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Abstract: This paper proposes an improved version of the play model for capturing the
frequency-dependent hysteresis of a bimorph piezoelectric actuator that includes odd harmonic
oscillation and interleaved hysteresis. The proposed model used a single mathematical structure to
capture the changes in the actuator response observed with the increase in the input signal frequency.
The refinements on the structure of the original play model for capturing the peculiar behavior of the
bimorph piezoelectric actuator have been addressed in detail. The parameter identification has been
conducted extensively for a range of 1 Hz to 110 Hz, which exceeds the resonance frequency specified
by the manufacturer of the actuator. Improved modeling accuracy was confirmed as compared
with our previous enhanced Bouc–Wen model based on the calculation of the fitness index. We also
attempted to synthesize a hysteresis compensator based on direct inverse multiplication; the results
of the experimental validation of the proposed control system are disclosed.

Keywords: hysteresis modeling; play model; frequency dependent hysteresis; interleaved hysteresis;
odd harmonic oscillation; hysteresis compensation; direct inverse multiplication

1. Introduction

Piezoelectric actuators are one of the new-generation actuators that function on the principle
referred to as the inverse piezoelectric effect. They have been attracting great attention both
from researchers and the practitioners for decades owing to their attractive features, such as high
positioning resolution and rapid response. A comparative example of the new-generation actuator
is the magnetostrictive actuator [1]. Magnetostrictive actuator utilizes a material which exhibits
magnetostriction-physical phenomenon of certain material that shows elastic deformation under
magnetic field. Both piezoelectric and magnetostrictive materials exhibit inverse phenomenon,
and they can be used not only as actuators but also as sensors. Piezoelectric actuators tend to
be used in small size applications whereas the magnetostrictive actuators can be applied to large
scale target in which kW order output is necessary. Both exhibit similar mechanical characteristics
if their sizes are similar. Piezoelectric actuator is basically a source of linear vibration whereas
magnetostrictive actuators can also be used as a power source of planar motion. Recent literature
revealed that piezoelectricity was found in organic biomaterials [2] that were successfully applied to
several biomedical devices.
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Many applications of the piezoelectric actuators can be found in recent literature. Stefanski et al. [3]
used the piezo stack ring actuator to control hydraulic valves. Liu and Guo [4] applied a stack type
piezoelectric actuator for the position control of laser focusing equipment. Piezo bimorph actuators
were successfully implemented in the field of micro-manipulation. El-Sayed et al. [5] developed a
micro-gripper using a piezo bimorph actuator and evaluated its characteristics both theoretically and
experimentally. Jain et al. [6] developed a mobile micro-manipulation system for peg-in-hole assembly
in which a compliant piezoelectric actuator was used. They demonstrated that the developed gripper
could perform the assigned task. However, they also pointed out that the transient motion paths of the
actuator for obtaining the desired strain for manipulation differed depending on the driving voltage
history determined by the PD feedback control law. The observed phenomenon was caused by the
hysteresis nonlinearity of the piezoelectric actuator. The tracking accuracy would severely deteriorate
unless the hysteresis was properly compensated.

Significant efforts have been devoted to the mathematical modeling and hysteresis compensation
for piezoelectric actuators. Historically, hysteresis nonlinearity has been treated as an uncertainty of a
nominal linear element, and several robust control techniques have been applied. Tsai and Chen [7]
applied the H∞ control to compensate for the uncertainty. Alternative and intensively studied
approaches in the literature include the usage of phenomenological hysteresis models [8].
Examples include the Prandtl–Ishlinskii (PI) model [9], the Preisach model [10], the play and stop
models [11,12], the Bouc–Wen model [13], and the Duhem model [14]. These phenomenological models
are able to capture hysteretic behaviors accurately. The use of these models for the compensation of
hysteresis generally requires the calculation of their inverse hysteresis models, and the results are used
as feed-forward controllers for the actuator.

Real-world piezoelectric actuators exhibit rate/frequency-dependent hysteresis. The inverse
hysteresis model solution for the compensation of hysteresis nonlinearity requires the development
of rate/frequency-dependent hysteresis models. Al Janaideh et al. [15] introduced a rate-dependent
threshold in the play operator in their PI model to capture the increased dominance of the hysteretic
behavior on the increase of driving velocity or frequency. Yang et al. [9,16] introduced the envelope
function to the play operator of the PI model to capture the increasing amplitude of the hysteresis
loop, as the frequency of the driving signal increases. Xiao and Li [10] proposed the modified inverse
Preisach model that uses the weighted sum of the distribution functions, each of which is identified by
a pure sinusoidal input for compensating frequency-dependent hysteresis.

