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Abstract: As a key enabler for future aviation technology, the use of servo electromechanical actuation
offers new opportunities to transition innovative structural concepts, such as biomimicry morphing
structures, from basic research to new commercial aircraft applications. In this paper, the authors
address actuator integration aspects of a wing shape-changing flight surface capable of adaptively
enhancing aircraft aerodynamic performance and reducing critical wing structural loads. The research
was collocated within the Clean Sky 2 Regional Aircraft Demonstration Platform (IADP) and aimed
at developing an adaptive winglet concept for green regional aircraft. Finite Element-based tools
were employed for the structural design of the adaptive device characterized by two independent
movable tabs completely integrated with a linear direct-drive actuation. The structural design process
was addressed in compliance with the airworthiness needs posed by the implementation of regional
airplanes. Such a load control system requires very demanding actuation performance and sufficient
operational reliability to operate on the applicable flight load envelope. These requirements were met
by a very compact direct-drive actuator design in which the ball recirculation device was integrated
within the screw shaft. Focus was also given to the power-off electric brake necessary to block
the structure in a certain position and dynamically brake the moveable surface to follow a certain
command position during operation. Both the winglet layout static and dynamic robustness were
verified by means of linear stress computations at the most critical conditions and normal mode
analyses, respectively, with and without including the integrated actuator system.
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1. Introduction

Morphing wings have the greatest ambition to significantly alter design and operation of future
generations of aircraft [1–6]. Their ability to change the wing geometry and reconfigure themselves in
multiple shapes in order to match specific flight conditions at the best may dramatically contribute
to tackle some of aviation’s biggest environmental challenges including fuel efficiency, noise, and
emissions. Some mechanical control surfaces such as flaps, ailerons, rudders, already provide aircraft
with some basic adaptation capabilities by changing their geometry and varying the local camber.
Morphing philosophy tries to extend such capabilities in a more combined and efficient perspective
within the entire flight envelope with the aim of providing aircraft with a form of continuous geometry
variations to improve aerodynamic efficiency and optimize performance.

Morphing wing technology may be categorized according to two alternative design paradigms:
compliant and kinematic architectures. In the former, the structure is designed to achieve specific
aeroshapes through careful material distribution while resisting the external loads [7,8]. In kinematic
architectures, the structure is articulated in different rigid parts moving according to a pre-defined
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mechanical law [9,10]. A morphing skin enveloping the skeleton preserves a regular geometry
during shape adaptation. In both cases, the system is moved by inner actuators through defined
mechanisms which contribute to withstand the external loads. Compared to rigid-body mechanisms,
whose discontinuities may affect wing aerodynamic efficiency, compliant structures allow smoother
and more controllable morphing wing shapes without suffering from the characteristic problems of
kinematic chains, such as concentrated forces at the joints, backlash, friction, etc. On the other hand, by
relying upon concentrated compliance instead of conventional joints, compliant structures require
an extra actuation authority to deform themselves to the desired configuration under the action of
inner actuators [11,12]. Furthermore, compliant structures scale better than mechanisms by tailoring,
for instance, the equivalent hinges’ length and thickness to exhibit the same structural behavior at
different scales.

Several projects have been launched in recent years in Europe to develop and assess new
technologies to reduce aircraft fuel burn through better aerodynamic performance enabled by wing
shape changes and light-weight structural design [13–18]. Among the most promising, adaptive
morphing trailing edge wing concepts have been shown to reduce the fuel burn of medium-range
transport aircraft by 6% or greater and significantly alleviate gust and maneuver loads in combination
with adaptive winglets [19]. Additionally, morphing winglets may provide enhanced Lift over Drag
ratio during climb, and, more generally, in off-design conditions through a variable trailing edge
control. As in off-design conditions, in particular, climb and descent phases represent a crucial flight
segment for regional aircraft, and non-optimal configurations lead to remarkable operational penalties
which require specific attention.

Despite the considerable research, however, with evidence supporting the potential for increased
aerodynamic efficiency, maneuverability, and control effectiveness, shape-changing wing structures still
suffer from a lack of tailored actuation solutions which optimally face a number of design challenges:
reduced weight, volume, and complexity of power transmission paths, optimal force transmission,
aeroelastic impact of the augmented DOF (degrees of freedom) system, higher modal density and
more critical behavior than conventional surfaces, energy requirements and dissipation needs, etc.
Additionally, actuation layout assumes a crucial significance for a reversible shape and deformation
control, and its failure leads to more extensive uncertainties in such more complex structures.

