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Abstract: Electrodynamic thrust bearings (EDTBs) provide contactless rotor axial suspension
through electromagnetic forces solely leaning on passive phenomena. Lately, linear state-space
equations representing their quasi-static and dynamic behaviours have been developed and validated
experimentally. However, to date, the exploitation of these models has been restricted to basic
investigations regarding the stiffness and the rotational losses as well as qualitative stability analyses,
thus not allowing us to objectively compare the intrinsic qualities of EDTBs. In this context, the present
paper introduces four performance criteria directly related to the axial stiffness, the bearing energy
efficiency and the minimal amount of external damping required to stabilise the thrust bearing.
In addition, the stability is thoroughly examined via analytical developments based on these
dynamical models. This notably leads to static and dynamic conditions that ensure the stability at
a specific rotor spin speed. The resulting stable speed ranges are studied and their dependence to
the axial external stiffness as well as the external non-rotating damping are analysed. Finally, a case
study comparing three topologies through these performance criteria underlines that back irons fixed
to the windings are not advantageous due to the significant detent force.

Keywords: performance criteria; damping; electrodynamic; energy efficiency; stability; stiffness;
thrust bearing

1. Introduction

Nowadays, magnetic bearings constitute a convincing alternative to classical solutions such as ball
or journal bearings by ensuring contactless guiding of rotors, thereby reducing losses and removing
mechanical wear and friction. These compelling bearing can be either active or passive. The former
are based on current-controlled electromagnets exerting an attractive force on a ferromagnetic rotor,
whereas the latter only rely on passive phenomena.

Electrodynamic bearings (EDBs) belong to passive magnetic bearings (PMBs) as they lean on
electromagnetic forces generated by the appearance of induced currents in short-circuited conductors
in relative motion with respect to a magnetic field produced by permanent magnets (PMs). Although
their stiffness is quite low in comparison with active magnetic bearings (AMBs), these bearings are
attractive as they require neither sensors nor power and control electronics, thereby being intrinsically
more reliable, compact and energy-efficient [1]. EDBs can be of two types: radial or axial bearings.
The former allows guiding the radial degrees of freedom of the rotor, whereas the latter provides the
axial levitation.
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Numerous models describing radial EDBs in quasi-static conditions [2,3], i.e., assuming constant
spin speed and eccentricity, as well as in dynamic conditions were developed [4,5]. Although they
have never been defined as such, several criteria allowing us to compare these EDBs came up along
with these models.

Obviously, the stiffness induced by the electrodynamic effects is of primary interest given that
it directly relates to the bearing stability and eccentricity. This stiffness is an increasing function of
the rotor spin speed and can be characterised through two coefficients, namely the maximal stiffness
and the electrical pole of the R-L equivalent circuit [6]. Several sensitivity analyses were performed on
these two coefficients, thus yielding a first insight of the geometrical [7], electrical [8] and magnetic
parameters [9] that strongly influence them.

In addition to the stiffness, attention is paid to the rotational losses required to provide the
levitation force. Indeed, these losses are dissipated as heat and should therefore be limited to avoid
significant temperature rises as well as to increase the energy efficiency. To this end, the null-flux
concept was transposed to heteropolar EDBs, allowing us to conceive new topologies whose flux
linkage is null when there is no rotor eccentricity [10]. In this way, there is no induced currents
and therefore no losses in this position. Similarly, the null-E concept was then developed for
homopolar bearings [11]. Simultaneously, analytical formulas were derived to evaluate these rotational
losses [12,13].

The dynamic behaviour of radial EDBs constitutes a major issue as these bearings are always
unstable in the absence of non-rotating damping, i.e., damping that does not depend on the rotor
rotation [5,14]. Considering the difficulty of adding damping in a contactless way, thus being consistent
with the magnetic bearing approach, this external damping should be minimised. To this end, analytical
expressions were developed on the basis of quasi-static models to determine the minimal damping
required to ensure the stability at a particular spin speed [2,9,15].

Despite their promising stability properties, electrodynamic thrust bearings (EDTBs) have focused
much less research efforts. A bearing energy efficiency, defined as the ratio between the electrodynamic
levitation force and the corresponding power losses, has been introduced as a performance criterion,
even though external stiffnesses, such as the detent one, cannot be taken into account [16]. Recently,
models describing both the axial quasi-static and dynamic behaviours of EDTBs have been derived and
validated experimentally, allowing us to study their stiffness and rotational losses [17–20]. By contrast,
although the beneficial effect of the external damping has been theoretically demonstrated, there is still
no formula allowing us to determine the additional damping required to ensure the stability. Similarly,
the spin speed ranges within which the EDTB is stable can still not be determined analytically.

