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Abstract: Active mounting systems have become more prevalent in recent years to effectively mitigate
structure-induced vibration across the automobile chassis. This trend is particularly evident in engine
mounts. Considerable research has been dedicated to this approach owing to its potential to enhance
the quietness and travel comfort of automobiles. However, prior research has concentrated on a
limited spectrum of specific vibrations and noise control or has been restricted to vertical vibration
control. This article describes the modeling, analysis, and control of a source structure employing a
multidirectional active mounting system designed to closely simulate the position and direction of an
actual automobile engine mount. A piezoelectric stack actuator is connected in series to an elastic
(rubber) mount to form an active mount. The calculation of the secondary force required for each
active mount is achieved through the application of harmonic excitation forces. The control signal
can also reduce vibrations caused by destructive interference with the input signal. Furthermore,
horizontal oscillations can be mitigated by manipulating the parameters via dynamic interconnections
of the source structure. We specifically examined the level of vibration reduction performance in
the absence of a vertical active element operation and determined whether the control is feasible.
Simulation outcomes demonstrate that this active mount, which operates in both the vertical and
horizontal directions, effectively mitigates excitation vibrations. Furthermore, a simulation was
conducted to mitigate the vibrations caused by complex signals (AM and FM signals) and noise. This
was achieved by monitoring the system response using an adaptive filter NLMS algorithm. Adaptive
filter simulations demonstrate that the control efficacy degrades in response to complex signals and
noise, although the overall relaxation trend remains unchanged.

Keywords: active engine damaged actuator; mounting system; multi-spectral control; NLMS algorithm;
passive mount; piezoelectric stack actuator

1. Introduction
1.1. Research Background

Vibration and noise are produced when most mechanical devices work, and they
degrade machine performance in terms of reliability and durability. Owing to the rapid
growth of technology, it is vital to fulfill not only the performance satisfaction of a product
but also the emotional pleasure that can be felt through human sensory experiences. Taking
automobiles as a representative emotional product, the durability, fuel economy, and
crash performance of vehicles were deemed crucial throughout the previous automobile
development stage, whereas consumers have recently demanded ride comfort and noise
vibration harshness (NVH) performance. Figure 1a shows the general powertrain structure
of an electric vehicle, which includes a motor with two brackets, and a reducer with one
bracket. These brackets serve as a connection to the vehicle’s subframe and also serve as a
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rubber mount to transmit less vibration from the powertrain. Figure 1b shows the actual
powertrain of the KIA Soul electric vehicle, and the red circle is the part of the mounting
system that is connected to the chassis. Owing to the development of electric vehicles, there
is also a need to control the noise and vibration of vehicles, which has become difficult due
to the excitation forces generated by the motors and gearboxes, as opposed to those in the
internal combustion engine. Therefore, it is essential to conduct research and design engine
mounts that sustain the powertrain of a vehicle and isolate the car from the vibrations
conveyed by the powertrain.
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Figure 1. (a) EV powertrain mounts; (b) EV mounting system.

Passive engine mounting techniques are now utilized in the vast majority of commer-
cial vehicles to isolate vibrations in the low-frequency range adequately but are incapable
of isolating vibrations at high frequencies. In particular, the spectrum and level of vibration
and noise generated from the powertrain (motor + reducer) of next generation vehicles,
including electric and hybrid electric vehicles, which have recently been in the spotlight, are
completely different from that of existing internal combustion engines. This is because the
driving principles themselves are different, and the vibration and noise caused by future
vehicles have a much more complex spectrum and are signals in the relatively mid- and
high-frequency bands.

Consequently, smart-structure-based active engine mounting technology, which can
improve ride comfort and NVH performance in a variable environment by modifying the
mount dynamics to suit the low- or high-frequency range, has garnered significant interest
as a key technology in automobile development. Figure 2 shows a conceptual explanation
of the active vibration control system in automotive mounts. Its principle (when simply
explained) is that when a sine wave disturbance is applied, as shown in the upper right
picture, the secondary force from the actuator is generated and has the same frequency,
same amplitude, but a 180-degree different phase with the disturbance. When these two
signals are added, the resulting vibration can (theoretically) be completely eliminated at
the end.
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1.2. Literature Search

An engine mount functions as an integral component of a vehicle, providing support
to the powertrain and preventing the transmission of vibrations from the powertrain to
the vehicle chassis. Rubber, which is viscoelastic by nature, is conventionally employed;
however, its application is restricted to low-frequency insulation, as it lacks the capability
to regulate vibrations in the high-frequency range. To commercialize electric vehicles, the
automotive industry has recently made significant investments; consequently, numerous
studies are being conducted to determine how to regulate the more complex external force
produced by gearboxes and motors compared to those produced by internal combustion
engines. The principles and limitations of passive, semi-active, and active mounts have
been outlined by Yu et al. [1]. Passive mounts, such as manual hydraulic mounts and
elastic mounts, effectively regulate vibration in the low-frequency range but are incapable
of doing so in the high-frequency range. Semi-active mounts commonly employ magneto-
rheological (MR and electro-rheological (ER) fluids, which exhibit superior vibration control
capabilities in the low-frequency range compared to passive mounts but remain ineffective
in the high-frequency range. Active elastic and active hydraulic mounts, which combine an
actuator with an existing passive mount, are representative of active mounts. Vibrations can
be regulated in both high- and low-frequency ranges by modulating the dynamic rigidity of
the actuator corresponding to each frequency band. A nonlinear and experimental model
of a motor mount with a solenoid actuator was created by Hosseini et al. [2]. By connecting
a viscous damper and an actuator in series, Kraus et al. [3] demonstrated how to create
an engine mount; their model decreased vibration and noise. Chae et al. [4] installed an
MR damper on an ambulance bed stage to reduce the vibrations. Yang et al. [5] used
an adaptive multi-notch filtering technique to isolate the vibrations from four hydraulic
actuators. Jeon et al. [6] presented a novel controlled engine-mounting system utilizing a
piezo stack actuator for the RH mount and a magneto-rheological fluid actuator for the
roll mount. A magnetostrictive actuator was used in tests by Jiang et al. [7] to regulate
vibration actively. Fakhari et al. [8] established isolation by applying a robust reference
adaptive control model to an electromagnetic engine mount through simulations and exper-
imentation. Elahinia et al. [9] introduced a semi-active actuator using magneto-rheological
and electro-rheological fluids to demonstrate its effectiveness in isolating vibrations and
shocks. Wu et al. [10] used a magnetic spring with high static–low dynamic stiffness (MS-
NS) properties to create a vibration insulator. Truong [11] constructed a mathematical
model and simulated the hydraulic engine. Kamada et al. [12] showed that combining a
column and piezoelectric actuator for active vibration control may effectively isolate the
vibration of a structure. Loukil et al. [13] presented a technique for harnessing the power of
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a piezo actuator through energy harvesting that exhibited successful isolation performance.
Sui et al. [14] used a PZT to create a vehicle engine mount with fast reaction characteristics,
and they used a simulation to demonstrate the vibration reduction performance.

