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Abstract: In this work, a fixed-time leader-following event-triggered (ET) consensus problem for
multi-agent systems (MASs) with external disturbances is investigated. A distributed observer is
developed to achieve the estimated state of the leader. By means of the observation information,
the consensus error system for multi-agents is reformulated into a tracking error system, wherein
individual follower agent aims to track the leader agent. Building upon Lyapunov technology
and fixed-time stability theory, a new ET protocol is introduced to mitigate communication wastes.
Notably, the proposed controller incorporates a strong robust fixed-time control form with lower
complexity, and a reliable dynamic triggering condition also ensures the excellent performance of the
system. Rigorous demonstrations underscore the stability and robustness of the ET method, while
guaranteeing the avoidance of Zeno behavior. Finally, several numerical simulations are provided to
underscore the efficacy of the proposed protocols.

Keywords: fixed-time; multi-agent systems; distributed observer; event-triggered

1. Introduction

In the dynamic landscape of multi-agent systems (MASs), the paradigm of cooperative
control has witnessed a surge of interest and consequential breakthroughs in recent years.
Noteworthy achievements span diverse domains, including but not limited to sensor
network deployment [1], encirclement hunting guidance [2], forest fire monitoring [3],
transportation [4], and so on. Consensus control stands as one of fundamental problems in
cooperative control, aiming to devise the appropriate control strategy such that a collective
of agents to attain a desired agreement on states or outputs.

To fulfill the objective of consensus for MASs, various methods were designed that
attuned to interactive information among the agents. A sign rigidity theory was intro-
duced in [5], where a distributed consensus algorithm based on displacement and distance
was designed to achieve formation control in two-dimensional space. Additionally, in-
corporating area constraints helped eliminate formation specification singularities. In [6],
the consensus problem for MASs with time delays was investigated, and an average state
feedback was devised to ensure the robustness of the system. In [7], the investigation
addressed the consensus problem under jointly connected topologies and temporal delays,
a Lyapunov–Krasovskii function describing the current and past dynamics was constructed
to guaranteed convergence of MASs.

Leader-following consensus, heralded for its efficiency in communication reinforce-
ment, takes precedence in consensus control. In contrast to leaderless consensus [8–10],
the leader-following approach not only elevates collaborative efficiency, but also adapts
more readily to diverse environmental and task-specific demands, providing a flexible and
reliable solution for practice applications. In [11], the leader-following consensus problem
of second-order MASs was investigated, a feedback tracking control protocol was proposed
to enhance convergence accuracy in terms of the distinct input delays. In [12], the partial
differential equations/ordinary differential equation-based MASs was analyzed with a
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leaderless and leader-following model, wherein the corresponding coupling strengths were
determined and controllers are designed to ensure consensus. In [13], a concise solution for
achieving leader-following consensus in MASs was introduced by employing a distributed
observer and dynamic gain controller to ensure fast convergence of a high-order system.
Focusing on a leader-following MAS within a directed communication graph, a reset con-
sensus controller was introduced in [14]. By transforming the regularity problem into a
continuous Skolem problem, this controller contributed to an improvement in transient
performance and resource utilization.

Time-scheduled control methods are commonly utilized in practical control systems
due to their well-established theoretical framework. Conversely, event-based control
methods, responsive to specific events, confer practical advantages for achieving consensus
in MASs by enhancing adaptability to real-time dynamics and fostering improved system
responsiveness. Certain limitations arise from noncontinuous measurement, including
inadequate computation resources and calculation accuracy, as sensors often provide
sampled signals [15]. To address these challenges, implementing sampling control becomes
crucial. This approach effectively lowered the communication update frequency, thereby
mitigating control costs. A dynamic event-triggered mechanism was introduced in [16]
to a co-designed distributed controller, which incorporated a dynamic parameter and
effectively reduced the trigger frequency of events. In [17], an adaptive event-triggered
(ET) controller was proposed, which enhanced the self-regulating capability of the ET
mechanism. Ref. [18] employed composite ET conditions to achieve distributed consensus
in a leader–follower scenario. This method extended its applicability to a bounded control
strategy encompassing with general directed graphs.