We have been working for several years on the modeling and compensation of
frequency-dependent hysteresis of the bimorph piezoelectric actuator (PZBA-00030, FDK Co., Tokyo,
Japan) shown in Figure 1. Its bandwidth is comparably lower than that of stack type piezoelectric
actuators. However, it exhibits very complex frequency-dependent hysteresis in its response,
which captivated our interest. There are several driving frequencies whose responses include large
odd harmonic oscillation. It even shows the interleaved hysteresis in which both clockwise and
counterclockwise loops are included in a single period of response at some driving frequency.

Li et al. [17] stated that the odd harmonic oscillation of a piezoelectric actuator is caused by the
hysteresis nonlinearity. They regarded the odd harmonic component of the response as a disturbance
and synthesized a repetitive controller for its attenuation. We previously proposed an enhanced
Bouc–Wen model for capturing odd harmonic oscillation induced by a pure sinusoidal input at
some driving frequency and proposed a corresponding compensator [13] based on the direct inverse
multiplication proposed by Rakotondrabe [18].
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Figure 1. The piezoelectric bimorph actuator PZBA-00030.

Regarding the interleaved hysteresis, Alatawneh and Pillay [19] recently showed that interleaved
hysteresis could be captured by the Preisach model by relaxing certain constraints in its distribution
function. To the best of our knowledge, only a few results exist on the modeling of interleaved
hysteresis, but no result disclosing its compensation methods can be found in the literature.

We recently reported a phenomenological model of hysteresis for the bimorph actuator that covers
(a) hysteretic behavior including odd harmonic oscillation at a lower frequency range, (b) interleaved
hysteresis over its mechanical resonance, and (c) highly asymmetric large hysteresis loop at much
higher frequencies with a single mathematical structure [20]. However, we have not evaluated the
use of the proposed model for hysteresis compensation. This fact motivates our current research,
which attempts to synthesize a hysteresis compensator using the modified version of our model in [20].

The present article proposes a phenomenological hysteresis model for the bimorph piezoelectric
actuator based on the modified play model; its use in the compensation of hysteresis that can be
observed over the available bandwidth (1–110 Hz) of the actuator. The modified play model which
captures frequency-dependent hysteresis is proposed in Section 2. The development of the model
for the refined treatment of the interleaved hysteresis, and odd harmonic oscillation is continued in
Section 3. The compensator design based on the developed model is explained in Section 4. The results
of the experiments for evaluating the modeling accuracy and hysteresis compensation performance
is reported in Section 5. The summarizing conclusion, along with some future work implications,
is given in Section 6.

2. Hysteresis Modeling with the Play Model

2.1. Play Model

The classical play model is a form of phenomenological model of hysteresis. It defines a hysteretic
relation between the input and the output signal sequences by using the superposition of the shape
function f (prp [u(t)], rp). The output of the model is defined by

P[u(t)] =
∫ umax

0
f (prp [u(t)], rp)drp, (1)

where u(t) is the input sequence. rp ∈ [0, umax] is the parameter that limits the width of the play
operator prp . The output of prp is defined by

prp [u(t)] = max{min{q, u(t) + rp}, u(t)− rp} (2)

(tk < t < tk+1, k = 0, 1, · · · ),
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where q = prp [u(tk)] is the output of the play operator to the input u(tk). The behavior of the play
operator is illustrated in Figure 2. The shape function f (prp [u(t)], rp) in Equation (1) is defined by

f (prp [u(t)], rp) =
∫ umax−rp

−umax+rp
σ(p, rp)xp(prp [u(t)], p, rp)dp, (3)

where σ(p, rp) is a distribution function, and xp(prp [u(t)], p, rp) is defined by [21]

xp(prp [u(t)], p, rp) =
prp [u(t)]− p

umax − rp
. (4)

If we assume σ(p, rp) > 0 for all possible p and rp, the play model produces a counterclockwise
hysteresis loop. Alatawneh and Pillay recently proposed a PI model and a Preisach model that can
capture the interleaved hysteresis by removing the sign assumption on the distribution function.
We followed their approach and removed the assumption σ(p, rp) > 0 (∀p, rp) from our model in
the calculation.

Figure 2. The play operator prp .