Choi et al. compared the vibration-reduction efficacy of a shear-mode-type ER fluid
engine mount using a sliding-mode controller (SMC) [15]. Research has demonstrated that
the vibration response of an SMC operating with a variable electric field for the input current
is diminished compared to the case of applying a constant electric field. Using an MR
fluid, Sarkar et al. proposed a method for designing an optimal engine mount. Vibration
is diminished across all frequency ranges through magnetic field control to regulate the
dynamic stiffness of the MR fluid and obstruct its passage [16]. However, fluid discharge
is a significant issue, and fluid is extremely difficult to control when utilized as an engine
mount. Chang et al. supplemented the dynamic vibration absorber (DVA) method with the
QZS (Quasi-Zero-Stiffness) method to regulate the anti-resonance produced at an extremely
low frequency (2.3 Hz), which DVAs were incapable of controlling [17]. Through an active
mount that integrates a rubber mount in series with a PZT (piezoelectric) stack actuator,
Liette et al. [18] highlighted the efficacy of a hybrid vehicle’s power electric frequency
band in reducing vibration and noise. Furthermore, Hong and Kim [19] conducted an
analytical investigation on a mounting system that included a PZT stack actuator and
rubber mount on a vehicle model with a plate structure and then also utilized one active
mount and two rubber mounts; their findings verified the suitability of the system. In
addition, Hong and Kim [20] developed a quantification technique to identify the best
inputs for active structural routes analytically. The derived inputs must be adjusted through
experimentation; however, they perform well numerically.

Qiu et al. validated the effectiveness of vibration reduction by varying the position of
a PZT stack actuator in a plate structure model. Based on this information, they developed
criteria to guide the placement of an active mount to mitigate vibrations [21] further. This
approach can potentially be an optimal solution for addressing the fluid leakage issue
and the uncontrollability problem in the high-frequency region of the current mounting
system. In addition, it can leverage the rapid response and low power consumption benefits
of PZT. When implementing active engine mounts (AEMs), it is crucial to consider the
controller. Theoretical and experimental analyses of secondary path changes in AEMs
were conducted by Hausberg et al., who also utilized the Fx-LMS algorithm, an adaptive
filter, to forecast the dynamic properties of AEMs [22]. Bartel et al. [23] introduced a novel
engine mount design incorporating dynamic force resistance. As demonstrated by the
results, the proposed engine mount could isolate vibrations. Numerous research initiatives
are currently underway to implement active control via skyhook attenuation. In their
study, Li and Goodall [24] examined various control methodologies implemented in the
active suspension systems of railway vehicles and utilized skyhook damping control. The
absolute velocity signal was filtered using Kalman-filter-based nonlinear techniques. An
energy-adaptive skyhook gain was incorporated into a novel, zero-energy active suspension
system proposed by Singal and Rajamani [25]. This methodology demonstrated that the
system functions as an active system across a wide frequency spectrum and a passive
system across all frequencies. Emura et al. [26] devised a semi-active suspension system
featuring skyhook dampening to enable the active regulation of the damping coefficient
and configuration of the system. Chai et al. investigated the active control application of
composite lattice sandwich plates with piezoelectric actuators and sensors. The response of
the plates was determined using nonlinear equations, and velocity feedback and H-infinity
controllers were implemented [27].

1.3. Research Purpose

Through studying instances of interest, scientists are developing several types of smart
materials for vibration insulation of the car body caused by the engine. The vibrations were
isolated using engine-mounting solutions based on smart structures. Because of the nature
of ER and MR fluids and the possibility of fluid leakage, semi-active mounting systems
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struggle to regulate vibrations across a broad frequency range. An active mounting method
that combines a piezoelectric actuator with rubber, a viscoelastic material, is presented
to address this issue. Researchers have suggested using an adaptive filter as the actuator
input signal and monitoring the system response signal to reduce vibration. Furthermore, a
technique for altering the structure when a single frequency is stimulated or a narrowband
vibration reduction is desired is not appropriate for an electric car that is impacted by
complicated signals produced by the gearbox, transmission, and motor.

As a result, we considered vertical and horizontal vehicle engine mount combina-
tions when designing the source–path–receiver structure in this study. We also measured
the vibration reduction achieved by utilizing the PZT stack actuator and active mount in
conjunction with rubber. The actuator used in this concept has a force acting along the
direction of the path and the external force has the most direct effect on the vertical mount.
In real situations, when excessive load is applied, there is a high probability that the vertical
mount will have problems first. Thus, a situation in which the vertical actuator does not
operate is assumed. A thorough approach for examining mounting structure vibrational
behavior is suggested. A structure that was inspired by an automotive mount is examined
and its interactions between vertical and lateral vibration are observed. Moreover, the
effectiveness of vibration attenuation is assessed and contrasted with respect to the particu-
lar positions used to measure actuator input. Finally, the proposed structure is subjected
to multi-spectral excitations in order to examine its vibration reduction capabilities for
somewhat complex vibration signals.

This article is organized as follows: A two-dimensional, six-degrees-of-freedom model
is presented in Section 2, with integrated active mounts in the vertical and horizontal
directions. A scenario is considered in which the vertical active mount fails and only the
horizontal active mount remains operational. The attenuation performance is compared by
analytically calculating the input value for each path with a single sinusoid excitation in
Section 3.1. Additionally, the normalized LMS (NLMS) algorithm is used for the secondary
channel (secondary force from the actuator) when complex signals such as amplitude-
modulated (AM) and frequency-modulated (FM) signals are stimulated in Section 3.2. The
findings of this study and potential avenues for future research are outlined in Section 4
as conclusion.