Within the domain of MAS consensus research, most results showcase progressive
convergence [19,20]. Notably, these investigations consistently tie the convergence time to
the initial state of a single agent, highlighting a prolonged convergence when the initial
state becomes large. Fortunately, the fixed-time control theory offers a novel solution, which
ensures the system converges within a bound time independent of the initial states [21].
Moreover, in diverse fields like aerospace systems [22,23] and vehicle systems [24,25],
fixed-time control theory has gained significant traction. Meanwhile, its capacity for strong
integration with other methods, including observer control [26,27], optimal control [28],
fault-tolerant control [29], and so on. Additionally, the ET controller can obtain better
convergence accuracy and convergence speed under the fixed-time mechanism. In [30],
a fixed-time consensus control strategy was proposed for MASs with nonlinear dynamics,
which utilized a discontinuous ET method to reduce controller power consumption. In [31],
an ET controller based on axis-angle attitude representation was introduced under the
switching topologies, in which attitude consensus was achieved by fixed time. In [32],
a ET control scheme was proposed to address the formation problem of MASs with multi-
dimensional dynamics and disturbances, thus realizing time-varying formation control.
The nonlinear uncertainties were considered in [33], and a comprehensive analysis of
MASs was conducted by combining centralized and distributed strategies to examine the
fixed-time ET method.

In light of the aforementioned discussions, it is significant to strike a balance be-
tween computation resources and convergence performance. Fortunately, there have been
preliminary investigations into the fixed-time ET strategy. Nevertheless, problems like
frequent triggering frequencies and complex controller forms persist in fixed-time ET the-
ory. To address these problems, a new fixed-time consensus algorithm combined with an
ET mechanism is proposed for MASs with respect to external disturbances in this work.
The primary contributions can be encapsulated as:

(1) A reasonable structure for solving the multi-agent ET consensus problem is built.
Based on observer theory, the consensus system is transformed into a leader’s state estima-
tion system and a tracking control system. A new form of fixed-time controller is proposed
to deal with external disturbances directly.
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(2) According to the information on continuous triggering condition monitoring,
a optimized ET mechanism is proposed. Compared with [33,34], the optimized dynamic
trigger function is constrained by a fixed threshold, which can ensure a more stable trig-
ger frequency while guaranteeing the fixed-time convergence performance. In addition,
the trigger time is independent for each follower agent under the distributed controller.

Notation 1. The following symbols are used in this work. The definition of symbol ⌈·⌋ is introduced
as ⌈η⌋α ≜ [|η1|αsign(η1), |η2|αsign(η2), . . . , |ηm|αsign(ηm)]

T, with positive number α. λ(P)
and λmin(P) denote the eigenvalue and the smallest eigenvalue of the matrix P, respectively.
Constant vector 1m =

[
1, 1, . . . , 1︸ ︷︷ ︸

m

]
∈ Rm.

2. Preliminaries

In the following, a compilation of graph theory, lemmas and problem description are
presented, contributing to aspects of the proposed consensus strategy.

2.1. Description of Algebraic Graph Theory

To depict information communication among one leader agent and follower agents,
fundamental concepts in graph theory are used. In the context of an undirected graph
G = (V , E , A), which consists of vertices V = {v1, v2, . . . , vN} and an index set of edges
E =

{
(vi, vj)|vi, vj ∈ V

}
. A = [aij] ∈ RN×N stands for the adjacency matrix, with aij = 1

for (j, i) ∈ E , j ̸= i, otherwise aij = 0. The in-degree matrix is defined as

D = diag(d1, d2, . . . , dn) ∈ RN×N , and its elements di =
n
∑

j=1
aij. Furthermore, the Laplacian

matrix L = [lij] ∈ RN×N can be calculated by L = D −A. The diagonal matrix B ∈ RN×N

represents the connectivity between the ith follower and the leader, which is defined as
B = diag(b1, b2, . . . , bn), bi ≥ 0. To streamline the depiction, define L+ B = H.

Assumption 1. The augmented graph G stands as an undirected structure, while containing a
spanning tree rooted at the leader node.

2.2. Lemmas

Lemma 1 ([35]). For arbitrary ζi ≥ 0 (i = 1, 2, . . . , N), the subsequent inequalities are satisfied

N1−r

(
N

∑
i=1

ζi

)r

≤
N

∑
i=1

ζr
i ≤

(
N

∑
i=1

ζi

)r

,

(
N

∑
i=1

ζ
p2
i

) 1
p2

≤
(

N

∑
i=1

ζ
q2
i

) 1
q2

.

where r > 1 and 0 < q2 < p2.