In this context, the present paper introduces four performance criteria related to the bearing axial
stiffness, the energy efficiency and the stability, allowing us to compare objectively EDTB topologies in
terms of their intrinsic qualities. Analytical expressions of these criteria are derived on the basis of
the dynamic models proposed in [17,18,21], thus being suitable for a wide variety of thrust bearing.
In addition, static and dynamic stabilities are analysed analytically, providing conditions that ensure
that the EDTB is stable at a particular spin speed and therefore allowing us to determine the stable
spin speed ranges.

The paper is structured as follows. Section 2 depicts the thrust bearing topologies under study.
Following on from this, the electromechanical model, comprising the electromagnetic and the rotor
mechanical models, is described in Section 3. The stability of the system is then analysed in Sections 4
and 5. Section 6 defines the four performance criteria for EDTBs. The last section is devoted to a case
study analysing three topologies through these criteria.

2. Bearing Description

The thrust bearing being analysed is constituted of two independent subassemblies, namely the
PM arrangements and the armature winding, in rotary motion relative to each other, as illustrated
in Figure 1. Each of them can be attached either to the stator or to the rotor.
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Figure 1. Bearing topologies with only one phase represented: (a) PMs are internal and the p coils of
each set are connected in series, the two resulting sets being connected together in series; and (b) PMs
are external and the p upper and the p lower coils are independently connected together in opposition.

The first subassembly comprises two PM arrangements, each producing an identical axial
magnetic field with p pole pairs. These arrangements can:

• either be placed in repulsive or attractive mode, as represented in Figure 1; and
• either constitute the internal or external subassembly, as shown in Figure 1a,b respectively.

The armature winding comprises N identical and evenly distributed phase windings. The latter
are each constituted of two identical sets of p identical and evenly distributed coils, each set being
predominantly magnetically linked to one PM arrangement, and can be of two types:

• the p coils of each set are connected in series, the two resulting sets being connected together,
as illustrated in Figure 1a;

• the p upper and the p lower coils are independently connected together, as represented
in Figure 1b.

Besides, as illustrated in Figure 1a,b, respectively, both upper and lower sets of coils can be shifted
by an angle equal to π/p or zero and can be connected either in series or in opposition. This connection
is chosen on the basis of the angular shift that separates the upper and lower sets as well as the
attractive or repulsive mode of the PM arrangements so as to ensure that the flux linked by the
armature winding is null when the rotor is axially centred with respect to the stator, thereby respecting
the null-flux principle.

3. Electromechanical Model

Under the assumption of small rotor axial, radial and angular displacements and neglecting the
inductance coefficient variations with these displacements, the axial dynamics of the system constituted
of the rotor and the ETDB is decoupled from the radial and angular ones [22]. Assuming in addition
that the rotor spin speed varies slowly compared to the axial dynamics, the latter can be described
through a linear state-space representation as extensively derived in [18]:

z̈
ż
Ḟ
˙(
T
z

)
 = A


ż
z
F(
T
z

)
+ B · Fe, (1)

with:
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(2)

(3)

where z and ż are, respectively, the rotor axial position and velocity; F and T are, respectively,
the electrodynamic force and torque; Fe is the external axial force acting on the rotor; C is the
external non-rotating damping; M is the rotor mass; R is the phase winding resistance; Lc is the
cyclic inductance, thus taking into account the self and mutual inductance coefficients of the N phases
constituting the armature winding; KΦ is the proportionality factor between the amplitude of the
flux linked by the phase windings due to the PMs and the axial position; and ke is the external axial
stiffness. The latter could, for example, arise from detent effects or be related to the axial stiffness
induced by centring PM bearings added to the system so as to ensure the rotor radial and angular
guidance. Hence, this stiffness is generally negative, as it is assumed hereafter.

Assuming quasi-static conditions, i.e., ż = 0, the axial electrodynamic stiffness k(ω) as well as the
associated braking torque T(ω) can be retrieved from this dynamic model, yielding [18]:

k(ω) = − F(ω)

z
=

K2
ΦN

2Lc

ω2

ω2 +
(

1
p

R
Lc

)2

T(ω) = −z2 K2
ΦN

2Lc

R
Lc

ω

ω2 +
(

1
p

R
Lc

)2

(4)

As depicted in Figure 2, illustrating the evolution of the stiffness, the latter increases with the spin
speed and can be characterised through two coefficients, namely the rotor spin speed ωe = R/(pLc)

related to the electrical pole and the asymptotic stiffness k∞, defined as:

k∞ =
K2

ΦN
2Lc

(5)

The latter therefore corresponds to the maximal axial stiffness that can be generated by the EDTB.
Let us point out that this stiffness appears explicitly in the state matrix A, given in Equation (2).
On the contrary, as shown in Figure 2, the braking torque T(ω) reaches its maximal value when the
speed is equal to ωe and then decreases asymptotically to zero.

