.7050 mm 20 mm
Minimum safety factor 3.0006 2.2 1.25

Resonant frequency 36.518 Hz 29.45 Hz 34.385 Hz

6. Conclusions

An xy flexure micropositioning stage with a large hollow platform has been presented in this
work, which has a parallel-kinematic structure and is actuated by two VCMs. The proposed stage
has four layers of structure, which greatly reduces the dimensions on the xy plane. By separating
the stroke mechanical design and decoupling mechanical design, it provides convenience for further
experimental study and potential commercial use. The simulation result showed that the hollow of the
platform reaches up to 95 × 95 mm2 and the range of motion reaches up to 7.0873 × 7.0873 mm2. The
large hollow platform, large range of motion, and compact structure of the design ensure that it can be
used directly in practical applications with a microscope. Moreover, the novel structure, which takes
full advantage of MCPF beams, is able to reduce the weight, increase the frequency, and save space
for the design effectively. Considering Table 3, the range of motion can be further improved, as the
maximum actuation force is obviously smaller than in previous designs. This design has advantages
on integrated performance of compactness, decoupling, range of motion, safety factor, and natural
frequency as compared with previous designs. In the future work, an experimental study of the xy
stage will be produced. This design which has better performance and is better at adapting to practical
manufacturing will be confirmed by optimization, and the parameters of the design will be verified by
experiments in practice.
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