Lemma 2 ([36]). For any scalar y,

y tanh(by) ≥ |y| − δ

b
.

where b > 0 and δ = 0.2785.

Lemma 3 ([37]). Suppose a positive definite and continuous radially unbounded function V obeys
V̇ ≤ −p1Vq1 − p2Vq2 with p1 > 0, p2 > 0, 0 < q1 < 1 and 1 < q2. Then, the globally fixed-time
stability can be achieved, and the settling-time Tf is bounded by

Tf <
1

p1(1 − q1)
+

1
p2(q2 − 1)

.
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Furthermore, if r1 ≜ q2−1
1−q1

≤ 1, a more accurate time estimation of Tf is

Tf ≤ Tmax ≤ 1
1 − q1

(
1

√
p1 p2

tan−1
√

p2

p1
+

1
p2r1

)
Lemma 4 ([38]). In the other case, the Lyapunov function satisfies V̇ ≤ −p3Vq3 − p4Vq4 + ϑp
when ϑp is a small known positive number, p3 > 0, p4 > 0, 0 < q3 < 1 and q4 > 1. Then, the
practical fixed-time stability can be achieved, and the settling-time Tp is bounded by

Tp <
1

γp p3(1 − q3)
+

1
γp p4(q5 − 1)

,

with 0 < γp < 1, and the residual set of states is denoted as

ς =

{
V
∣∣∣∣V ≤ min

{(
ϑp

(1 − γp)p3

) 1
q3

,
(

ϑp

(1 − γp)p4

) 1
q4

}}
.

Lemma 5. Suppose a positive definite symmetric matrix P. There exists a vector X satisfying
(PX)TPX = XTPPX ≥ λmin(P)XTPX.

Proof. An orthogonal decomposition for matrix P yields P = QΛQT with QTQ = I and
Λ = diag(λi(P)).

XTPPX = XTQΛQTQΛQTX = XTQΛ2QTX = XTQΛ
1
2 ΛΛ

1
2 QTX.

According to the eigenvalue inequality, one has

XTQΛ
1
2 ΛΛ

1
2 QTX ≥ λmin(Λ)XTQΛ

1
2 Λ

1
2 QTX = λmin(P)XTPX.

Lemma 6 ([39]). Within the framework of the leader-following scenario, it is imperative that the
team leader plays the role of the spanning tree’s root. The communication matrix H = L+ B has
positive real parts if and only if a globally reachable value exists in G. That means there is a reachable
communication path between the leader and each follower.

Remark 1. According to Lemma 6 and Assumption 1 of this work, under the leader-following
communication structure, the matrix H satisfies the following:
(1) H is a positive definite matrix and its eigenvalues λi(H) > 0, i = 1, 2, . . . , N.
(2) There exists a vector X satisfying XTHX ≥ λmin(H)XTX

2.3. Problem Description

Considering a MAS with N agents and one leader, which is represented by{
ẋ0(t) = u0(t),

ẋi(t) = ui(t) + di(t).
(1)

where i = 1, 2, . . . , N. xi(t) ∈ R and x0 ∈ R are the system state and the leader state, re-
spectively. ui(t) ∈ R is the control input of agent i. di(t) ∈ R is the exogenous disturbance.

In the context of autonomous systems, such as vehicle systems and robotic systems,
which typically exhibit nonlinear and underactuated characteristics. However, the work fo-
cuses on first-order systems with respect to position for simplicity. Meanwhile, the stability
of the system (1) is proved rigorously by means of Lyapunov method.



Actuators 2024, 13, 40 5 of 15

Assumption 2. For MAS (1), the unknown exogenous disturbance di(t) is satisfied |di(t)| ≤ D,
with D is a positive constant.

Assumption 3. The control input u0(t) of leader is dynamic and unknown, subject to an upper
limit |u0(t)| ≤ u0M, with u0M is a positive constant.

Definition 1. The system (1) is said to achieve the practical fixed-time consensus when there
exists an inequation |xi(t)− x0(t)| ≤ δ1, t ≥ T for arbitrary initial conditions xi(t0), with T is a
solvable constant and δ1 is a small positive constant.