0
0

0

Figure 2. Evolution of the electrodynamic stiffness k (solid line) and braking torque T (dashed line)
with the spin speed ω.



Actuators 2019, 8, 11 5 of 17

4. Stability Analysis

The behaviour of EDTBs is strongly dependent on the rotor spin speed and so is their stability.
Hereinafter, general considerations about the stability of an EDTB coupled to the rotor are first derived.
On this basis, the static and dynamic stability are then analysed, leading to conditions ensuring a stable
behaviour at a specific rotor spin speed.

The following developments can be greatly simplified by considering the electrical pole as being
much greater than the maximal natural frequency of the equivalent spring–mass system constituted of
the rotor and the EDTB:

R
Lc
�
√

k∞

M
. (6)

In this way, the electrical phenomena are much faster than the mechanical ones and thus do not
have a significant impact on the rotor axial dynamics. Observing that the electromechanical model,
given in Equation (1), depends on the stiffness as well as the rotor mass and not their square roots,
Equation (6) can be expressed in a more convenient manner as:(

R
Lc

)2
� k∞

M
. (7)

To the authors’ best knowledge, the latter hypothesis is verified in the vast majority of the
experimental and numerical studies of EDTBs, including the case study in Section 7. In addition,
let us assume a priori that the external damping satisfies:

2
(

C
M

)
� R

Lc
, (8)

This assumption is verified a posteriori in Section 4.3.

4.1. General Considerations

The model in Equation (1) being linear, the stability analysis can be performed through the study
of the real part of the four eigenvalues of the state matrix A as a function of the spin speed. To this end,
the characteristic polynomial can be easily derived, yielding:

P(s) = s4 + s3
(

C
M

+
2R
Lc

)
+ s2

(
C
M

2R
Lc

+
R2

L2
c
+ ω2 p2 +

k∞ + ke

M

)
+ s

(
C
M

R2

L2
c
+ ω2 p2 C

M
+

R
Lc

k∞ + 2ke

M

)
+ ω2 p2 k∞ + ke

M
+

R2

L2
c

ke

M
.

(9)

Under the hypothesis expressed in Equation (7) and assuming Equation (8) as verified,
the polynomial in Equation (9) can be simplified as follows:

P(s) = s4 + s3 2R
Lc

+ s2
(

R2

L2
c
+ ω2 p2

)
+ s

(
C
M

R2

L2
c
+ ω2 p2 C

M
+

R
Lc

k∞ + 2ke

M

)
+ ω2 p2 k∞ + ke

M
+

R2

L2
c

ke

M
. (10)

The root locus of the four eigenvalues can thus be obtained by finding the roots of Equation (10)
for different spin speeds. However, when it comes to stability analyses, only the speeds at which
the eigenvalues cross the imaginary axis are relevant as they define the spin speed ranges within
which the bearing is stable. Figure 3a,b illustrates, respectively, the impact of the external damping
and stiffness on the root locus. Only the two relevant eigenvalues, related to the mechanical behaviour,
are represented, the remaining two, related to the electrical behaviour, being located far in the left half
plane. The additional damping allows us to shift the complex conjugates parts of the root locus to the
left by an amount equal to C/(2M), whereas the external stiffness strongly modifies their shape.



Actuators 2019, 8, 11 6 of 17

0

0

0

0

Figure 3. Root locus of both relevant eigenvalues: (a) evolution with the damping C = {0, 0.5, 1}
Ns/m for ke = 0 N/m; and (b) evolution with the external stiffness |ke| = {0, 1

4 , 1
2 , 3

4 , 9
10} k∞ N/m for

C = 0 Ns/m.

As a result, there are at most three spin speeds, ω1, ω2 and ω3, defined in Figure 4,
corresponding to intersections with the imaginary axis. More precisely, as shown in Figure 3, when the
external damping approaches zero, the spin speed ω3 tends to infinity and therefore no longer exists.
By contrast, increasing the damping allows us to move the spin speeds ω2 and ω3 towards each
other until they are equal, when the damping reaches a specific value, denoted by Cm hereinafter.
Beyond the latter damping, these two speeds do not exist anymore. Besides, as illustrated in Figure 3b,
the presence of the speed ω2 strongly depends on the external stiffness.

0

0

Figure 4. Root locus: Spin speeds corresponding to intersections with the imaginary axis.

For determining these speeds, let us assume that s = jh, implying that the eigenvalue lies on the
imaginary axis. In this case, Equation (10) can be separated into real and imaginary parts as follows:

0 = h4 + ω2 p2 k∞ + ke

M
+

R2

L2
c

ke

M
− h2

(
R2

L2
c
+ ω2 p2

)
0 = h

(
C
M

R2

L2
c
+ ω2 p2 C

M
+

R
Lc

k∞ + 2ke

M

)
− h3 2R

Lc

(11)

(12)

Solving Equation (12) for h yields three solutions. As demonstrated hereinafter, one solution is
related to a static instability, whereas the other two are linked to a dynamic one.