2.2. Modification of the Play Model for Frequency Dependent Hysteresis

The hysteresis loop of piezoelectric actuators tends to be large and round, as the frequency of the
driving signal increases. This phenomenon is referred to as the frequency-dependent hysteresis [22].
For introducing frequency dependence to the play model, we modified the play operator defined by
Equation (2) by

prp [u(t)] = max{min{q, hr(u(t), u̇(t)) + rp}, hl(u(t), u̇(t))− rp}, (5)

where hr(u(t), u̇(t)), and hl(u(t), u̇(t)) are the envelope function defined by [16]

hr(u(t), u̇(t)) =u(t) + β|u̇(t)| (6)

hl(u(t), u̇(t)) =u(t)− α|u̇(t)|. (7)

α and β are the positive constants to be identified. When the input is increasing(decreasing), hl(hr) is
used for calculation. These envelope functions attenuate the change of the output of the play operator
when the rate |u̇| is large. Therefore, they contribute to the increase in the hysteresis nonlinearity.
The asymmetricity of a hysteresis loop about the origin of the input/output plane could be introduced
to the model if we set α 6= β. We used this modified play operator for the remaining development of
the model and the controller.
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2.3. Discretization of the Play Model

The play model is discretized for facilitating digital computer implementation. Let dt denote
the sampling interval and let k be the discrete time step index indicating the current time t = kdt.
The current input u(t) is denoted by u[k] in the discrete time representation. The discretized p− rp

plane is shown in Figure 3. Two principle axes variables p and rp are discretized by

rpi = i · umax

N
(i = 0, 1, · · · , N − 1)

pi,j = (2j− N + 1 + i)
umax − rpi

N − i
(j = 0, · · · , N − 1− i),

where i and j are the indices shown in the figure and N is the number of divisions of these variables.
We used N = 10 throughout the study. Let xp a vector defined by

xp =
[
xp(prp0

[u[k]], p0,0, rp0), · · · , xp(prp0
[u[k]], p0,N−1, rp0)︸ ︷︷ ︸

i=0

,

· · · , xp(prpi
[u[k]], pi,0, rpi ), · · · , xp(prpi

[u[k]], pi,N−1−i, rpi )︸ ︷︷ ︸
i

,

· · · , xp(prpN−1
[u[k]], pN−1,0, rpN−1)︸ ︷︷ ︸

i=N−1

]T (8)

which amounts to xp(prp0
[u[k]], p0,0, rp0) in Equation (3), and let ω(pi,j, rpi ) be the new distribution

function for the discretized play model defined by

ω(pi,j, rpi ) = σ(pi,j, rpi ) ·
2(umax − rpi )

N − i
· umax

N
(9)

= ωi,j.

The output of the classical play model can be calculated accordingly by

P[u[k]] =
N−1

∑
i=0

N−1−i

∑
j=0

ωi,j · xp(prpi
[u[k]], pi,j, rpi )

4
= ωT xp, (10)

where ω represents an array of ω(pi,j, rpi ) arranged in a suitable order.

Figure 3. Discretizing the domain of integration of the play model.

Subsequently, we discretized the modified play model which incorporates frequency dependence.
We began from the case when the input u decreases over the threshold and so does the output of the
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play operator. The play operator defined by Equation (5) takes the value prp = hr(u, u̇) + rpi in this
case. Introducing Equation (5) to Equation (4), we have

xp(prp [u[k]], pi,j, rpi ) =
u[k] + rpi − pi,j

umax − rpi

+ β
|u[k + 1]− u[k]|
dt(umax − rpi )

,

if we calculate u̇[t] by (u[k+ 1]− u[k])/dt. The output of the modified play model can be formulated by

P[u[k]] =
N−1

∑
i=0

N−1−i

∑
j=0

ωi,j

(u[k] + rpi − pi,j

umax − rpi

+ β
|u[k + 1]− u[k]|
dt(umax − rpi )

)
' ω̄T x̄p, (11)

where ω̄, and x̄p are defined by

x̄p =

[
xT

p ,
N−1

∑
i=0

N−1−i

∑
j=0

ωi,j|t=(k−1)dt
|u[k + 1]− u[k]|
dt(umax − rpi )

]T

(12)

and

ω̄ = [ωT , β]T , (13)

respectively. We noted that the final expression of Equation (11) is not strictly identical to its previous
expression. This can be attributed to the bilinear term ωi,jβ in the first expression of Equation (11).
We used the previous time step values of ωi,j in Equation (12) to have a linearly parameterized
form of P[u[k]], which is suitable for parameter identification. The case where u increases over the
threshold can be treated in a similar manner as done in the calculation for the decreasing input.
The rate/frequency-dependent play model is finally formulated as

P[u[k]] = XTθ, (14)

where X and θ are defined to be

X = [xT
p , xα, xβ]