3. Main Results

For this part, a new distributed control method is formulated to address the fixed-time
leader-following consensus problem in MASs. The devised procedure comprises two steps.
Firstly, each follower agent is equipped with a distributed observer to estimate the leader’s
state. Subsequently, an ET tracking controller is employed to guarantee the synchronization
of the states of each agent with the leader’s state estimation. It is noteworthy that both
steps converge within a fixed time.

3.1. Distributed Fixed-Time Observer

Distributed observers are meticulously designed for follower agents, aimed at esti-
mating the leader’s state. It is crucial to emphasize that the information communication
between leader-following agents is intimately linked with the graph theory structure
expounded in Section 2.1. The following observation structure is adopted:

˙̂zi(t) = −k1sign(yi(t))− k2⌈yi(t)⌋β1 ,

yi(t) =
N

∑
j=1

aij
(
ẑi(t)− ẑj(t)

)
+ bi(ẑi(t)− x0(t)).

(2)

where k1 > 0, k2 > 0 and β1 > 1. The variable ẑi(t) is each agent’s observation for the
leader’s state x0(t).

Theorem 1. Let the observation error z̃i(t) = ẑi(t)− x0(t). If the observation design follows the
form of (2), then the observation error z̃i(t) will converge to the origin within a fixed time.

Proof. Under the protocol (2), the observed states can be rewritten into a compact form.
Define Y(t) = [y1(t), y2(t), . . . , yN(t)]

T and Ẑ(t) = [ẑ1(t), ẑ2(t), . . . , ẑN(t)]
T. Thus, Z̃(t) =

Ẑ(t)− 1N x0(t) and Y(t) = HZ̃(t).
In order to demonstrate that the observation error z̃i(t) can converge within a fixed

time, choose the Lyapunov function

V1 =
1
2

N

∑
i=1

z̃i(t)yi(t)

=
1
2

Z̃THZ̃

(3)

By differentiating (3), one has
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V̇1 = Z̃TH ˙̃Z

= YT(t)
[
−k1sign(Y(t))− k2⌈Y(t)⌋β1 − 1Nu0(t)

]
≤ −(k1 − u0M)

N

∑
i=1

|yi(t)| − k2

N

∑
i=1

|yi(t)|1+β1

≤ −(k1 − u0M)
N

∑
i=1

|yi(t)| − k2N−β1

(
N

∑
i=1

|yi(t)|
)1+β1

.

(4)

By means of Lemmas 1 and 5, one has

N

∑
i=1

|yi(t)| ≥
(

N

∑
i=1

y2
i (t)

) 1
2

=
(
(HZ̃(t))THZ̃(t)

) 1
2 .

Thus, (4) can be transformed as

V̇1 ≤ −(k1 − u0M)
(
(HZ̃(t))THZ̃(t)

) 1
2 − k2N−β1

(
(HZ̃(t))THZ̃(t)

) 1+β1
2

≤ −(k1 − u0M)
(

λmin((H)Z̃(t))THZ̃(t)
) 1

2 − k2N−β1
(

λmin((H)Z̃(t))THZ̃(t)
) 1+β1

2

≤ −(k1 − u0M)
√

2λmin(H)V
1
2

1 − k2N−β1(2λmin(H))
1+β1

2 V
1+β1

2
1

≤ −α1V
1
2

1 − α2V
1+β1

2
1 .

with α1 = (k1 − u0M)
√

2λmin(H) and α2 = k2N−β1(2λmin(H))
1+β1

2 . Thus, with the aid
of Lemma 3, the observer system will converge to zero in fixed time T1, which can be
computed as

T1 ≤ 2
(

1
α1α2

tan−1
√

α2

α1
+

1
α2(β1 − 1)

)
.

3.2. Event-Triggered Tracking Control

On the basis of Observation (2), by defining the tracking error ei(t) = xi(t)− ẑi(t) =
xi(t)− x0(t)− z̃i(t), one obtains

ėi(t) =ẋi(t)− ˙̂zi(t) = ui(t) + di(t) + k1sign(yi(t)) + k2⌈yi(t)⌋β1 . (5)

When the observation error converges, that is z̃i(t) = 0 and yi(t) = 0, then the error
dynamic model (5) can be simplified as

ėi(t) = ui(t) + di(t). (6)

With the aim of reducing control costs and enhancing convergence speed, for each
follower agent in the system (6), the fixed-time ET consensus protocol is designed as follows:

ui(t) =− k3 tanh

(
ei(ti

k)