Smart actuation is a viable option to produce high forces within small accessible rooms [20,21].
Shape-memory alloy actuators are increasingly becoming a focus of interest for morphing wing
applications, but they are still not mature enough for integration into actual aircraft systems. The use
of active elements may further make the structural design more complex by modifying stiffness, mass
and damping value, and distribution of the morphing structure.

The main goal of this study is to investigate the main challenges in the development and
integration of electromechanical actuator (EMA) technology for future morphing wing applications.
In the framework of the CleanSky 2 Airgreen 2 project [22], this paper focuses on the safety-driven
design of a morphing winglet concept specifically tailored for EASA CS-25 category aircraft for wing
load control and root bending moment alleviation. The main design challenges that may be encountered
to accommodate a suitable electromechanical actuator in such a confined space are explored. Focus
is given to the study of the actuator performance and the structural impact of the whole actuation
chain on the morphing winglet tabs. Such an approach assumes that, in principle, a flight-worthy
actuator of adequate size, weight, and power will be developed to withstand the hinge moments due
to the aerodynamic loads, especially when the control surfaces are deflected downwards. However,
it is reasonable to expect that the actual aeroshapes of a mechanically-driven morphing architecture
would be strongly influenced by the stiffness of the entire actuation chain, with significant implications
on the static and dynamic structural response. In order to check the validity of these considerations,
the authors present detailed numerical investigations, thus establishing safe design domains for the
structural layout of both the movable tabs and related actuation lines.
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2. Morphing Winglet Concept

Aircraft winglets are a proven way to enhance aircraft performance and reduce fuel consumption
by enabling higher lift over drag ratios and lower induced drag. Since the earliest-known concepts, the
fuel burn improvement with blended winglets at the airplane’s design range was on the order of 6% [23]
and the enabled aircraft steeper angles of attack contributed to reduce takeoff distances. The addition of
winglets installed by retrofit increases also the aircraft payload/range capability by the same order of the
fuel burn savings, although significant changes in the wing structure may be necessary. More recently,
such pioneering installations are increasingly becoming a topic of research for the purpose of lowering
wing bending moments and increasing aircraft flight stability through morphing technology. Several
morphing winglet concepts have been patented [24,25], or are being developed to further lower aircraft
operating costs by reducing block fuel burn by 4–5% through adaptive winglet geometries in return to
changing flight conditions. With the rapid advances of more/all electric technology, electromechanically
actuators have become gradually mature to be introduced in commercial transport aircraft. They offer
significant opportunities also for morphing winglets applications to alleviate gust loads and control the
wing lift distribution over the wing span by adaptively modifying the winglet leading or trailing edges
through inner morphing mechanisms. In order to actively control both aerodynamic loads and root
bending moments (RBMs), a full-scale carbon-fiber reinforced-plastic (CFRP) winglet was developed,
for instance, in the framework of SARISTU [26]. A morphing skin enabled a smooth shape transition
between the fixed and movable winglet portions by eliminating the interference between the wing and
the winglet surface.

In this paper, detailed numerical investigations were implemented for the characterization and
integration of an electromechanically-based actuation into a finger-like mechanism-based morphing
winglet. Apart from the aerodynamic benefits resulting from such a morphing device, estimated on the
order of 2.5% LoD at high CL with respect to the optimal passive winglet counterpart [8], this approach
ensures smoother morphing winglet aeroshapes and a more efficient distribution of the span-wise
aerodynamic loading estimated by CFD simulations (Figure 1). Hinged mechanisms were implemented
at the trailing edges to realize the morphing layout of two tabs, which can be independently deployed
both upward and downward. One of the major advantages of this architecture is the capability to move
the individual surfaces either synchronously or independently to different angles. Such a “finger-like”
mechanism was co-developed by the first author in the past and successfully validated on full-scale
morphing wing trailing edge and aileron devices [27,28].
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The upper- and lower-morphing mechanisms consist of three consecutive hinge-connected blocks
(B0, B1, B2), whose relative rotations enable the trailing edge camber morphing (Figure 2). Each block
is covered by segmented skins connected by a spar box. The B0 block is rigidly connected to the rear
spar of the winglet structure. The inner actuator drives the B1 block to rotate around its hinge system
and blocks the system while deployed. The actuation rods are particularly important (and critical)
in this kind of architecture, bearing the majority of the incoming loads. The resulting system is a
1-degree-of-freedom architecture (SDOF) having a specific gear ratio depending upon the mechanical
hinges and links positions. The upper region of the structural box of the winglet is also shown in
Figure 3. The two actuators, driving the lower- and upper-morphing tabs, respectively, were initially
modelled as lumped masses. The aluminum segmented skin was divided into separate plates, two for
each block for both the lower and the upper tabs, attached to the respective edges of the machined ribs
and along the associated spars.
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Figure 3. Segmented skin of the morphing winglet trailing edge.