T (15)

and

θ = [ωT , α, β]T , (16)

respectively. xα and xβ in Equation (15) are given by

xα = ∑
i,j

ωi,j|t=(k−1)dt
−|u[k + 1]− u[k]|

dt(umax − rpi )
,

and

xβ = ∑̃
i,j

ωĩ,j|t=(k−1)dt
|u[k + 1]− u[k]|
dt(umax − rpĩ

)
(i 6= ĩ),

respectively.
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3. Modification of the Play Model to Capture Frequency Dependent Hysteresis

3.1. Modification of the Model Structure to Capture Structural Behavior

The measured results of the gain-frequency characteristics of the target bimorph actuator
PZBA-00030 illustrated in Figure 1 are summarized in Figure 4. The gain in this plot is defined
by ‖y‖∞/‖u‖∞, where u denotes the pure sinusoidal input and y represents its corresponding
output sequence.

Figure 4. Gain-frequency characteristics of the target bimorph actuator.

It is natural to infer that the bimorph piezoelectric actuator exhibits structural oscillation property,
as its mechanical structure can be regarded as a thin cantilever. The mechanical resonance of the
target actuator exists at around 70 Hz, as shown in Figure 4. We can also observe the difference in the
amplitude of the actuator responses to 1 and 30 Hz inputs in Figure 5. It shows that the 30 Hz output
exhibits phase lag to the input, whereas the 1 Hz output does not. Additional observations of the
frequency responses of the actuator motivates the introduction of the infinite impulse response (IIR)
filter structure between the input and the output that results in the algebraic structure of the model
determined by

ŷ[k] = P[u[k]] + c1ŷ[k− 1] + c2ŷ[k− 2] + c3ŷ[k− 3], (17)

where ci (i = 1, 2, 3) are the filter coefficients that are to be identified. We choose the 3rd order IIR
structure, as the observed phase lag exceeds 180◦ at high frequencies.

(a) 1 Hz input and its response (b) 30 Hz input and its response

Figure 5. Time domain responses of the actuator for 1 and 30 Hz sinusoidal driving inputs.

However, four hysteresis loops around the resonance frequency, as shown in Figure 6 reveal that
Equation (17) is not sufficient to capture the behavior. Four hysteresis loops shown in the figure are all
counterclockwise. A drastic change in the phase characteristics of the actuator output is observed only
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over a 3 Hz increment of the input frequency. We introduced an additional term A1u[k] proposed by
Song et al. [23] with their Preisach model to capture the change of characteristics observed in Figure 6.
The output of our model at its current phase is described by

ŷ[k] = P[u[k]] + A1u[k] + c1ŷ[k− 1] + c2ŷ[k− 2] + c3ŷ[k− 3], (18)

where A1 is also a model parameter to be identified.

(a) 68 Hz (b) 69 Hz (c) 70 Hz (d) 71 Hz

Figure 6. Four hysteresis loops observed around the resonance frequency.

3.2. Further Change of the Model Structure to Capture Odd Harmonic Oscillation

Previously, we have reported the existence of odd-harmonic responses in our bimorph actuator at
some specific input frequencies [13]. The examples of hysteresis loops distorted by the odd harmonic
oscillation are shown in Figure 7.

(a) Hysteresis loop at 24 Hz (b) Hysteresis loop at 25 Hz

Figure 7. Twisted hysteresis loop because of the odd harmonic oscillation included in the response of
the actuator.

We empirically understand that the odd harmonic response will be large enough to distort the
hysteresis loop when the odd multiple of the input frequency matches the mechanical resonance of the
actuator; the results of frequency analysis of actuator responses summarized in Figure 8 supported our
thoughts. It is true that the odd harmonic responses might be observed in all excitation frequencies,
as illustrated in Figure 8b. Whether the odd harmonic component could be large enough to affect
the output, depends on the matching between the odd multiple of the input frequency and the
resonance frequency.

The third harmonic component of the response to the 25 Hz input has a large power, which
is approximately 1/8 as large as the main 25 Hz spectrum. The third harmonic response to the
35 Hz input, on the other hand, has less than 1/100 amplitude as compared to the 35 Hz component.
The existence of both the third and the fifth harmonic components in the response to 15 Hz input is
shown in Figure 8c. However, the fifth harmonic component is almost twice as large as the third one,
as the fifth harmonic closely matches the resonance frequency.
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We further altered the structure of the model to capture odd harmonic response of the actuator.
Its current form is described by

ŷ[k] = P[u[k]] + A1u[k] + c1ŷ[k− 1] + c2ŷ[k− 2] + c3ŷ[k− 3]

+ (A11u[k− 1] + A31u3[k− 1] + A51u5[k− 1]) sin(2π f (k− 1)dt)

+ (A12u[k− 1] + A32u3[k− 1] + A52u5[k− 1]) cos(2π f (k− 1)dt), (19)

where Ai1 and Ai2 (i = 1, 3, 5) are the model parameters to be identified. The third and the fifth power
of u[k− 1] are motivated to introduce the third and the fifth harmonic of the input. The coefficients
A31, A32, A51, and A52 limit the magnitude of the odd harmonic components.