2. Horizontal Active Mounting System for Vibration Reduction
2.1. Six Degrees of Freedom Modeling

The modeling was performed assuming that the horizontal active mount would
remain operational if the vertical active mount failed. Figure 3 shows the vehicle subframe
construction, AEM, and powertrain. The vibration source was identified as the engine, the
vibration routes were the rubber-coupled active mount and the piezo stack actuator, and
the vibration recipient was the subframe. The source was built as a curved two-dimensional
structure, whereas the receiver was created as a two-dimensional beam structure because
the engine mounted on the real vehicle was fixed horizontally to the engine and subframe.

The mass of the source is represented by m1, the receiver mass by m2, the actuator
mass in the horizontal direction by mac1, the source moment of inertia in the y direction by
Iy
1 , and the receiver moment of inertia in the y direction by Iy

2 . The distances between each
route and the center of gravity of the source and receiver are denoted by variables lsi and
lri, respectively, whereas the distance between the source and position of the exciting force
application is denoted by variable d. The actual stiffness and damping are represented as
kz

mi, kx
mi, and kz

bi and cz
mi, cx

mi, and cz
bi when the complex stiffness values are transformed

into the Kelvin–Voigt formula. In this study, a six-degrees-of-freedom model was proposed
to explain the horizontal translational motion, rotating motion along the y-axis, vertical
translational motion of the horizontally linked active mount, and vertical translational mo-
tion of the source and receiver. The source’s vertical displacement εz

1 and the corresponding
angle of rotation θ

y
1 , the receiver’s vertical displacement εz

2 and the corresponding angle of
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rotation θ
y
2 , the vertical displacement of the horizontal active mount εz

ac1, and the horizontal
displacement εx

ac1 make up the displacement vector.
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Equation (1) shows the equation of motion obtained from the previous model using
Newton’s second law, where Wz is the excitation force and f x

ac1 is the control force of the
horizontal active mount.

M
..
q + C

.
q + Kq = W + F (1)

Values are assigned to the following components of Equation (1): q denotes the
displacement vector, M is the mass matrix, C is the damping matrix, K is the rigidity matrix,
W is the excitation force vector, and F is the control force vector pertinent to the active
mount. Equations (2)–(7) encompass expressions for the mass matrix, stiffness matrix,
damping matrix, displacement vector, excitation force vector, and control force vector:

M = diag
([

m1 m2 mac1 mac1 Iy
1 Iy

2

])
, (2)

K =



kz
m1 + kz

m2 −kz
m1 −kz

m2 kzx
m2

−kz
m1 kz

m1 + kz
m3 + kz

b1 + kz
b2 −kz

m3 kzx
m3

−kz
m2 −kz

m3 kz
m2 + kz

m3 −kzx
m2 − kzx

m3

kzx
m2 kzx

m3 −kzx
m2 − kzx

m3 kx
m2 + kx

m3

kz
m2ls2 − kzx

m2ls3 − kz
m1ls1 kz

m1ls1 −kz
m2ls2 + kzx

m2ls3 kzx
m2ls2 − kx

m2ls3

−kz
m1lr3 kz

m1lr3 + kz
m3lr4 − kz

b1lr1 + kz
b2lr2 − kzx

m3lr5 −kz
m3lr4 + kzx

m3lr5 kzx
m3lr4 − kx

m3lr5

kz
m2ls2 − kz

m1ls1 − kzx
m2ls3 −kz

m1lr3

kz
m1ls1 kz

m1lr3 + kz
m3lr4 − kz

b1lr1 + kz
b2lr2 − kzx

m3lr5

−kz
m2ls2 + kzx

m2ls3 −kz
m3lr4 + kzx

m3lr5

−kx
m2ls3 + kzx

m2ls2 −kx
m3lr5 + kzx

m3lr4

kz
m1l2

s1 + kz
m2l2

s2 + kx
m2l2

s3 − 2kzx
m2ls2ls3 kz

m1ls1lr3

kz
m1ls1lr3 kz

m1l2
r3 + kz

m3l2
r4 + kx

m3l2
r5 + kz

b1l2
r1 + kz

b2l2
r2 − 2kzx

m3lr4lr5


, (3)
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C =



cz
m1 + cz

m2 −cz
m1 −cz

m2 czx
m2

−cz
m1 cz

m1 + cz
m3 + cz

b1 + cz
b2 −cz

m3 czx
m3

−cz
m2 −cz

m3 cz
m2 + cz

m3 −czx
m2 − czx

m3

czx
m2 czx

m3 −czx
m2 − czx

m3 cx
m2 + cx

m3

cz
m2ls2 − czx

m2ls3 − cz
m1ls1 cz

m1ls1 −cz
m2ls2 + czx

m2ls3 czx
m2ls2 − cx

m2ls3

−cz
m1lr3 cz

m1lr3 + cz
m3lr4 − cz

b1lr1 + cz
b2lr2 − czx

m3lr5 −cz
m3lr4 + czx

m3lr5 czx
m3lr4 − cx

m3lr5

cz
m2ls2 − cz

m1ls1 − czx
m2ls3 −cz

m1lr3

cz
m1ls1 cz

m1lr3 + cz
m3lr4 − cz

b1lr1 + cz
b2lr2 − czx

m3lr5

−cz
m2ls2 + czx

m2ls3 −cz
m3lr4 + czx

m3lr5

−cx
m2ls3 + czx

m2ls2 −cx
m3lr5 + czx

m3lr4

cz
m1l2

s1 + cz
m2l2

s2 + cx
m2l2

s3 − 2czx
m2ls2ls3 cz

m1ls1lr3

cz
m1ls1lr3 cz

m1l2
r3 + cz

m3l2
r4 + cx

m3l2
r5 + cz

b1l2
r1 + cz

b2l2
r2 − 2czx

m3lr4lr5


, (4)

q =
[
εz

1 εz
2 εz

ac1 εx
ac1 θ

y
1 θ

y
2

]T , (5)

W =
[
Wz 0 0 0 Wzd 0

]T , (6)

F =
[
0 0 0 f x

ac1 0 0
]T . (7)

To assess the importance of the vibration-reduction performance resulting from the
influence of the active mount, the model constructed using the center-of-gravity coordinates
was transformed into mount coordinates to analyze the displacement of the position
adjacent to the mount, as illustrated in Figure 4.
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The source’s vertical displacement next to the vertical mount in Figure 4 is repre-
sented by 𝜉௠ଵ௭ , the source’s vertical displacement next to the horizontal mount by 𝜉௠ଶ௭ , the 
receiver’s vertical displacement next to the vertical mount by 𝜉௠ଷ௭ , and the receiver’s ver-
tical displacement next to the horizontal mount by 𝜉௠ସ௭ . The transformation matrix of the 
six-degrees-of-freedom model is given in Equation (9) by assigning each location to the 
internal and external dividing point equations, as shown in Equation (8). 