ϵ

)
− k4⌈ei(ti

k)⌋
β2 , (7)

with k3 > 0, k4 > 0, β2 > 1, and ϵ is a small positive number. ti
k represents the k-th ET

moment of the agent i.
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Theorem 2. Define measurement error ξi(t)

ξi(t) = k3 tanh

(
ei(ti

k)

ϵ

)
+ k4⌈ei(ti

k)⌋
β2 − k3 tanh

(
ei(t)

ϵ

)
− k4⌈ei(t)⌋β2 .

then, the controller (7) can be morphed into:

ui(t) =− ξi(t)− k3 tanh
(

ei(t)
ϵ

)
− k4⌈ei(t)⌋β2 . (8)

Give the trigger function F(t) = |ξi(t)| − κ1 tanh
(
|ei(t)|

ϵ

)
− κ2.

ti
k = inf{t > ti

k : F(t) ≥ 0}, i = 1, 2, . . . , N. (9)

Under the control protocol (8) and Assumption 2, if the controller parameter k3 satisfies
k3 > κ1 + κ2 + D, the practical leader-following consensus can be achieved within a fixed time,
and Zeno behavior is excluded.

Proof. For each follower agent, the distributed controller (7) is updated when the event is
triggered. Then, the trigger function satisfies |ξi(t)| = 0. Consider the case where the event
is not triggered, which is |ξi(t)| < κ1 tanh

(
|ei(t)|

ϵ

)
+ κ2. Furthermore, select the following

Lyapunov candidate function:

V2 =
1
2

N

∑
i=1

e2
i (t). (10)

By taking the derivative of (10), one can obtain

V̇2 =
N

∑
i=1

ei(t)ėi(t)

=
N

∑
i=1

ei(t)
[
− ξi(t)− k3 tanh

(
ei(t)

ϵ

)
− k4⌈ei(t)⌋β2 + di(t)

]

≤
N

∑
i=1

|ei(t)||ξi(t)| − κ1

N

∑
i=1

|ei(t)| tanh
(
|ei(t)|

ϵ

)
− (k3 − κ1)

N

∑
i=1

|ei(t)|

+ (k3 − κ1)Nδϵ − k4

N

∑
i=1

|ei(t)|β2+1 +
N

∑
i=1

|ei(t)||di(t)|

(11)

By means of Assumption 2, one has

V̇2 ≤− (k3 − κ1 − κ2 − D)
N

∑
i=1

|ei(t)| − k4

N

∑
i=1

|ei(t)|β2+1 + (k3 − κ1)Nδϵ

+
N

∑
i=1

|ei(t)|
(
|ξi(t)| − κ1 tanh

(
|ei(t)|

ϵ

)
− κ2

)

≤− (k3 − κ1 − κ2 − D)

(
N

∑
i=1

e2
i (t)

) 1
2

− k4N
1−β2

2

(
N

∑
i=1

e2
i (t)

) β2+1
2

+ (k3 − κ1)Nδϵ

≤− α3V
1
2

2 − α4V
β2+1

2
2 + ν,

(12)
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with α3 = (k3 − κ1 − κ2 − D)
√

2, α4 = k4N
1−β2

2 2
β2+1

2 and ν = (k3 − κ1)Nδϵ. Moreover,

the solution of system will reach V2 = ς1, ς1 =

{
V2

∣∣∣∣V2 ≤ min
{(

ν
(1−γ)α3

)2
,
(

ν
(1−γ)α4

) 2
β2+1

}}
in fixed time T2 with 0 < γ < 1.

T2 <
2

γα3
+

2
γα4(β2 − 1)

,

Zeno behavior denotes the occurrence of events at an exceptionally high frequency
within a brief time interval, resulting in undesirable consequences. The following demon-
strates that the system, under the specified ET control protocol, avoids exhibiting Zeno

behavior. According to (10) and (12), we have
N
∑

i=1
e2

i (t) = 2V2 ≤ 2V2(t0), so |ei(t)| ≤ 2V2(t0).