(a) FFT result of 25 Hz response (b) FFT result of 35 Hz response

(c) FFT result of the 15 Hz response

Figure 8. Results of Fast Fourier Transform (FFT) analyses of the response to three different
driving frequencies.

3.3. Structural Modification of the Model to Capture Interleaved Hysteresis

This section explains the structural modification of the proposed frequency-dependent play
model for capturing behaviors, which are observed at frequencies higher than the resonance frequency.
It is motivated by the hysteresis loops illustrated in Figure 9 corresponding to the 80 and 95 Hz
input frequencies.

The hysteresis loop shown in Figure 9a is referred to as the interleaved hysteresis in which
both clockwise and counterclockwise loops co-exist in a single hysteresis loop. The hysteresis loops
observed at frequencies higher than the one which incurs the interleaved hysteresis typically look like
the one shown in Figure 9b. It is a clockwise loop, which is highly asymmetric about the origin of
the input/output plane. The black line in the plot connects the outputs corresponding to the positive
and the negative peaks of the input, whereas the orange curve goes through the middle points of the
actuator outputs corresponding to the same input value.
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The fact that the black line and orange curve do not match indicates that the term A1u[k]
initially introduced in Equation (18) is no longer valid. We heuristically modified the term A1u[k] to
(A1 + gŷ[k− 1])u[k] to capture the behaviors shown in Figure 9. The proposed frequency-dependent
play model that captures both the odd harmonic oscillation and the interleaved hysteresis is now
determined. Its final form is given by

ŷ[k] = P[u[k]] + (gŷ[k− 1])u[k] + c1ŷ[k− 1] + c2ŷ[k− 2] + c3ŷ[k− 3]

+ (A11u[k] + A31u3[k] + A51u5[k]) sin(2π f (k− 1)dt)

+ (A12u[k] + A32u3[k] + A52u5[k]) cos(2π f (k− 1)dt). (20)

(a) Hysteresis loop at 80 Hz (b) Hysteresis loop at 95 Hz

Figure 9. Peculiar hysteresis loops observed at frequencies higher than the resonance frequency.

4. Controller Design for Hysteresis Compensation

4.1. Synthesis of Control Input

We applied the direct inverse multiplication algorithm proposed by Rakotondrabe [18] to derive
the controller using the proposed play model. We started from the synthesis of the control input for
hysteresis compensation based on the Preisach model [24]

F[u(t)] =
∫ umax

0

∫ umax−rp

−umax+rp
σ(p, rp)γp+rp ,p−rp [u(t)]dpdrp. (21)

Let a point Q depicted in Figure 10 be the positive-negative boundary of the magnetization along
with a line rp = r in (p, rp) plane. Then the relay operator takes the distributed values, as specified by

γp+rp ,p−rp [u(t)] =

{
1, −umax + r ≤ p ≤ qr

−1, qr ≤ p ≤ umax − r
. (22)

A special case occurs when r = 0 and no hysteretic behavior is observed on the change of the
input u[k]. The calculation of Equation (21) can be divided into

F[u(t)] = Γr=0 + Γr>0, (23)

where Γr=0 corresponds to the portion of the output, which is immediately affected by the change in
input, and Γr>0 describes the remaining portion in which the input will affect the output after going
through the hysteron.



Actuators 2020, 9, 36 11 of 20

If we assume the existence of an invertible function defined by λ =
∫

σ(p, 0)dp, Γr=0 can be
calculated by

Γr=0 =
∫ u(t)

−umax
σ(p, 0)dp−

∫ umax

u(t)
σ(p, 0)dp

= 2λ(u(t))− (λ(−umax) + λ(umax)), (24)

taking the value distribution specified by Equation (22) into consideration.
From Equation (23), the output of the Preisach model is determined by

F[u(t)] = 2λ(u(t)) + G (25)

G = Γr>0 − δ, δ = λ(−umax) + λ(umax). (26)

Assumption on the invertibility of λ allows us to calculate the control input which cancels out the
hysteretic behavior by

ucomp(t) = λ−1
(

yd − G
2

)
, (27)

where yd(t) denotes the reference output trajectory.