Morphing Tabs Mechanisms

The simplest way to simulate wing morphing mechanisms at the preliminary stages of the design
is to assume the mechanical components as fully rigid (Figure 4). This allows designers to develop
the kinematics and validate linkage dimensions, hinges positions, and instant centers of rotations,
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for the initial structural sizing of the components. As a result, the hinges of the finger-like mechanisms
were thus FE modelled by rigid connections by releasing the rotational degree of freedom activated by
morphing. The sole purpose of these elements was to transfer the loads between the grid points in such
a way that all the slave (dependent) nodes had zero relative deformation after the load application.
In such a way, one cannot observe any oval effect of hole or any bearing loaded pattern on the holes.
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Figure 4. Hinges and pin modelling scheme of the reference finger-like morphing concept.

As preliminary check of the actual aeroshapes that may be reached by the morphing mechanism,
a normal mode analysis was then carried out. A free-floating condition, also called free play failure,
was simulated by neglecting the entire actuation chain stiffness consisting of both the actuators and
actuation kinematics of the morphing tabs. Such an uncontrolled dynamic motion occurs when the
actuator floats with zero moment and does not contribute to the control of the surface due to some
internal failure. An example of a float failure is the loss of the electromechanical actuator causing it to
move freely without producing any effective moment along the main hinge axis. Such a condition,
occurring at 0.9 Hz for the upper-morphing tab kinematics, is usually referred to as morphing mode,
as it is fully representative of the rigid body motion of the designed mechanism. The resulting mode
shape is shown in Figure 5 along with the undeformed tab model. Theoretically, that value should
equal zero; its deviation is due to the coarse FE mesh that turns into an imperfect alignment of the
hinges whose effect is to rise the first “rigid” mode to a non-null value (addition of a constraint).
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3. Actuators and Kinematics Integration

3.1. Electromechanical Actuation Concept

In order to avoid dealing with hydraulics, linear electromechanical actuation (EMA) was envisaged
for the mechanical drive system. The design of the kinematic chain strongly affects the actuator
requirements in terms of available space, axial and radial operating load, axial and radial static load,
stroke, and speed. For this reason, starting from the basic need to move two different surfaces on the
same wing independently, several installation trade-off studies were performed in order to achieve the
best configuration for winglet actuators.

The kinematic chain proposed in this work was based on two separate actuators, one for each
surface, positioned at different winglet height (see Figure 6). Such a solution minimized potential
actuator assembly and integration issues by privileging accessibility and maintenance. The control
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units were installed within the nearly horizontal part of the winglet box with the aim to reduce the
bending moment applied to the wings.Actuators 2019, 8, x FOR PEER REVIEW 7 of 16 
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This direct kinematic chain, based on a crankshaft solution, enables higher construction and
installation simplicity, lower weight, and higher stiffness. After some sensitivity analyses, the enveloping
loads causing the highest internal solicitations on the morphing winglet, were found in dynamic lateral
gust conditions at level flight in combination with aircraft maneuver and static gust design limits. For
the given geometrical parameters of this kinematic chain, the actuators’ performance requirements
were then derived (see Table 1). Operating and maximum static axial load were about 3.5 and 5 kN,
respectively. The maximum speed foreseen for the load control function was 5 mm/s.

Table 1. Actuators’ performance requirements.

Parameter Value

Maximum operating axial load 3500 N
Maximum static axial load 5000 N

Total operating stroke 10 mm for the lower surface
20 mm for the upper surface

Max speed 5 mm/s

3.2. Electromechanical Actuators’ Components

Considering what said above in terms of required performance and the very limited available
space envelope and admissible weight, the main focus of the research was to achieve augmented
power-to-weight ratio.

The winglet actuators (Figure 7) were composed of a ballscrew with a rotating ball-nut and
a translating screw shaft actuated by a permanent magnet brushless motor. The EMAs were also
equipped with a power-off electric brake, wear ring, angular contact bearing, and linear position sensor.
The electronic control unit (ECU) provided power to the EMA motor and controlled it through the use
of hall sensors and the linear variable differential transformer (LVDT) feedback.
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Figure 7. Electromechanical actuator for morphing winglet application.