Take the time derivative of |ξi(t)|

|ξi(t)|
′
= k3

(
tanh

(
|ei(t)|

ϵ

))′

+ k4β2⌈ei(t)⌋β2−1 ėi(t). (13)

in which (
tanh

(
|ei(t)|

ϵ

))′

=
sign(ei(t))

ϵ

(
1 − tanh2

(
ei(t)

ϵ

))
ėi(t) ≤

|ėi(t)|
ϵ

. (14)

Therefore, substituting (14) into (13) yields

|ξi(t)|
′ ≤ k3|ėi(t)|

ϵ
+ k4β2|ei(t)|β2−1|ėi(t)|

≤ γ1|ui(t) + di(t)|

≤ γ1

(
k3 + k4|ei(ti

k)|
β2 + D

)
,

in which γ1 = k3
ϵ + k4β2(2V2(t0))

β2−1. If ti
k represents the ith agent’s latest trigger moment,

then ξi(ti
k) = 0.

|ξi(t)| ≤
∫ t

ti
k

|ξi(s)|
′
ds

≤
∫ t

ti
k

γ1

(
k3 + k4|ei(si

k)|
β2 + D

)
ds.

According to (12), discrete tracking error variable ei(ti
k+1) is the monotonic subtraction

of the triggered moment. It is reasonable to assume that ei(ti
k+1) has an upper bound

|ei(ti
k+1)| ≤ 2V2(t0). By using the triggering condition |ξi(t)| = κ1 tanh

(
|ei(t)|

ϵ

)
+ κ2 for the

next moment ti
k+1, one has

|ξi(ti
k+1)| = κ1 tanh

(
|ei(ti

k+1)|
ϵ

)
+ κ2

≤
∫ ti

k+1

ti
k

γ1

(
k3 + k4|2V2(t0)|β2 + D

)
ds.
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Continuing to simplify the formula yields

ti
k+1 − ti

k ≥
κ1 tanh

(
|ei(ti

k+1)|
ϵ

)
+ κ2

γ1
(
k3 + k4|2V2(t0)|β2 + D

)
≥ κ2

γ1
(
k3 + k4|2V2(t0)|β2 + D

) .

Hence, there exists a constant time interval between any two trigger instants, thereby
affirming the absence of Zeno behavior in the proposed control protocol.

According to Theorems 1 and 2 and Definition 1, the leader-following system (1) can
achieve the consensus in fixed time T = T1 + T2 under the distributed observer (2) and
improved ET mechanism (9).

Remark 2. It is worth noting that the state xi(t) of System (1) does not converge to zero, but to
a small region ς1. According to the ET mechanism (9), the design process optimizes the triggered
frequency of events, which does not contradict the threshold of ET condition. The result is consistent
with the practical fixed-time stability theory, which is expressed in Lemma 4.

Remark 3. It can be deduced from (9) that the measurement error |ξi(t)| is compared with a
dynamic function κ1 tanh

(
|ei(t)|

ϵ

)
+ κ2 related to the error state. The dynamic function exists with

a reasonable upper and lower bound of κ1 + κ2 and κ2, respectively, which improves the stability of
the system and reduces the computational resource consumption of the control.

Remark 4. Compared with the traditional fixed-time strategy [23,24], the sign(·) function term
in the fixed-time observer (2) can directly enhance the robustness of the fixed-time form, which
simplifies the design process. In contrast, the fixed-time ET controller (7) employs the tanh(·)
function instead of the sign(·) function, which is intended to mitigate controller chattering [26].
In the ET strategy, this approach is also able to optimize the triggering frequency.

4. Simulations and Results

In this section, the proposed controller designed in Section 3 is validated through
simulation, specifically using MATLAB/Simulink for the testing process to showcase the
efficacy of the controller. As depicted in Figure 1, the communication graph features one
leader agent and five follower agents, which are described by node 0 and nodes 1–5, re-
spectively. The Laplace matrix can be obtained as follows:

L =


1 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

.

and the leader accessibility matrix is B = diag{1, 0, 0, 0, 0}. The control input for the
leader is denoted as u0(t) = 2 cos(2t − π/3), u0(0) = −1.5 in the simulation. The ex-
ternal disturbance is chosen as di(t) = 0.1i sin(5t + (i − 1)π/5) + (0.5 − 0.1i) cos(5t+
(i − 1)π/5), i = 1, . . . , 5 following the assumption provided in the work. The initial
values are X(0) = [6, 4, 2, −4, −6]T. Building upon the aforementioned model, in the
context of the distributed ET consensus algorithm, the control parameters are chosen as
k1 = 2, k2 = 0.2, k3 = 3, k4 = 1.2, β1 = 1.01, β2 = 1.1, ϵ = 0.05, κ1 = 0.3, κ2 = 0.5.