4.2. DIM Controller Synthesis Based on the Proposed Play Model

The same logical development for deriving the mathematical expression of F[u(t)] in Equation (23)
is applicable for the play model, provided that the parameters of the play model are appropriately
identified so that P[u(t)] = F[u(t)] holds for a given input sequence u(t). We have

P[u(t)] =
∫ umax

0

∫ umax−rp

−umax+rp
σ(p, rp)xp(prp [u(t)], p, rp)dpdrp (28)

= Γr=0 + Γr>0,

where Γr=0 denotes the portion of the output of the play model immediately affected by the input. It is
known that the relation

prp [u(t)] =
1
2

∫ umax−rp

−umax+rp
γp+rp ,p−rp [u(t)]dp (29)

holds between the relay operator γp+rp ,p−rp and the play operator prp [u(t)] [21]. Upon evaluating the
integral of the right-hand side of Equation (29) along the line depicted in Figure 10, we have

prp [u(t)] =
1
2

∫ umax−rp

−umax+rp
γp+rp ,p−rp [u(t)]dp =

1
2

{∫ qr

−umax+rp
dp−

∫ umax−rp

qr
dp
}

= qr. (30)

We can evaluate the output of the play operator qr further when r = rp = 0, to have the equation

qr = prp [u(t)]|rp=0 = u(t),

where the final equality comes from the definition Equation (2). Therefore, the Γr=0 portion of the
output can be calculated in a similar manner as applicable to the derivation of Equation (24). If we
assume that σ(p, 0) = a is a constant, we have

λ(u(t)) = au(t), and λ−1(u(t)) =
u(t)

a
.
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The entire amount of the output of the play model defined in Equation (28) can be calculated
accordingly to be

P[u(t)] = 2λ(u(t)) + Γr>0 − δ

= 2au(t) + Γr>0, (31)

as δ = λ(−umax) + λ(umax) = 0 holds in this case. The remaining Γr>0 is calculated by

Γr>0 =
∫ umax

0

∫ umax−rp

−umax+rp
σ(p, rp)xp(prp [u(t)], p, rp)dpdrp|rp>0

= P[u(t)]|rp>0. (32)

The calculation of Equation (32) amounts to the weighted summation of the distribution function
over the region painted in pale green in Figure 11 in the discretized implementation of the play model.
The same algebraic expression as the one given in Equation (10) can be used to determine the output
while excluding the case i = 0.

Figure 10. Magnetization boundary Q on a line rp = r.

Let H[u[k]] denote the value defined by

H[u[k]] = P[u[k]]|rpi>0 =
N−1

∑
i=1

N−1−i

∑
j=0

ω(pi,j, rpi )xp(prp [u[k]], pi,j, rpi ),

then the output of the play model is given by

P[u[k]] = 2au[k] + H[u[k]]. (33)

Here we must include the number of modifications we have made in the previous section to
capture the behavior of the bimorph actuator in the previous expression of the output (33). The final
form of the proposed model which determines the output displacement of the actuator is given by

ŷ[k] = 2au[k] + H[u[k]] + A1u[k] + gŷ[k− 1]u[k− 1]

+ c1ŷ[k− 1] + c2ŷ[k− 2] + c3ŷ[k− 3]

+ (A11u[k− 1] + A31u3[k− 1] + A51u5[k− 1]) sin(2π f (k− 1)dt)

+ (A12u[k− 1] + A32u3[k− 1] + A52u5[k− 1]) cos(2π f (k− 1)dt),

= 2Au[k] + Ĥ[u[k]], (34)
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where Ĥ[u[k]] and A represent

Ĥ[u[k]] = H[u[k]] + gŷ[k− 1]u[k− 1]

+ (A11u[k− 1] + A31u3[k− 1] + A51u5[k− 1]) sin(2π f (k− 1)dt)

+ (A12u[k− 1] + A32u3[k− 1] + A52u5[k− 1]) cos(2π f (k− 1)dt), (35)

and

2A = 2a + A1, (36)

respectively. We intentionally altered the term gŷ[k − 1]u[k], included in the proposed model
in Equation (20), to gŷ[k − 1]u[k − 1], to increase numerical stability of the calculation of u[k] to
compensate the hysteresis. The control input signal ucomp[k] is synthesized to be

ucomp[k] = λ−1

(
yd[k]− Ĥ[ucomp[·]]

2

)

=
yd[k]− Ĥ[ucomp[·]]

2A
. (37)

We note that the calculation of the term Ĥ[ucomp[·]] requires the past sequence of the compensating
inputs ucomp[] without using the current ucomp[k].