Aiming at minimization of the envelope and weight, the EMAs were characterized by a direct-drive
configuration in which the magnets were bonded directly onto the ball-nut. Figure 8 shows a ball-nut
with the magnets glued onto the outer diameter (OD) of the ball-nut and the tube that kept the magnets
in position (fault-tolerant solution in case the glue failed). In this configuration the internal ring of the
ball bearings was integral to the ball-nut.
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The main advantages of a direct-drive solution with respect to the “geared” one are:

� Low reflected inertia from the motor rotor to the load due to the low gear ratio;
� Small number of components for greater reliability and easier assembly;
� High efficiency due to the lower number of transmission stages;
� Thermal stability;
� Reduced maintenance;
� Reduced noise due to absence of gears and reduced friction between the ball-nut, balls; and

screw shaft;
� Increased accuracy due to the lower number of transmission stages;
� Reduced irreversibility load;
� Lower backlash.

The compact design and the direct-drive configuration were possible thanks to a new design for
the ballscrew in which the ball recirculation device was an integrated part of the screw shaft. This
represents a more reliable configuration because of the lower number of parts and that it had a smaller
diameter and shorter length than other ballscrew configurations. Moreover, an anti-rotation device
was integrated into the EMA by means of an elliptic coupling between the screw shaft and the housing,
such that the ballscrew system could only translate when the ball-nut was rotated. This feature allowed
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to avoid the use of a dedicated or external device for the anti-rotation, but required a bigger design
effort on the evaluation of the wear of the bushing device and on the elliptical seals.

A general comparison with a standard direct-drive EMA configuration, in which the assembly
is composed by stator, rotor, and ballscrew mechanically linked to the rotor is reported in Table 2.
Operational points for the two actuators, in which the power-to-weight/volume ratios were calculated,
were selected with comparable motor efficiency (90%). Obviously, the following results were obtained
considering the volume and weight of only the motor and ballscrew assembly. As evident, the benefits
of the proposed configuration are relevant in particular in terms of the power-to-volume ratio.

Table 2. Comparison between standard direct-drive electromechanical actuator (EMA) and winglet
direct-drive architecture.

Feature Standard Direct-Drive
Configuration

Winglet Direct-Drive
Configuration % Increase

Power-to-weight ratio in
discontinuous operation point 175 W/kg 205 W/kg 17%

Power-to-volume ratio in
discontinuous operation point 925 W/L 1700 W/L 84%

With regards to electric motors, electric steels lead in terms of market share in soft magnetic
materials [29]. However, alloys based on inter-metallic compounds exhibit superior soft and hard
magnetic properties [30,31]. Among the commercial magnetic materials, alloys based on the inter-
metallic compound FeCo show the highest saturation magnetization [32]. In addition, they have
high Curie temperatures, good permeability, good strengths, and are ideally suited for applications
requiring high-flux density. However, their widespread applications are restricted due to the high cost
of Co. Currently, FeCo alloys are used in applications where their high saturation values provide an
advantage in reducing weight or volume of the components (e.g., aeronautics applications). This alloy
is deeply investigated in the framework of research projects for the new generation of aircrafts called
“more electric aircraft” [22].

Regarding these specific applications, research activities were focused on the comparison between
the use of iron–silicon or iron–cobalt in the stator, keeping the Fe–Si alloy for the rotor. All studies
were performed with the same geometry, adapting the number of coils when necessary.

Figure 9 shows the winglet performance comparison between FeCo and FeSi stators. These results
were obtained through an electromagnetic FEM transient analysis performed to characterize the motor
torque capacity in function of different currents and considering the materials’ saturation. Since the
current to be used was limited to avoid a demagnetization effect (up to 4 A), the benefits of the Fe–Co
material were not relevant. This was due to the low magnetic load of the motor. Both materials
guarantee full coverage of the required operating points and did not induce any demagnetization effect,
even considering the maximum load case. Moreover, considering the thermal class of the insulators
used, both materials ensure that temperature limits were not exceeded. Finally, considering the cost
versus benefits analysis (Fe–Co costs about twenty times that of Fe–Si and typical procurement times
are much longer for Fe–Co laminations), it was decided to use the Fe–Si laminations.
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Electromechanical actuators designed for aeronautical applications, and especially for flight
control applications, are generally equipped with electromechanical brake devices [33]. The main
reason that pushes towards the adoption of this type of devices is due to the mode of operation that the
actuator must perform during its life cycle. In fact, electromechanical actuators installed on movable
surfaces are generally required to stop the surface in a certain position and in parallel to dynamically
brake the surface to follow a certain command position of the surface itself [34,35].