4.2. Static Stability

The trivial solution of Equation (12), i.e., h = 0, corresponds to the first intersection of the
eigenvalues with the imaginary axis. Substituting this solution into Equation (11) and isolating ω

leads to:

ω1 =
1
p

R
Lc

√
− ke

ke + k∞
. (13)

This corresponds to the spin speed at which the stiffness induced by the electrodynamic
effects exactly compensates for the external stiffness, i.e., k(ω1) = |ke|, as can be verified through
Equation (4). Below this specific spin speed, the thrust bearing suffers from an instability as the external
stiffness, whose effect is destabilising due to its negative value, is larger than the electrodynamic one.
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This instability can be qualified as static as it does not depend on the damping. The static stability
condition can thus be stated as:

k(ω) ≥ |ke| ⇐⇒ ω ≥ ω1 (14)

Two limiting cases can be studied. On the one hand, when there is no external stiffness, the speed
ω1 is equal to zero and the static stability condition does not introduce any restriction on the rotor spin
speed. On the other hand, when the external stiffness is larger, in absolute value, than the maximal
electrodynamic stiffness, i.e., |ke| > k∞, the speed ω1 tends to infinity and the bearing is unstable
regardless of the rotor spin speed.

4.3. Dynamic Stability

Both remaining solutions of Equation (12) are linked to a dynamic instability as they depend on
the damping. They can be calculated as follows:

h = ±

√
1
2

C
M

R
Lc

+ ω2 p2 1
2

C
M

Lc

R
+

k∞ + 2ke

2M
. (15)

Substituting Equation (15) into Equation (11) and multiplying by 4R2/L2
c yields:

ω4 f1 + ω2 f2 + f3 = 0, (16)

where:

f1 = p4 C
M

[
C
M
− 2

R
Lc

]
f2 = 2p2 R
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M
C
M
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(

R
Lc
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]
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(
R
Lc

)2
[(

R
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C
M

)2
+

(
k∞ + 2ke

M

)2
− 2

(
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)3 C
M
− 2

(
R
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)2 k∞

M
+2

R
Lc

C
M

k∞ + 2ke

M

]
.

(17)

The polynomial in Equation (16) has at most two positive roots, thereby confirming that both
eigenvalues related to the electrical behaviour never cross the imaginary axis. Under the hypothesis
expressed in Equation (7) and still assuming that the damping satisfies Equation (8), the coefficients in
Equation (17) can be greatly simplified, leading to:

f1 = −2p4 C
M

R
Lc

f2 = 2p2
(

R
Lc

)2 [ k∞

M
− 2

R
Lc

C
M

]
f3 = −2

(
R
Lc

)4 [ R
Lc

C
M

+
k∞

M

]
.

(18)

(19)

(20)

Solving Equation (16) with these reduced coefficients allows us to determine both spin speeds ω2

and ω3 at which the relevant eigenvalues cross the imaginary axis, as shown in Figure 4:
ω2,3

∣∣
C 6=0 =

1
p

√
1
2

R
Lc

M
C

[
k∞

M
− 2

C
M

R
Lc
∓
√

∆
]

∆ =

(
k∞

M

)2
− 8

R
Lc

C
M

k∞

M

. (21)
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The value of these speeds is independent from the external stiffness ke, signifying that the
intersections of the eigenvalues with the imaginary axis occur at the same spin speeds even when the
shape of the root locus is modified by this stiffness, as shown in Figure 3b. By contrast, as mentioned in
Section 4.1, the existence of these intersections strongly depends on the external damping and stiffness.

Figure 5 shows the evolution of both speeds ω2 and ω3 with the external damping. As expected,
when the latter is equal to zero, the speed ω3 tends to infinity and therefore no longer exists, whereas
the speed ω2 can be easily calculated by observing that the coefficient f1 in Equation (18) is equal to
zero, implying that Equation (16) has only one positive solution:

ω2
∣∣
C=0 =

1
p

R
Lc

= ωe. (22)

This speed thus corresponds to spin speed ωe related to the electrical pole. Let us point out
that spin speeds smaller than this particular speed can never lie on the imaginary axis and are
therefore stable, from a dynamic point of view, regardless of the damping. As stated in Section 4.1,
adding external damping enables moving the speeds ω2 and ω3 towards each other until they intersect,
when the damping reaches Cm. Cancelling the coefficient ∆ in Equation (21) allows us to determine both
the damping Cm such that these two speeds are equal and the corresponding speed, denoted by ωm:

Cm =
k∞

8
Lc

R
=

K2
ΦN

16R

ωm =

√
3

p
R
Lc

(23)

(24)

Below this damping, the speeds ω2 and ω3 are distinct and the EDTB is unstable, from a dynamic
point of view, when the spin speed belongs to the interval [ω2 ; ω3], as shown in Figure 4. By contrast,
when the damping is larger than Cm, the eigenvalues only cross the imaginary axis at the speed ω1 and
the EDTB is stable beyond the latter speed. Consequently, unlike their static counterparts, dynamic
instabilities can be removed through additional non-rotating damping.