Figure 11. Illustrating the region corresponding to r > 0 in (p, rp) plane.

5. Experiments

5.1. Experimental Apparatus

The experimental apparatus used in this study is shown in Figure 12. The piezoelectric actuator
is controlled in real-time by a digital signal processor system with embedded peripherals (sBOX II,
MIS Co., Tokyo, Japan). The piezo driver (As-904-150B, NF Co., Yokohama, Japan) receives the
analog command voltage signal from sBOX which varies within ±5 V and amplifies it to maximally
±75 V to drive the actuator. One end of the actuator was clamped firmly as shown in Figure 12.
When a sinusoidal input signal was fed to the piezo driver, the actuator bends left and right to exhibit
swing oscillation. The displacement of the tip of the actuator is measured by the capacitance type
displacement sensor (M-2213, MESS-TEK Co., Saitama, Japan) with the sensor probe (TRA2025-2K-V1,
MESS-TEK Co., Saitama, Japan). The measurement resolution of this probe is specified to be 20 nm by
the manufacturer. We have measured the tip displacement because the largest displacement can be
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expected at the tip in our driving frequency range and high signal to noise measurement during the
experiment can be expected.

Figure 12. The experimental apparatus.

5.2. Identification Experiment

We have conducted the parameter identification experiment of the proposed model and evaluated
the fitness of the model using the determined parameters. The input to the actuator was a pure sinusoid

u[k] = sin(2π f (k− 1)dt), (38)

where f Hz was the frequency of the signal, dt = 0.2 ms was a sampling interval of the measurement,
and k denoted the sampling number. We altered f from 1 to 110 Hz with 1 Hz increments. We measured
the response of the actuator for 100 s for a single frequency, and calculated the parameters of the
proposed model in Equation (34)

θ = [A ωT |ri>0 g c1 c2 c3 A11 A12 A31 A32 A51 A52] (39)

with the recursive least square algorithm. We have calculated the root mean squared error (RMSE)
between the actuator displacement and the model output defined by

RMSE =

√√√√√m−1

∑
k=0

(ŷ[k]− y[k])2

m
(40)

to evaluate the fitting accuracy of the proposed model. We have also identified the enhanced
Bouc–Wen model that we previously proposed [13] and the truncated version of our proposed model
in Equation (34) in which the term gŷ[k− 1]u[k− 1] is removed for comparison.

The RMSE metrics of the three models for the tested frequencies are summarized in Figure 13.
It can be seen from the figure that the proposed model exhibited the smallest RMSEs for all 110 frequencies
tested. Its advantage is relevant at frequencies higher or equal to the mechanical resonance frequencies,
where remarkable changes on the actuator responses are observed. However, the RMSE indices of the
proposed model increased significantly between 70 and 80 Hz, as the magnitude of the responses at
these frequencies were comparably larger than the others.

We calculated the fitting rate for evaluating the accuracy of the model without being affected by
the magnitude of the response. It was defined by
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Fitting =

1−

√√√√m−1

∑
k=0

(ŷ[k]− y[k])2

√√√√m−1

∑
k=0

(ŷ[k]− ȳ)2

× 100[%], (41)

where ȳ was the average output of the actuator displacement calculated over the available
measurements for the frequency of interest. The result of the calculation was given in Figure 14.
The proposed model showed the best fit for the three models tested. The loss of fitting of the proposed
model around the mechanical resonance amounted to 3% at its maximum. However, the Figure 15c,d
show that the model captured the peculiar hysteresis loops inside the range of frequencies.

Figure 13. RMSE metrics of the three models tested.

Figure 14. Fitting rates of the three models tested.

(a) 25 Hz
Hysteresis
loop

(b) 30 Hz
Hysteresis
loop

(c) 70 Hz
Hysteresis
loop

(d) 90 Hz
Hysteresis
loop

Figure 15. The simulation results of the proposed identified model for four different input frequencies.
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5.3. Hysteresis Compensation Experiment

We conducted the hysteresis compensation experiment. We used the identified parameters of
the proposed model to synthesize the control input sequence defined by Equation (37), where the
reference displacement trajectory in mm unit is defined to be

yd = 0.05 sin(2π f (k− 1)dt). (42)

Although we have carrid out the identification experiment of the enhanced Bouc–Wen model,
we have decided not to synthesize the corresponding controller to avoid damage to the sensing probe
during the compensation experiment, as the identified enhanced Bouc–Wen model exhibited very
large errors around the mechanical resonance frequency.