Different types of brakes are available on the market; however, only two types of brakes are
generally used for this type of application: static brakes and dynamic brakes. The first one, provided
with an anchor with teeth, allows the surface to be braked in a certain position but only after the
motion of the actuator has stopped. The main advantage that this type of brake has is that it can
deliver high braking torque in a limited space envelope, although they operate in static conditions.
Conversely, being equipped with friction disks, dynamic brakes are capable to slow down the motion
of the actuator dynamically. In fact, they can be engaged and/or actively disengaged without the need
to stop the actuator first. At the same time, however, the braking torque that can be supplied by these
types of brakes is lower than that of static brakes having similar dimensions.

Whatever the category, both can be of the power-on or power-off type, i.e., they can brake the
actuator and, therefore, the surface with or without power supply.

A power-off clutch disc brake was selected for the winglet application. In fact, while on the one
hand, the required braking torque was not excessively high, on the other hand it was necessary to
have high dynamic properties. Moreover, since the surface was only deployed during the climb phase
(landing gear up) with the exclusion of the take off, approach, and landing phases, the brake should be
active during most of the flight time. For this reason, a power-off solution was preferred.

Figure 10 shows a schematic drawing of the brake. It consisted of four basic elements: a solenoid,
an anchor (pressure plate), springs, and a friction disk. Operation was relatively simple. When the
solenoid was not powered, the springs press the anchor against the friction disks, thus generating
a braking torque. When it was required to disengage the brake, the powered solenoid generated a
magnetic force that pulled the anchor towards itself, effectively detaching the anchor from the friction
disks, thus allowing the actuator to move.
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Figure 10. Electromagnetic power-off brake with clutch disk.

During the design phase, two aspects had to be managed: the force delivered by the solenoid had
to be greater than the spring force exerted by the springs and the braking torque developed by the
clutch disks had to block the loaded structure in a certain position.

The results obtained in the design phase of the electromagnetic brake were compared to those
obtained during a preliminary test carried out on a mock-up of similar sizing in order to characterize
the brakes. Figure 11 shows a comparison between the electromagnetic strength of the solenoid
obtained through a finite element analysis and the ones obtained experimentally powering the brake
with 0.91 A. As is evident, these force values depended on the distance between the anchor and the
solenoid (airgap). An electromagnetic finite element analysis was performed on a simplified 2D model
in which SAE 4340, Hiperco50, and 15-5 PH material were considered for mechanical components,
anchor (pressure plate), and friction disks, respectively.
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The force obtained by simulation was slightly higher than that obtained experimentally. This was
probably due both to a simplification of the FEM model and due to the presence of numerous magnetic
components placed near the brake and which caused it to not be properly modeled.

In addition to a comparison of the solenoid attractive force, a series of tests were performed to
evaluate the braking torque for different spring pre-load values obtained, adding a progressive number
of shims inside each solenoid spring fixture. This confirmed that the braking capacity depended on
the coefficient of friction of the disks and on the spring pre-load and force that increased with the
increase of the thickness of the shim. Figure 12 shows the comparison between experimental results
and theoretical value of the braking torque calculated according to Equation (1):

Tbrake = µ × Fspring × d × n (1)

where Tbrake is the theoretical braking torque, µ is the friction coefficient of the disks, Fspring is the
spring force, d is the disk mean diameter, and n is the number of disks.
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Also, in this case, the braking torque calculated analytically proved to be greater than that
obtained experimentally. However, this was due to the friction coefficient provided by the friction
plate manufacturer. The coefficient of friction declared was µ = 0.32, while that obtained following
the experimental test was µ = 0.215. Recalculating the force and comparing it with the previous ones
(see Figure 12) resulted in a greater matching between the results.