Finally, substituting the maximal damping given in Equation (23) into Equation (8) and
considering that the assumption in Equation (7) is verified allows us to validate the relation in
Equation (8) a posteriori, highlighting that the latter is not, as such, a hypothesis.

0

Figure 5. Evolution of the speeds ω2 and ω3 with the external damping C.

4.4. Stability Conditions

In summary, the stability can be analysed on the basis of:

• the speed ω1 related to the static instability, given in Equation (13);
• the speeds ω2 and ω3, related to the dynamic instability, as a function of the damping, defined in

Equation (21); and
• the external damping C added to the system.
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More precisely, when the maximal electrodynamic stiffness is larger than the external one, i.e.,
k∞ > |ke|, the stability is ensured at the spin speed ω provided that:{

ω ≤ ω2(C) or ω ≥ ω3(C) if C ∈ [0 ; Cm]

ω ≥ ω1
(25)

Finally, let us point out that the state-space representations in [17,21] yield an identical
characteristic polynomial to Equation (9), thus widening the scope of the previous developments to
these models.

5. Stable Speed Analysis

Assuming that the eight parameters describing the dynamic behaviour of the system are identified,
the speed ranges within which the EDTB is stable can be easily determined through the conditions
defined in Equation (25). However, let us go one step further by analysing three different cases,
depending on the relative importance of the external stiffness in comparison to the electrodynamic one.

5.1. |ke| ∈ [0 ; k∞
2 ]

Let us first consider that the external stiffness belongs, in absolute value, to the interval [0 ; k∞
2 ].

In this case, the spin speed ω1 lies between 0 and ω2|C=0. Figure 6a,b represents, respectively,
the different curves involved in the stability conditions and the corresponding root locus. As shown
in Figure 6a, the EDTB is stable when the spin speed belongs to [ω1 ; ω2] or [ω3 ; ∞[. By contrast,
when the external damping is equal to zero, the intersection linked to spin speed ω3 does not exist
and the bearing is stable only between ω1 and ω2

∣∣
C=0. Finally, when the damping is larger than Cm,

both speeds ω2 and ω3 no longer exist and the stability range is enlarged to the interval [ω1 ; ∞[.

0

0

0

Figure 6. Stability analysis for |ke| ∈ [0 ; k∞
2 ]: (a) evolution of the spin speeds ω1, ω2 and ω3 with the

external damping, yielding the stable spin speed ranges; and (b) the corresponding root locus.

5.2. |ke| ∈ [ k∞
2 ; 3k∞

4 ]

Considering then the case with the external stiffness belonging to the interval [ k∞
2 ; 3k∞

4 ], the speed
ω1 can vary from ω2|C=0 to ωm. Figure 7a,b represents, respectively, the different curves involved in
the stability conditions and the corresponding root locus. In this case, the EDTB is stable when the
spin speed belongs to [ω1 ; ω2] or [ω3 ; ∞[ provided that the damping C is larger than the damping
C1 related to ω1, as shown in Figure 7a. The latter damping can be easily calculated by inverting
Equation (21) and evaluating the resulting function at the speed ω1, yielding:

C1 = −k∞
Lc

R

[
1 +

ke

k∞ + ke

]
[

1− ke

k∞ + ke

]2 . (26)
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By contrast, when the additional damping is smaller than C1, the stability range is limited to the
interval [ω3 ; ∞[ given that the speed ω2 no longer corresponds to an intersection with the imaginary
axis, the latter speed being smaller than ω1. Let us point out that, when there is no external damping,
the system suffers from a dynamic instability for speeds larger than ω1 and is therefore unconditionally
unstable. Finally, when the damping is larger than Cm, the stable spin speed range is [ω1 ; ∞[.

0

0

0

Figure 7. Stability analysis for |ke| ∈ [ k∞
2 ; 3k∞

4 ]: (a) evolution of the spin speeds ω1, ω2 and ω3 with
the external damping, yielding the stable spin speed ranges; and (b) the corresponding root locus.