We proceeded the experiment with the proposed model and the truncated model in which the
term gy[k− 1]u[k− 1] was removed from the proposed model. We have calculated 110 sets of identified
parameters for the proposed model, which correspond to the reference frequency f from 1 to 110 Hz
with an increment of 1 Hz. We also identified the parameters of the truncated model for 75–90 Hz inputs
for comparison. We then moved on to the compensation experiment using the control law derived in
the previous section. We performed 110 experiments while altering the reference frequency with the
proposed model. We additionally conducted a compensation experiment with the truncated model for
75–90 Hz inputs to observe the performance of the degraded controller in that frequency range.

We calculated the root mean squared tracking error between the reference trajectory yd and the
actuator response y. The simulation results of the hysteresis compensation are shown in Figure 16,
whereas the experimentally obtained metrics are summarized in Figure 17. In both figures, the plot (a)
covered all the tested frequency, whereas the plot (b) showed the comparison between the results with
the proposed model (plotted with blue), and the results with the truncated model (plotted with green).

Tracking performance degradation has been observed at the frequencies 23–27 Hz, and around
and beyond the mechanical resonance. However, Figures 16 and 17b provide evidence to infer that the
term gy[k− 1]u[k− 1] worked as expected for attenuating the peculiar hysteretic behavior including
the interleaved hysteresis at high frequencies.

The apparent cause of performance degradation exhibited in these two figures can be attributed
to the mis-compensation of odd-harmonic oscillation and the very large structural oscillation.
The time-domain plots of the reference and the measured actuator response at f = 25 Hz are shown in
Figure 18a. We have performed the FFT analyses on the output sequence at f = 25 Hz and the results
are shown in Figure 19. The power of the 75 Hz element of the output was twice as large as that of the
25 Hz element. It seems that the compensating signal ucomp failed to generate 180◦ out of phase signal
of the source of odd-harmonic oscillation.

(a) RMSE summary of the
tracking simulation

(b) Comparison between the
proposed model and the
truncated model

Figure 16. RMSE plots of hysteresis simulation.
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(a) RMSE summary of
hysteresis compensation
experiment

(b) Comparison between the
proposed model and the
truncated model

Figure 17. Results of the hysteresis compensation experiment.

(a) 25 Hz (b) 30 Hz

(c) 60 Hz (d) 90 Hz

Figure 18. Time domain plots of the reference and the corresponding actuator displacement.

Further discussion is possible on the fail of attenuation of odd-harmonic oscillation. Equations (37)
and (35) explain that the strategy to attenuate the odd-harmonic oscillation in our DIM controller is to
cancel out the source of the odd-harmonic oscillation as characterized by the terms in Equation (35)
including the parameters A31, A32, A51, and A52. Inside the DIM controller synthesized for 25 Hz
reference motion, we used these four parameters identified with the 25 Hz pure sinusoidal input.
When we do the compensation experiment, the signal which drives the piezoelectric actuator was the
ucomp[k] plotted in Figure 20.
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Figure 19. Result of FFT analysis on the output signal of the response for 25 Hz reference.

It is clear from the figure that this ucomp[k] is intrinsically different from the pure sinusoidal signal.
Empirically speaking, we have to expect different identified values of A31, A32, A51, and A52 when they
were identified with a signal different from a 25 Hz pure sinusoid. We have to conclude accordingly
that the parameters A31, A32, A51, and A52 identified in the experiment as we detailed in Section 5.2 are
no longer valid to cancel out the source of odd-harmonics. There can be cases where the odd-harmonic
oscillation is not attenuated but magnified in the present situation, which was evidenced by the FFT
analysis shown in Figure 19.

Figure 20. Control input ucomp[k] (“Comp-out” in the legend) and the reference yd[k] whose frequency
is 25 Hz.

6. Conclusions

This paper proposed a modified play model that can capture peculiar frequency-dependent
hysteretic behaviors, including the odd harmonic oscillation and interleaved hysteresis. A hysteresis
compensator design based on the direct inverse multiplication algorithm using the proposed model
has also been addressed. The experimental results showed that the modeling accuracy of the
proposed model greatly improved as compared to our enhanced Bouc–Wen model identified for
the same bimorph piezoelectric actuator. We also attempted the hysteresis compensation experiment,
and the result revealed the necessity for additional work to be carried out at the frequencies where
the odd-harmonic oscillation and structural resonance dominates the behavior of the bimorph
piezoelectric actuator.
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