Actuators 2024, 13, 40 10 of 15

4

5

2

0

1

3

Figure 1. Communication structure diagram.

The simulation employs the Euler method with a fixed integration step of 10−3. Re-
sults of the simulation are presented in Figures 2–8. Figures 2–4 present the time histories
of the follower agent’s state estimations for the leader agent, the state observation errors
and the follower agent’s tracking errors for leader’s observation state, respectively. Fur-
thermore, over an extended duration, the observation errors are consistently brought into
convergence, ensuring sustained precision in tracking. In Figures 2 and 3, it is evident that
each follower agent can rapidly achieve precise information of the leader agent within a
short time, approximately 0.5 s. Moreover, the observation error chatters in a small range
after convergence, which aligns with the intended effect of the sign function in observation
(2). As depicted in Figure 4, leveraging accurate observation information of leader enables
fast tracking, which can be achieved even if the initial errors of each follower agent are
substantial. This tracking proficiency persists over an extended period of time, showcasing
the good convergence performance of the proposed strategy. Meanwhile, in Figure 5,
the states of the leader and followers are able to reach consensus quickly, although the
initial errors are large. This can be attributed to the effectiveness of the fixed-time controller,
which can obtain an estimated convergence time independent of the system’s initial state.
From Figure 6, under the influence of the ET mechanism, the system strikes a good balance
between convergence performance and computational resource consumption. Moreover,
the convergence error of the system remains within the acceptable range of 0.1 with respect
to external disturbances.
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Figure 2. The follower agent’s observations for the leader’s state.



Actuators 2024, 13, 40 11 of 15

0 1 2 3 4 5
-1

0

1

2

0 1 2 3 4 5

-2

0

2

4

-4

10-2

T = 0.5s

Time (sec)

O
bs

er
va

tio
n 

er
ro

rs

 1 - x0

 2 - x0

 3 - x0

 4 - x0

 5 - x0

Figure 3. The observation errors of each follower agent.
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Figure 4. The tracking errors for leader’s observation state.

Aside from the aforementioned results of consensus tracking performance, ET con-
trollers also bring a lower frequency of refresh counts to the system. Unlike the time-
triggered control method, the ET control scheme updates control signals in response to
triggered events. The triggering instants of follower agents are depicted in Figure 7. As an-
ticipated, the triggering times of each agent are independent, and Zeno behavior is excluded.
In detail, as shown in Table 1, the triggering times for the five follower agents are 61, 67, 68,
75 and 64, respectively. These values are significantly lower than the total sampling times
within time interval of 5 s, demonstrating a distinct advantage of the low-frequency trigger-
ing in the proposed controller (7). Furthermore, Figure 8 provides a clearly illustration of
the control inputs under ET conditions. It can be inferred that the proposed strategy leads
to substantial resource savings in control expenditure.
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Figure 5. The time response of leader’s and follower’s actual states.
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Figure 6. The time response of the follower agent’s actual state errors.

Table 1. The number of event times of followers during the simulation time.

Follower Agent i Number of Trigger Times Total Number of Sample Times

Agent 1 61

5000 (Sample time = 0.001 s)
Agent 2 67
Agent 3 68
Agent 4 75
Agent 5 64
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Figure 7. The time response of trigger instants.
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Figure 8. The time response of control inputs.

5. Conclusions

This work focuses on addressing the distributed fixed-time ET control strategy using
observer protocols for nonlinear MASs with external disturbances. The aim is to design a
control scheme that is both simple and high-performing. In pursuit of achieving consensus
objectives, a comprehensive model analysis is conducted for the MASs. A distributed
fixed-time observer is introduced to give rise to a tracking control framework with the
leader’s state as the target. Furthermore, the observation error model between the leader
and followers is formalized. To strike a balance between consensus control performance
and control cost, distributed ET controller is designed for each follower agent. Optimized
ET conditions are proposed, further reducing trigger frequency and communication burden.
By utilizing a Lyapunov function, the stability of this control protocol is rigorously proven.
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Additionally, there is no Zeno behavior exhibited throughout the entire consensus process.
In summary, the proposed strategy enhances the efficiency of consensus but also mitigates
unnecessary communication expenditure. In a future work, the communication delays and
switching topologies in MASs will be taken into account, and the proposed scheme will be
applied to a general system for validation.
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