5.3. |ke| ∈ [ 3k∞
4 ; k∞]

Let us now consider the case with an external stiffness belonging to the interval [ 3k∞
4 ; k∞], implying

that the speed ω1 is larger than ωm. Figure 8a,b represents, respectively, the different curves involved
in the stability conditions and the corresponding root locus. In this last case, the stability range
corresponds to the interval is [ω3 ; ∞[ provided that the damping C is smaller than C1, as shown
in Figure 8a. Otherwise, the stable speed range is given by [ω1 ; ∞[. Let us point out that adding
an amount of external damping larger than C1 brings no benefits in terms of stability. Finally, when the
damping is equal to zero, the bearing is unconditionally unstable.

0

0

0

Figure 8. Stability analysis for |ke| ∈ [ 3k∞
4 ; k∞]: (a) evolution of the spin speeds ω1, ω2 and ω3 with

the external damping, yielding the stable spin speed ranges; and (b) the corresponding root locus.

5.4. Summary

Table 1 summarises the intervals within which the axial dynamics of the system constituted of the
EDTB coupled to the rotor is stable, depending on the external damping and stiffness.
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Table 1. Stable speed ranges.

|ke| C Interval

[0 ; k∞
2 ]

0 [ω1 ; ω2]
]0 ; Cm] [ω1 ; ω2] ∪ [ω3 ; ∞[
]Cm ; ∞[ [ω1 ; ∞[

[ k∞
2 ; 3k∞

4 ]

0 ∅
]0 ; C1] [ω3 ; ∞[
]C1 ; Cm] [ω1 ; ω2] ∪ [ω3 ; ∞[
]Cm ; ∞[ [ω1 ; ∞[

[ 3k∞
4 ; k∞]

0 ∅
]0 ; C1] [ω3 ; ∞[
]C1 ; ∞[ [ω1 ; ∞[

6. Performance Criteria

The stiffness, the losses and the stability are of primary interest when analysing a bearing.
On this basis, four criteria can be derived to evaluate the intrinsic qualities of EDTB topologies, thus
allowing us to compare them objectively. These criteria are independent from the rotor spin speed as
well as its axial displacement.

6.1. Total Stiffness

In quasi-static conditions, the total stiffness kt(ω), comprising both electrodynamic and external
effects, can be expressed as follows:

kt(ω) = − Ft(z, ω)

z
= k(ω) + ke. (27)

As stated above, the static stability of the system as well as the rotor axial position and dynamics
are directly related to this stiffness. The maximal total stiffness kt,∞ therefore constitutes a first
performance criterion to be maximised:

kt,∞ = k∞ + ke =
K2

ΦN
2Lc

+ ke, (28)

Further noting that, for fixed maximal stiffness kt,∞ and speed ω, decreasing the spin speed ωe

corresponding to the electrical pole R/Lc allows us to increase the stiffness, the latter speed constitutes
a second criterion to be minimised:

ωe =
1
p

R
Lc

. (29)

6.2. Stability Margin

As stated above, adding non-rotating damping allows us to enlarge the range within which the
system is stable. However, to be coherent with the magnetic bearing approach, the external damping
should be contactless. Considering the potential difficulty of producing the latter, the damping Cs

required to stabilise the thrust bearing regardless of the spin speed should be minimised. This is all the
more true observing that maximising the stiffness and thus minimising the speed corresponding to the
electrical pole reduces the stable speed range when there is no external damping. As mentioned in
Section 5, this damping Cs depends on the relative importance of the external stiffness in comparison
to the maximal electrodynamic one:

Cs =


Cm if |ke| ∈

[
0 ;

3k∞

4

]
C1 if |ke| ∈

[
3k∞

4
; k∞

] , (30)
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where Cm and C1 can be respectively calculated through Equations (23) and (26).

6.3. Energy Efficiency Coefficient

In addition to the restoring force, the thrust bearing produces an electrodynamic braking torque,
therefore contributing to decrease the rotor spin speed. The power P related to this braking torque is
entirely dissipated in the winding resistances in the form of Joule losses, leading to a rise in temperature
and thus being potentially detrimental to the functioning of the bearing. In quasi-static conditions,
these rotational losses can be calculated as:

P(ω) = |ω T(ω)| = z2 k∞
R
Lc

ω2

ω2 +
(

1
p

R
Lc

)2 . (31)

The bearing purpose is to provide the largest axial levitation force Ft, whereas the associated
rotational losses P have to be minimised. This amounts to maximising the following ratio:

Ft√
P
=

√√√√√ (k∞ + ke)2

k∞

Lc

R
[(pω)2 − (pω1)2]

2

(pω)2
[
(pω)2 +

(
R
Lc

)2
] . (32)

This ratio therefore only exists for rotor spin speeds larger than ω1, increasing from zero up to
reach its asymptotic value denoted by Kp:

Kp =

√
(k∞ + ke)2

k∞

Lc

R
. (33)

The energy efficiency coefficient Kp thus constitutes a fourth performance criterion to be
maximised. Lastly, in the absence of external stiffness, Equation (33) reduces to:

Kp
∣∣
ke=0 =

√
Lc

R
k∞. (34)

The latter coefficient is proportional to the square root of the external damping Cm required to
stabilise the bearing regardless of the spin speed, given in Equation (23). However, the energy efficiency
has to be maximised, whereas the additional damping has to be minimised. A trade-off between these
two criteria must therefore be considered, depending in particular on the application requirements as
regards losses and spin speed.