Figure 4. Model of mounting system allowing multidirectional installation using mount coordinates.

The source’s vertical displacement next to the vertical mount in Figure 4 is repre-
sented by ξz

m1, the source’s vertical displacement next to the horizontal mount by ξz
m2,

the receiver’s vertical displacement next to the vertical mount by ξz
m3, and the receiver’s

vertical displacement next to the horizontal mount by ξz
m4. The transformation matrix of



Actuators 2024, 13, 171 8 of 25

the six-degrees-of-freedom model is given in Equation (9) by assigning each location to the
internal and external dividing point equations, as shown in Equation (8).

εz
1 =

ξz
m1ls2 + ξz

m2ls1

ls1 + ls2
=

ls2

ls1 + ls2
ξz

m1 +
ls1

ls1 + ls2
ξz

m2 (8)

Π =



ls2
ls1+ls2

ls1
ls1+ls2

0 0 0

0 0 0 lr4
lr3+lr4

lr3
lr3+lr4

0 0 1 0 0
− 1

ls1+ls2
1

ls1+ls2
0 0 0

0 0 0 − 1
lr3+lr4

1
lr3+lr4

 (9)

The displacement vector of the mount coordinates can be represented by Equation (10),
utilizing the transformation matrix of Equation (9). To convert the equation of motion to
mount coordinates, the transformation matrix must be multiplied by the mass, damping,
and stiffness matrices of the center of gravity coordinates, as shown in Equation (11).

q′ =
[
ξz

m1 ξz
m2 εz

ac1 ξz
m3 ξz

m4
]T (10)

..
M

′ ..
q′ + C′ .

q′ + K′q′ = W + F (11)

The effective confirmation of the vibration-reduction performance when only the
vertical active mount is operating comes from the horizontal direction response trend de-
rived from the equation of motion converted to mount coordinates, the dynamic relational
expression in the following section, and Equation (11).

2.2. Horizontal Displacement Trend through Dynamic Relations

The proposed aggregated parameter model does not permit the determination of the
horizontal response; however, it enables the determination of the vertical response at each
position. This study utilized the dynamic relationship of the structure to compute the
horizontal direction response trend for each position. Additionally, this study identified the
position adjacent to the horizontal mount that substantially influences the displacement in
the horizontal direction. Figure 5 illustrates the dynamic mobility of the source structure.
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In the above illustration, the source is shown in its equilibrium condition by the dot-
ted line, whereas the source is shown to move due to an external force from the solid line. 
The displacement of the source near the horizontal mount is equal to the sum of ① and ②, where ① comes from the property of an isosceles triangle and the trigonometric for-
mula of Equation (12) and ② comes from the ratio of similitude, as specified in Equation 
(13). 

Figure 5. Dynamic movement of source via external force.

In the above illustration, the source is shown in its equilibrium condition by the dotted
line, whereas the source is shown to move due to an external force from the solid line. The
displacement of the source near the horizontal mount is equal to the sum of 1⃝ and 2⃝,
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where 1⃝ comes from the property of an isosceles triangle and the trigonometric formula of
Equation (12) and 2⃝ comes from the ratio of similitude, as specified in Equation (13).

1⃝ = ξz
m2tan

(
θ

y
1
2

)
(12)

2⃝ : ξz
m2 = ls3sin

(
θ

y
1

)
: ls2sin

(
θ

y
1

)
(13)

Based on Equations (12) and (13), Equation (14) defines the horizontal displacement
trend of the source adjacent to the horizontal mount:

ξx
m2 =

(
tan

(
θ

y
1
2

)
+

ls2

ls3

)
ξz

m2. (14)

Equation (14) can be linearized to yield Equation (15).

ξx
m2 =

(
θ

y
1
2

+
ls2

ls3

)
ξz

m2 (15)

As demonstrated by the preceding equation, the horizontal displacement of the source
is affected by the geometry of the structure, the source rotation angle, and the vertical
displacement. Because of the difficulty in altering the structure of the source, its horizontal
displacement is determined by its vertical displacement. The dynamic movement of the
receiver structure is illustrated in Figure 6.
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Figure 6. Dynamic movement of receiver via external force.

The dashed line in Figure 6 represents the equilibrium state of the receiver, and
the solid line represents the receiver’s response to an external stimulus. The receiver
displacement adjacent to the horizontal mount is defined as ξx

m4, which is equal to 1⃝ when
deriving the horizontal displacement of the source using the characteristics of an isosceles
triangle and the formula for a trigonometric function.

ξx
m4 = ξz

m4tan

(
θ

y
2
2

)
(16)

Equation (16) can be linearized to yield Equation (17).

ξx
m4 =

θ
y
2
2

ξz
m4 (17)

This equation demonstrates that its rotation angle and vertical displacement influence
the horizontal displacement of the receiver. Consequently, it can be controlled through
horizontal receiver displacement. Therefore, the vertical and horizontal responses of the
7-DOF model were examined.
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2.3. Secondary Pathway Input Quantification

The response produced when a harmonic force is activated depends significantly on
both the amplitude and phase values. The excitation and control forces can be expressed in
a complex number form using Euler’s law as Equations (18) and (19), respectively, because
the harmonic force can be expressed in a complex number form using Euler’s law.

Wz∗(t) = Wzeiωt (18)

f z∗
ac1(t) = f z

ac1ei(ωt+ϕac1) (19)

The excitation force amplitude in the equation above is denoted by Wz, the excitation
frequency by the horizontal direction control force amplitude by f x

ac1, and the horizontal
direction control force phase by ϕac1. Applying the excitation and control forces to the
mount coordinate model yields a response at each location. Equation (20) displays each
position response.