4. Actuators and Kinematics Integration into the FE Model

In order to simulate the actuator stiffness (on the order of 5 kN/mm) and actuation chain into
the morphing winglet model, an equivalent torsional spring was added to both the upper- and
lower-morphing tabs, respectively. In such a more realistic condition, the natural frequency of the
mechanical system, referred to as morphing mode of the device in operative conditions, increased up
to 14 Hz, being totally dependent on the actuation kinematics. Figure 13 shows the morphing mode
reached by the upper tab while considering the actuation system stiffness. In this case, the actuator
constrained the lower-morphing rib through its nominal stiffness, and hence, the entire tab through
the structural box. It is worth noting that due to the morphing tab elasticity, the upper region of
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the tab deflected more than the lower one since the actuator was mechanically attached to the lower
region of the upper tab. This impacted the actual morphing aeroshape and deserves special attention
in the aerodynamic design to properly estimate the performance degradation due to the structural
elasticity. Alternatively, this effect may be compensated through an adequate structural compliance
distribution. Due to the higher span-wise stiffness of the lower morphing tab as a consequence of its
reduced dimensions, the structural response, not addressed in this work, was much more uniform.
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The final step of the preliminary assessment of the electromechanical actuator integration into the
morphing structure consisted in evaluating the static response of the morphing tabs under operative
loads. The morphing ribs and spar were made of an aluminum alloy, whereas the static aerodynamic
loads were deduced from the literature [26]. Such aerodynamic forces, resulting in a hinge moment on
the order of 101.7 Nm, were simulated by applying aerodynamic pressure to the tabs upper skin. These
simulations predicted a maximal stress of about 240 MPa, which was lower than the yield strength
(500 MPa for Al 7075-T6). An example of stress distribution over the finger-like mechanism is shown
in Figure 14. The global added bending stiffness due to the partitioned skin was assumed negligible
with respect to the global structure, even if it contributed to reduce the relative displacements between
the ribs under the action of the aerodynamic pressure.
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5. Conclusions

Next-generation aircraft will incorporate new fault-tolerant electromechanical actuators and
innovative structural concepts to increasingly interact with the environment and adapt its functions
to changing flight conditions. In this paper, an adaptive winglet device combining two independent
electro-mechanical actuation and hinge-connected mechanisms were investigated to demonstrate the
feasibility of an adaptive wing load control system including electrical actuators for reducing system
complexity. Such a concept appears acceptable in less safety-critical aircraft devices, although there is a
lack of advanced knowledge and experience regarding the reliability and the potential risks associated
with actuator failures.

A major potential advantage is the possibility to activate the individual winglet tabs either
synchronously or independently to different angles with a certain redundancy. Lift over Drag
enhancements are adaptively achieved in climb and descent conditions where regional aircraft typically
spend a significant segment of the flight time. On thestructural side, the wing bending and torsion are
controlled by acting on both surfaces through tailored upward/downward deflections. Additionally,
aircraft lateral control is enhanced in the case of an engine failure, and critical conditions such as EMA
jamming are dramatically mitigated by the surface redundancy.

In order to check the validity of the proposed architecture, the authors investigated some important
aspects related to the preliminary design of such an adaptive system. Focus was given to the actual
integration of the actuators to assess the structural response of the device both in free play and nominal
conditions. In the former study, particularly useful in the early design stages of a morphing component,
the hinges and links were assumed rigid. The results characterized morphing system capabilities
without incurring the computational expense associated with a full aeroelastic analysis. It is not
surprising that the elasticity of the hinges did not affect the low-frequency morphing mode of the device,
occurring at 0.9 Hz. After that, these rigid elements were replaced by lumped springs and the stiffness
of the actuation chain was simulated by a torsional spring between the first two adjacent blocks of the
finger-like mechanism. The actuation elasticity significantly affected the morphing mode of the device,
increasing up to 14 Hz, and its structural dynamic response, by highlighting potential consequences
on aeroelastic stability margins. The resulting gap, mainly due to the actuator stiffness with respect
to the fully rigid predictions, suggested to optimize either the structural compliance or the actuation
distribution. It follows that ensuring adequate structural flexibility remains an ongoing and important
problem for morphing system kinematics. The structural stability was also investigated by ensuring
the structure deformed to a stable configuration under the action of aerodynamic forces. Further
studies are planned to assess the behavior of the structure by taking into account the contribution of
the transmission chains to the overall stiffness of the morphing device. Because of the importance of
aeroelastic phenomena in the design of aircraft aerodynamic surfaces, further development will focus on
aeroelastic stability margins and safety related implications of actuators failures. To ensure the required
performance and minimize consumed energy for a given closed-loop performance, the EMA controller
will be matured by optimizing the conventional cascade loop parameters (position/speed/current).
A non-linear controller including compensation of friction in the mechanical transmission, variation of
supply voltage, temperature effects, and feed-forward for reduction of positioning dynamic error will
also be implemented to boost the actuator dynamics and accuracy. Detailed experimental tests will be
finally implemented.
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