6.4. Summary

Table 2 summarises the four performance criteria that have been derived hereinbefore.

Table 2. Performance criteria.

Criterion Expression

Total stiffness max kt,∞ Equation (28)
min ωe Equation (29)

Required damping min Cs Equation (30)
Energy efficiency coefficient max Kp Equation (33)

7. Case Study

The case study was performed on the three EDTBs illustrated in Figure 9. The first corresponds to
a topology with a merged armature winding as internal subassembly and is denominated Topology 1.
The second bearing, denominated Topology 2, corresponds to the topology with two distinct PM
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arrangements as internal subassembly and the armature winding consisting of two sets of p coils
connected in series, the two resulting sets being themselves connected in opposition. The last one,
denominated Topology 3, is identical to the second but includes in addition back irons on which the
sets of coils are placed. In each of these three topologies, the PM arrangements comprise ferromagnetic
yokes, the remanent magnetisation is 1.42 T and the number p of pole pairs is two. The armature
winding comprises three phases (N = 3) and the conductor density, defined as the number of
conductors per unit of coil section, is 4 per square millimetre. The rotor includes the armature winding
and its mass was set to 1 kg. Lastly, the overall dimensions of the three topologies, given in Table 3,
are identical and so is their PM volume.

Figure 9. Study case: bearing topologies: (a) Topology 1; (b) Topology 2; and (c) Topology 3.

Table 3. Study case: bearing dimensions (mm).

Ri Ro hy hPM e tw l hb hw

10 50 2 3 3 5 10 2 parameter

7.1. Parametric Analysis

For each topology, a parametric analysis of the four performance criteria defined above was
performed with respect to the winding thickness hw. To this end, the model parameters were identified
for all configurations through static finite element simulations by applying the methods detailed in [18].
As illustrated in Figure 10a, the square of the ratio between the natural frequency of the equivalent
spring–mass system and the electrical pole stayed below 7%, therefore validating the assumption
in Equation (7) as well as the resulting developments with regard to the stability analyses and the
external damping required to stabilise the bearing.

Figure 10b shows the evolution of the maximal total stiffness with the winding thickness.
Topology 1 reached its maximum, namely 25.5 N/mm, when the thickness was equal to 10 mm,
whereas Topology 2 had a peak value of 23.5 N/mm for a thickness of 2 mm. Furthermore,
below a thickness of about 6.2 mm, represented by a dotted line, the total stiffness of the third
topology was negative, meaning that the detent force due to the interaction between the PMs and the
back irons was larger than the electrodynamic one and thus leading to a static instability regardless of
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the speed. Above this particular thickness, the maximal stiffness increased until it joined the curve
related to Topology 2 without ever exceeding the latter. The presence of the back irons is therefore
clearly not advantageous as regards the axial stiffness.

Figure 10c shows the evolution of the spin speed ωe corresponding to the electrical pole with the
winding thickness. Regardless of the latter, Topology 1 showed smaller speeds ωe than Topology 2,
signifying that the stiffness reached its maximum at lower speeds. However, the discrepancy between
these two topologies decreased with the thickness. As regards Topology 3, as soon as the total stiffness
became positive, the electrical pole remained smaller than the one related to Topology 2 given that the
back irons allows us to increase the cyclic inductance Lc while maintaining the resistance R unchanged.
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Figure 10. Evolution of the performance criteria with the winding thickness for the three topologies:
(a) hypothesis validation; (b) maximal total stiffness; (c) spin speed related to the electrical pole;
(d) energy efficiency coefficient; and (e) stability margin.

Figure 10d shows the evolution of the energy efficiency coefficient Kp with the winding thickness.
As regards this criterion, Topologies 1 and 2 were rather close for small thicknesses. However,
the former always outclassed the latter and the gap widened with the winding thickness. In comparison
with these two topologies, the efficiency of Topology 3 remained quite low due to the negative
contribution of the axial detent force.

Figure 10e shows the evolution of the damping required to stabilise the bearing at high speeds
with the winding thickness. As mentioned in Section 6.3, the damping related to the Topologies 1
and 2 presented an identical shape to the curves linked to the energy efficiency, given that the
latter is proportional to the square root of the required damping in the absence of external stiffness.
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More precisely, it remained limited to relatively small values, namely no more than 2.0 and 3.5 Ns/m,
respectively. By contrast, Topology 3 required slightly larger damping with up to the double,
i.e., 7.2 Ns/m.