ξ(t) = ξz
mi(t) (20)

The response that is influenced by the excitation force and the control force input
through the secondary channel is ξz

mi(t), which is the vertical displacement of the i-position
of the mount coordinates. The compliance matrix, the inverse of the dynamic stiffness
matrix, was used to determine the matrix. Equations (21) and (22) were used to express the
dynamic stiffness and compliance matrices, respectively, based on the mount coordinates.[

κ∗′
]
= −ω2′M′ + iωC′ + K′ (21)

H∗′ =
[
κ∗′
]−1

=


H∗

11
′ H∗

12
′ H∗

13
′ H∗

14
′ H∗

15
′

H∗
21

′ H∗
22

′ H∗
23

′ H∗
24

′ H∗
25

′

H∗
31

′ H∗
32

′ H∗
33

′ H∗
34

′ H∗
35

′

H∗
41

′ H∗
42

′ H∗
43

′ H∗
44

′ H∗
45

′

H∗
51

′ H∗
52

′ H∗
53

′ H∗
54

′ H∗
55

′

 (22)

The displacement at each position of the mount coordinates is derived from the
compliance matrix using Equation (23).

q′ = H∗′W + H∗′F (23)

As shown in Equation (23), the response can be expressed using the compliance matrix,
excitation force, and control force. This shows that the amplitude of the excitation force,
amplitude of the control force, and phase can be used to express the movement of each
location. The displacement of each location is established using Equation (24).

ξ∗j (t) =
(

Ξz∗
mje

iβmj + Ξz∗
mj.ac1ei(ϕac1+βmj.ac1)

)
eiωt (24)

The displacement responses at position j have an amplitude Ξz∗
mj owing to the excitation

force, a phase βmj due to the excitation force, an amplitude Ξx∗
mj.ac1 due to the horizontal

mount control force, and a phase βmj.ac1 due to the horizontal mount control force. Using
the compliance matrix, Equations (25)–(28) represent the amplitude and phase, respectively.

Ξz∗
mj =

(
H∗

j1
′ + H∗

j4
′d
)

Wz (25)

Ξz∗
mj.ac1 = H∗

j3
′ f z

ac1 (26)

βmj = ∠
(

H∗
j1
′ + H∗

j4
′d
)

(27)

βmj.ac1 = ∠H∗
j3
′ (28)
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Therefore, all but two unknowns of the amplitude and phase of the horizontal mount
control force are known in Equation (24), which represents the displacement. We assume
a control force phase that makes the phase values equal, as indicated in Equation (29), to
compute the horizontal mount control force that causes zero displacement.

βmj = βmj.ac1 + ∅ac1 (29)

The phase that the vertical mount should have in accordance with Equation (29), as
shown in Equation (30), is as follows:

∅ac1 = βmj − βmj.ac1. (30)

Equation (30) is substituted into Equation (24) to obtain the following definition:

ξ∗j (t) =
(

Ξz∗
mj + Ξz∗

mj.ac1

)
ei(ωt+βmj). (31)

Equation (24) allows the displacement at position j to be equal to zero by setting
the amplitude component to 0. As only one unknown exists, this displacement can be
calculated using only one equation. The horizontal mount amplitude that causes the
displacement of the jth position to zero is determined using Equation (32) by substituting
Equations (25) and (26) for the amplitude component of Equation (31).

f z
ac1 = −

Wz
(

H∗
j1
′ + H∗

j4
′d
)

H∗
j3
′ (32)

Therefore, the control force containing the phase value of Equation (30) and amplitude
value of Equation (32) must be supplied to the secondary path to regulate the displacement
of the j-th position to zero. There are four different strategies for achieving zero displace-
ment of the location next to the mount in the six-degrees-of-freedom model. These include
the (1) source displacement next to the vertical mount, (2) receiver displacement next to
the vertical mount, (3) source displacement next to the horizontal mount, and (4) receiver
displacement next to the horizontal mount.

3. Simulation

A simulation was performed to confirm the functionality of the model before exper-
imenting to validate the previously generated formulae using a laboratory setup with a
structure with two mounts. The simulation parameters are listed in Table 1, which were
derived from the following experimental setup in Figure 7. In a subsequent study, this
setup will be used to confirm the simulation results: The upper part is the source, which
symbolizes the vehicle’s engine, while the lower part is the receiver, which symbolizes
the subframe of the vehicle. Each active path consists of a piezoelectric stack actuator and
a rubber grommet. The accelerometer signal was measured in real time using DS1104
(from dSPACE GmbH, Paderborn, Germany) and disturbance force was applied using an
electrodynamic shaker; it was measured using the impedance head attached to the end
of the stinger. Calculations were performed for masses and inertias. An accelerometer
monitored the reaction of the stack mass when excited by a chirp voltage signal, which was
used to evaluate stiffness and damping values. As a result, there was only one resonance
peak, and the stiffness value was calculated using the half-power approach and the natural
frequency formulation.
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Table 1. Variable values and units applied to 6-degrees-of-freedom simulation.

Variable Value Unit Variable Value Unit

m1 1.721 kg cz
m2 = cx

m2 = czx
m2 140 Ns/m

m2 1.350 kg cz
m3 64 Ns/m

mac1 0.075 kg cz
b1 = cz

b2 200 Ns/m
I1 33.402 gm2 ls1 = ls3 50.686 mm
I2 18.070 gm2 ls2 179.314 mm

kz
m1 5.46 kN/mm lr1 = lr2 136 mm

kz
m2 = kx

m2 = kzx
m2 0.5 kN/mm lr3 = lr5 0 mm

kz
m3 0.61 kN/mm lr4 200 mm

kz
b1 = kz

b2 0.42 kN/mm d 50 mm
cz

m1 22 Ns/m
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The secondary path input value substitution simulation was performed with verti-
cal and horizontal active mounts positioned at the center of gravity of the source and
receiver. The vibration reduction performance was verified by comparing the reaction
when the excitation force was input alone with the response when the excitation force
and estimated control input were applied. The response was confirmed using a linear
time-invariant state–space approach. Using the mass-damping–spring equation of motion
transformed to the mount coordinates of Equation (11), the state–space equation is defined
as Equations (33)–(35).