In summary, Topology 1 is attractive for a winding thickness close to 10 mm as the stiffness kt,∞ is
maximal, whereas the spin speed related to the electrical pole is rather low, namely 5200 rpm. Besides,
the energy efficiency coefficient is important and the required damping, being equal to 2.9 Ns/m, can be
considered as reasonable in light of the values reported in the literature [23]. Topology 2 with a winding
thickness equal to 2 mm yields an almost equivalent maximal stiffness, although the electrical pole
is about four times larger. The required damping is thus smaller for this topology, being equal to
0.71 Ns/m, and therefore easier to produce. However, it also means that the energy efficiency is
reduced by a factor about 2. Let us point out that, without considering the distance l between both
parts of Topology 2, the volume occupied by both topologies is nearly identical. Only Topologies 1 and
2 with a winding thickness equal to 10 and 2 mm, respectively, were further considered.

7.2. Rotational Losses

Assuming a constant external force Fe, the resulting axial displacement can be determined
through Equation (1) as well as Equation (4) and then substituted into Equation (31) giving the
rotational losses, yielding:

P(Fe, ω) =
F2

e k∞

(k∞ + ke)2
R
Lc︸ ︷︷ ︸

PFe ,∞

(pω)2
[
(pω)2 +

(
R
Lc

)2
]

[
(pω)2 +

(
R
Lc

)2 ke
(k∞+ke)

]2 . (35)

Considering the rotor weight as external load, namely approximately 10 N, the minimal rotational
losses PFe ,∞, given in Equation (35), were, respectively, equal to 4.4 and 17.8 W for Topologies 1 and 2.
Topology 1 therefore dissipated about four times less power for an identical load. Indeed, in the
absence of external stiffness, these losses were inversely proportional to the damping Cm required to
stabilise the thrust bearing regardless of the spin speed.

7.3. Stiffness Analysis

We studied the evolution of the stiffness with the rotor spin speed for Topologies 1 and 2.
Figure 11a,b represents, respectively, while taking into account the stability conditions for each
spin speed and amount of external damping, the maximal stiffness among both topologies and the
corresponding topology. The solid and dashed lines illustrate, respectively, the stability boundary
related to Topologies 1 and 2, the latter being defined as the evolution with the damping of the speeds
ω2,3 given in Equation (21). In this way, below each curve, the corresponding topology suffers from
a dynamic instability, also implying that both are unstable in the white zone.

Regardless of the spin speed, Topology 1 provided a higher stiffness and reached its maximal
stiffness k∞ for lower speeds than Topology 2 given that the electrical pole was smaller. By contrast,
in the absence of additional damping, Topology 1 was also unstable for a smaller speed. Indeed,
as stated in Section 6.1, minimising the spin speed ωe related to the electrical pole amounts to
reducing the stable speed range when there is no external damping. Therefore, between about 5000
and 20,000 rpm, namely the spin speeds related to the electrical poles of both topologies, Topology 2
offers the major advantage of not requiring external damping to ensure the axial stable levitation of
the rotor. This brief analysis shows that the rotor spin speed can still strongly influence the bearing
selection according to the application specifications.
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Figure 11. Comparison of the stiffness of Topologies 1 and 2 while taking into account their stability
boundaries (solid and dashed lines respectively): (a) maximal stiffness with the spin speed; and (b) the
corresponding topology.

8. Conclusions

This paper presents four criteria allowing us to compare objectively various electrodynamic thrust
bearing topologies based on their intrinsic qualities and therefore to determine the most appropriate.

On the basis of the recent linear state-space representations describing the axial dynamics of
EDTBs, an analytical static and dynamic stability analysis is performed through the calculation of the
eigenvalues of the state matrix. The impact of the external damping and stiffness is studied through
a root locus as a function of the rotor spin speed, highlighting that the former allows us to move the
eigenvalues to the left, thus improving the stability, whereas the latter modifies their shape. Besides,
the spin speeds corresponding to intersections with the imaginary axis are calculated, therefore
defining the ranges within which the thrust bearing is stable. In the absence of additional damping
and external stiffness, the thrust bearing is stable up to the spin speed related to the electrical pole.

When it comes to comparing magnetic bearings, the maximal eccentricity, the losses and the
stability are of primary interest. As a result, the following four performance criteria are defined:
(i) the maximal total stiffness; (ii) the spin speed corresponding to the electrical pole; (iii) the levitation
energy efficiency, defined as the ratio between the thrust force and the corresponding rotational losses;
and (iiii) the damping required to stabilise the bearing regardless of the rotor spin speed. Three different
thrust bearing topologies, studied in the framework of a case study, are finally compared on the
basis of these criteria, notably highlighting that the addition of back irons behind the sets of coils has
no beneficial effect as regards axial dynamics due to the important detent stiffness.
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