.
x(t) = Ax(t) + Bu(t) (33)

y(t) = Cx(t) + Du(t) (34)

A =

[
05×5 I5×5

−M′−1K′ −M′−1C′

]
B =

[
05×5

−M′−1

]
(35)

C =

[
I2×2 02×1 02×2 02×5
02×2 02×1 I2×2 02×5

]
D = 0 (36)

Matrices A, B, C, and D in Equation (35) represent the system state, input, output,
and direct transfer term, respectively. The outcome of the simulation is expressed as the
displacement of the position next to the mount by changing the state variable in line with
Equation (37).

y(t) =
[
ξz

m1(t) ξz
m2(t) ξz

m3(t) ξz
m4(t)

]T (37)

3.1. Control via Quantified Input

To mimic the calculated secondary route input of the 5-DOF model, the excitation
frequency was set to 400 Hz, the excitation amplitude to a sinusoidal signal of 10 N, and the
sampling frequency to 15 kHz. Figure 8 shows the displacement responses for the 6-DOF
model when only the excitation force was used.
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impacted by the excitation force shakes significantly when a control force is not provided 
via the secondary channel, as shown in Figure 8. 𝑀𝑜𝑢𝑛𝑡2ௌ௭, which is distant from the cen-
ter of gravity, is particularly vulnerable to vibrations. This problem was solved by substi-
tuting the secondary path input values determined using the four previously described 
approaches, which confirmed the vibration reduction performance. The steady-state re-
sponse graph and root mean square of the steady-state response were used to compare 
the 6-DOF vibration-reduction effectiveness of each method. An example of the basic sim-
ulation scheme is shown in Figure 9. 
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sition 4; Case 3 zeroes out the vertical displacement at position 2; and Case 4 successfully 
cancels out the vertical displacement at position 5. The simulation was performed by 
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Mount(i)z
s , in Figure 8, represents the vertical displacement of the i-th source posi-

tion based on the left side of the mount coordinates, Mount2x
s represents the horizontal

displacement of the source adjacent to the horizontal mount, Mount(i)z
R represents the

vertical displacement of the i-th receiver position, and Mount2x
R represents the horizontal

displacement of the receiver adjacent to the horizontal mount. The source immediately
impacted by the excitation force shakes significantly when a control force is not provided
via the secondary channel, as shown in Figure 8. Mount2z

S, which is distant from the center
of gravity, is particularly vulnerable to vibrations. This problem was solved by substi-
tuting the secondary path input values determined using the four previously described
approaches, which confirmed the vibration reduction performance. The steady-state re-
sponse graph and root mean square of the steady-state response were used to compare
the 6-DOF vibration-reduction effectiveness of each method. An example of the basic
simulation scheme is shown in Figure 9.
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Figure 9. Model schematic for simulation.

In Figure 9, position 1 represents the response Mount1z
S (marked as P1), position 2 rep-

resents Mount2z
S (marked as P2), position 3 represents Mount2x

S (marked as P3), position 4
represents Mount1z

R (marked as P4), and position 5 represents Mount2z
R (marked as

P5_vert) and Mount2x
R (marked as P5_horiz). To this end, Case 1 zeroes out the verti-

cal displacement at position 1; Case 2 zeroes out the vertical displacement at position 4;
Case 3 zeroes out the vertical displacement at position 2; and Case 4 successfully cancels
out the vertical displacement at position 5. The simulation was performed by replacing
the secondary path input of the horizontal active mount, which aimed to achieve a vertical
displacement of zero, with an alternative. First, the control results for Case 1, which aims



Actuators 2024, 13, 171 14 of 25

to achieve a vertical displacement of ‘0’ for the source adjacent to the vertical mount, are
illustrated in Figure 10’s steady-state response graph and compared in Table 2 between the
RMS values before and after the implementation of the control.
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Table 2. Comparison of results before and after Case 1 control.

[Unit: µm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert P5_horiz

Before Control 0.6291 1.0668 0.3015 0.0802 0.2425 2.39 × 10−7

After Control 0
100%↓

0.9169
14.04%↓

0.2592
14.04%↓

0.1144
42.66%↑

0.2339
3.54%↓

2.49 × 10−7

4.22%↑

In Case 1, the secondary path input was a sinusoidal signal with a frequency of
400 Hz and an amplitude of −27.8996 N. The vibration of Mount1z

S was reduced by 100%,
that of Mount2z

S and Mount2x
S by 14.04%, and that of Mount2z

R by 23.92%, whereas the
vibrations of Mount1z

R and Mount2x
R were amplified by 43.34% and 4.22%, respectively.

The method in Case 1 effectively dampens engine-generated vibrations but exacerbates
subframe-generated vibrations.

Figure 11 and Table 3 illustrate the control results for Case 2 (the target vertical
displacement of the receiver adjacent to the vertical mount is equal to zero).
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Table 3. Comparison of results before and after Case 2 control.

[Unit: µm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert P5_horiz

Before Control 0.6291 1.0668 0.3015 0.0802 0.2425 2.39 × 10−7

After Control 2.1016
234%↑

5.7085
435.2%↑

1.6136
435.2%↑

0
100%↓

0.2676
10.36%↑

2.19 × 10−7

8.43%↓

In Case 2, the calculated input for the secondary path was a 400 Hz sine wave with
an amplitude of −65.331 N. Except for the targeted vibration at Mount1z

R, the remaining
locations experienced an increase in vibration. Case 2 control requires a control force
greater than six times the excitation force because the second path is calculated with the
displacement at a location distant from the active mount.

Figure 12 and Table 4 illustrate the control results for Case 3 (target the vertical
displacement of the source adjacent to the horizontal mount to ‘0’).
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Table 4. Comparison of results before and after Case 3 control.

[Unit: µm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert P5_horiz

Before Control 0.6291 1.0668 0.3015 0.0802 0.2425 2.39 × 10−7

After Control 0.2910
53.75%↓

0
100%↓

0
100%↓

0.0986
22.97%↑

0.238
1.85%↓

2.45 × 10−7

2.46%↑

In Case 3, the calculated input for the secondary path was a 400 Hz sine wave with an
amplitude of −15.0122 N. The vibration of Mount1z

S was mitigated by 53.75% and 100%
in the targeted Mount2z

S, 100% in Mount2x
S, and 1.85% in Mount2z

R, whereas the vibration
tended to worsen by 22.97% for Mount1z

R and 2.46% for Mount2x
R. This demonstrates that

the engine vibration was well controlled in Case 3, whereas the subframe vibration could
not be controlled.

The control results for Case 4 are depicted in Figure 13 and Table 5 (the intended
vertical displacement of the receiver adjacent to the horizontal mount is ‘0’).
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[Unit: µm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert P5_horiz

Before Control 0.6291 1.0668 0.3015 0.0802 0.2425 2.39 × 10−7

After Control 6.0759
865.8%↑

19.4799
1726%↑

5.5063
1726%↑

0.3778
371%↑

0
100%↓

0
100% ↓

In Case 4, the secondary path input was a sinusoidal signal with a frequency of 400 Hz
and an amplitude of −278.9964 N. Although the targeted Mount2z

R and Mount2x
R demon-

strated a tendency for 100% vibration reduction, the vibration tended to increase at all other
positions. This is because the force required for control in Case 4 is unreasonably greater
than the amplitude of the exciting force; therefore, only the displacement at the target
position is controlled, and the control force at other positions exacerbates the vibration.
Therefore, the control in Case 4 is ineffective and exacerbates the vibration. A comparison
of the results for each case reveals that the 6-DOF model exhibits appropriate control power
and control results only at the targeted position with generally negative effects on the
other positions.

3.2. Control through NLMS Algorithm

When employing the calculated secondary path input for control, the control force
must be recalculated in response to modifications in the external environment or the
excitation force. To address this concern, we employed an adaptive filter that adjusts the
filter coefficients according to the environmental conditions. LMS algorithms, which are
representative adaptive filter algorithms, can regulate vibrations. The LMS algorithm is
a straightforward and dependable method implemented extensively for vibration and
noise reduction. However, the initial values have a significant impact on the convergence
characteristics of the filter coefficients, resulting in a comparatively slow convergence rate.

The LMS algorithm is a recursive adaptive filtering system algorithm. The variables
yk, dk, and k represent the filter output, the original signal (system output), and the discrete
time, respectively. The relationship between an error signal ek, a reference signal uk, and a
filter coefficient vector wk is defined as follows:

wk+1 = wk + µ · uk · ek. (38)

The parameter denoted as µ is utilized to control both the rate of convergence and
stability. Scaling sensitivity is the primary drawback of the “pure” LMS algorithm with
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respect to its input uk. This makes it exceedingly challenging, if not unattainable, to select
a learning rate µ that ensures algorithm stability. By normalizing with the input’s power,
the normalized least mean squares filter (NLMS), a variant of the LMS algorithm, resolves
this issue.

wk+1 = wk +
µ

∥uk∥2 + δ
· uk · ek (39)

This study employed two techniques: the NLMS algorithm, which addresses the
limitations of the LMS algorithm, and a real-time vibration regulation method based on
monitoring the source response, which is the most prominent signal among the sensor
outputs. Prior to conducting the experiments, this procedure was simulated to determine its
feasibility. An NLMS control simulation of the 6-DOF system is illustrated in Figure 14. By
employing the NLMS algorithm, which is an adaptive filter for the six-degrees-of-freedom
model, one can generate an FM signal, a simple sinusoidal signal, or an AM signal by
replacing the active mount input with a signal whose phase and gain correspond to those
of the source adjacent to the vertical active mount. A simulation was conducted to verify
the effectiveness of vibration reduction.
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In accordance with Equation (40), the simulation input for the case in which the
excitation force is a simple sinusoidal signal is a sinusoidal signal with an amplitude of
10 N and a frequency of 400 Hz.

u(t) = 10sin(400 × 2πt) (40)

In the case of a simple sine wave excitation, the simulation produced the time do-
main response graphs in Figures 15 and 16, a comparison of the RMS values of the time
domain steady-state response before and after control in Table 6, and the frequency do-
main in Table 7. A comparison of the RMS values allowed us to determine the vibration-
reduction efficacy.

As shown in Table 6, the vibration was reduced by 36.77% for Mount1z
s , 69.5% for

Mount2z
s and Mount2x

s , 6.5% for Mount1z
R, and 1.69% for Mount2z

R but not for Mount2x
R,

which declined by 3.54%. Mount2x
R had an extremely low value before and after the

control. Therefore, the Mount2x
R results are excluded from the frequency domain results in

Table 7. The vibration tended to be reduced by 43.97% in Mount1z
s , 78.04% in Mount2z

s and
Mount2x

s , 12.4% in Mount1z
R, and 2.08% in Mount2z

R. This suggests that the vibration and
co-motion of the vehicle’s engine and subframe can be reduced. When the sinusoidal signal
was excited, the NVH performance of the vehicle was enhanced through NLMS control.
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Figure 15. Time domain comparison of NLMS control source in case of sine wave: (a) position 1; (b) 
position 2; and (c) position 3. 
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Figure 16. Time domain comparison of NLMS control source in case of sine wave: (a) position 4 and 
(b) position 5. 

  

Figure 15. Time domain comparison of NLMS control source in case of sine wave: (a) position 1;
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Table 6. Comparison of steady-state RMS results before and after NLMS control.

[Unit: µm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert P5_horiz

Before Control 0.6536 1.0923 0.3088 0.1882 0.5118 5.49 × 10−7

After Control 0.4133
36.77%↓

0.3332
69.5%↓

0.0942
69.5%↓

0.176
6.5%↓

0.5032
1.69%↓

5.69 × 10−7

3.54%↑

Table 7. Comparison of FRF RMS results before and after NLMS control.

[Unit: mm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert

Before Control 1.0588 1.7953 0.5075 0.2736 0.8159

After Control 0.5933
43.97%↓

0.3942
78.04%↓

0.1114
78.04%↓

0.2397
12.4%↓

0.7989
2.08%↓

Due to the development of electric vehicles (EVs), vehicle powertrains produce signals
with at least two to three frequencies. This indicates that it is difficult to control the
system by calculating the secondary path input, as described in Section 2.3, or using the
NLMS algorithm alone. Figure 17 illustrates that when AM and FM signals with multiple
frequencies are excited, the multi-NLMS algorithm with multiple channels is used as
a control.
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Figure 17. Multi-NLMS algorithm schematic diagram. Figure 17. Multi-NLMS algorithm schematic diagram.

When an input signal uk containing n frequency components enters the system, an
NLMS filter is placed on each frequency component to modify the filter coefficient, and
the signals for each frequency component are added to generate an output signal. This is a
method for minimizing the signal errors.

Equation (41) defines the simulation input for the case in which the excitation force is
an amplitude-modulated (AM) signal with a carrier frequency of 20 Hz, whose amplitude
changes sinusoidally and has three frequency components.

u(t) = 5sin(400 × 2πt){1 + cos(20 × 2πt)} (41)
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For each NLMS input, the frequency component of Equation (40) is inserted, as shown
in Equations (42)–(44):

u1(t) = sin(380 × 2πt), (42)

u2(t) = sin(400 × 2πt), (43)

u3(t) = sin(420 × 2πt). (44)

The generated signals were added and applied to the input of the secondary path
via gain and phase controls. In contrast to sinusoidal signals, it is challenging to compare
the responses of AM and FM signals in the time domain. Therefore, they were compared
using frequency response graphs (FRF) using FFT. Figures 18 and 19 depict the results of
multi-NLMS control when the excitation force was an AM signal, as shown in the frequency
response diagrams. In addition, the RMS responses in the time domain from 4 s to 4.05 s
before and after control are compared at each position in Table 8.
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Figure 18. Comparison of FRF of NLMS control in case of AM signal: (a) position 1; (b) position 2;
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Table 8. Comparison of steady-state RMS results before and after NLMS control (AM).

[Unit: µm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert P5_horiz

Before Control 0.4245 0.6953 0.1965 0.1391 0.3455 2.94 × 10−7

After Control 0.3495
17.67%↓

0.4315
37.95%↓

0.122
37.95%↓

0.1356
2.55%↓

0.3348
3.09%↓

3.06 × 10−7
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In accordance with the time domain RMS results presented in Table 8, the vibrations
tended to be reduced by 17.67% in Mount1z

s , 37.95% in Mount2z
s and Mount2x

s , 2.55%
in Mount1z

R, and 3.09% in Mount2z
R in comparison to before control. Nonetheless, it

declined by 4.13% in Mount2x
R. Moreover, the FRF RMS tended to reduce the vibration

by 25.12% in Mount1z
s , 41.48% in Mount2z

s and Mount2x
s , 8.63% in Mount1z

R, and 2.52%
in Mount2z

R. When an AM signal is excited, it exhibits a tendency similar to a sinusoidal
signal; however, its efficacy is poor. This indicates that the complex signal is excited, and
the abatement performance is diminished. Based on the results, the vibration and loudness
of the vehicle engine and subframe were reduced. When the AM signal was excited, the
NVH performance of the vehicle was enhanced through NLMS control.

Equation (45) defines the simulation input for the case in which the excitation force is
a frequency-modulated (FM) signal with a carrier frequency of 20 Hz, whose frequency is
changing sinusoidally and ideally has an infinite number of frequency components.

u(t) = 10cos(400 × 2πt + sin(20 × 2πt)) (45)

For each NLMS input, parts of the frequency components of Equation (45) are entered,
as shown in Equations (42)–(44). Figures 20 and 21 illustrate the frequency responses
resulting from the application of the FM signals.

Using the time domain RMS values shown in Table 9, the vibrations were reduced
by 21.42% in Mount1z

s , 38.11% in Mount2z
s and Mount2x

s , 17.33% in Mount1z
R, 5.34% in

Mount2z
R, and 5.34% in Mount2x

R relative to the control. When the FM signal is excited,
it exhibits a behavior similar to that of a sine wave or AM signal, but its performance is
subpar. This indicates that the complex signal is excited, and the abatement performance
is diminished. When the FM signal is excited, it can be seen that the control results
reduce the vibration and commotion of the engine and subframe in the time domain
and frequency domain. This demonstrates that when only the horizontal active mount
is used the vibration reduction performance is inferior to that when both vertical and
horizontal active mounts are employed; however, the NVH performance of the vehicle can
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be enhanced. If the vertically active mount fails, the vibration mitigation effect diminishes,
necessitating repair [28].
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Table 9. Comparison of steady-state RMS results before and after NLMS control (FM).

[Unit: µm]
SOURCE RECEIVER

P1 P2 P3 P4 P5_vert P5_horiz

Before Control 0.6570 1.1010 0.3112 0.1950 0.5336 6.39 × 10−7

After Control 0.5162
21.42%↓

0.6813
38.11%↓

0.1926
38.11%↓

0.1854
4.91%↓

0.5196
2.61%↓

6.05 × 10−7

5.34%↓

4. Conclusions

In this study, an elastomer and a piezo actuator were used to build an engine mount
between the engine and the vehicle subframe. The vibration-reduction performance was
then assessed by orienting the device in the direction of the engine-mounted connection.
The entire structure was conceived and simulated as a source–path–receiver, with the
vehicle engine acting as the source, the active mount acting as the route, and the subframe
acting as the receiver. Mathematical modeling was used to investigate the ability of the
structure to reduce vibrations while utilizing both vertical and horizontal active mounts.
Considering a situation in which the vertically active mount malfunctions or solely serves as
a horizontally active mount, a six-degrees-of-freedom simulation was executed to examine
the vibration reduction capabilities of the structure. When AM and FM signals with
three frequency components were excited using the adaptive filter NLMS algorithm, the
vibration reduction effect was verified in the case of a sinusoidal signal. This was achieved
by determining the amplitude and phase required for each active mount.

Vibration-reduction performance decreases when only the horizontal active mount is
the sole one used, and a control force larger than the excitation force is required. Further-
more, when the validation of the impact of the NLMS algorithm on vibration reduction
during the excitation of complex signals and noise occurred, it was shown that, while
the vibration conveyed to the receiver decreased less than that of the system with two
active paths, the monitored source’s vibration was considerably reduced. As a result, if
the vertical active mount fails, the model exhibits appropriate control power and control
results only at the targeted position with generally negative effects on the other positions.
The vibration of the subframe is judged to be on par with its pre-control level, requiring
maintenance. It is possible to reduce the vibration of a structure effectively by applying
a force in the horizontal direction, while further investigation is required to ascertain the
relationship between the vertical and horizontal paths.

The contributions of this research are as follows:

(1) A comprehensive methodology is proposed to analyze the vibrational behavior of
mounting structures. This approach incorporates mathematical modeling and quan-
tification of actuator inputs, enabling its applicability and expansion to encompass a
wide range of mounting systems.

(2) This study investigates and observes the interactions between vertical and lateral
vibration of a structure inspired by an automotive mount. Previous research has
predominantly concentrated on the actuation method and vibration attenuation in a
single direction. Furthermore, the efficacy of vibration attenuation is evaluated and
compared in relation to the specific positions employed to quantify actuator input.
This would also contribute to the development of an actuation strategy.

(3) Multi-spectral excitations are applied to the suggested structure to investigate the
vibration reduction performance for relatively complicated vibration signals.

In future studies, because the actuator failure issue prevented the experiment from
occurring, we will first validate each simulation by addressing this problem before ex-
perimenting. To enable more effective control, we also demonstrate how the connection
orientation of the engine mount affects the source and receiver. Additionally, the perfor-
mance of the proposed vibration reduction structure should be validated by considering
both transient and steady-state conditions simultaneously. Eventually, this work should be
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applied to real-world applications to check its feasibility of vibration reduction with the
consideration of actuator saturation.
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