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Abstract: This study designs an advanced single-loop output feedback system for speed servo
drive applications, in which a simple proportional–integral–integral (PII) controller equipped with
nonlinear feedback and feed-forward gains is formed. The resultant feedback system shows the
desired critically damped performance for wide-operating regions by actively handling the system
parameter and load uncertainties. There are three contributions: first, the third-order observer
estimates, independent from the system model, where the speed and acceleration are obtained
using the position measurement with the order reduction property; second, the observer-based
PII controller is compensated by active damping with a nonlinearly structured feedback and feed-
forward gains; and, third, a guarantee is achieved on the desired critically damped performance
through a closed-loop analysis. A hardware testbed that adopts a 500 W brushless DC motor is
used to experimentally demonstrate performance improvements over certain constant torque regions
under various scenarios.

Keywords: speed control; proportional–integral–integral control; active damping; observer; servo
drive

1. Introduction

Industrial mechatronics applications, such as mobile robots, electric vehicles, and
manufacturing processes, require high-performance servo drives to meet desired specifica-
tions. However, it is not obvious how to guarantee an ideal transfer function for servoing
tasks due to limited measurements and imperfect model and load information. Software
engineering enables this challenge to be handled by carefully designing control and signal
processing processes [1–8].

The trajectory tracking applications for unmanned vehicles necessitate an ideal speed
servo performance (e.g., transfer function: 1) to guarantee closed-loop stability and perfor-
mance. The idealization of servo drives is impossible in practice due to severe and uncertain
operating conditions. There have been numerous attempts to reduce the difference between
the actual transfer function and its ideal version to be as small as possible under feedback
system design approaches that are formed of conventional output feedback and novel
multi-variable structures [9,10]. The conventional output feedback strategy requires the
current, speed, and position measurements for each loop (e.g., the inner, middle, and outer
loops for the current, speed, and position errors, respectively). Then, each loop that adopts
a proportional-integral (PI) regulator results in a transfer function from the reference to
the output, which shows the multi-loop output feedback system structure. Tuning the PI
gains leads to bandwidth changes for each loop transfer function; therefore, its process is
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conducted through Bode and Nyquist design approaches. The resultant transfer function
with the desired bandwidth is only valid for a given operating mode due to the servo
motor parameter variations and load uncertainties. The gain switching technique could be
considered a solution to this practical problem as it requires an extra computational burden
to the controller [11]. The feedback-linearization (FL) controller that involves specially
structured system parameter-dependent PI gain and feed-forward compensation terms
resulted in a desired first-order transfer function via the pole-zero cancellation (PZC) for
all operating conditions (provided that the exact system model is available online [12]),
thereby leading to the removal of the necessity of gain switching logic but still requiring
the online system identifiers (as in [13–16]).

Recent multi-variable approaches have been used to estimate the uncertain system
parameters used for main control action, which can guarantee stability and desired per-
formance. This requires additional multiple dynamics for recursive parameter estima-
tors [17,18]. In particular, the adaptive integral back-stepping controller includes variable
feedback gain according to the controlled error, and this is similar to the online parameter
estimator. The offline optimization process yields its steady-state gain under bi-linear ma-
trix inequality constraints [17]. However, there is a practical concern about the high value
of steady-state feedback gains. Robust control includes an extended state observer (ESO)
to filter the measurements and estimate the disturbances for both the feedback and feed-
forward loops, whose performance could be limited in the presence of system parameter
and load uncertainties [19]. The other ESO-based approaches forming the output feedback
structure reduce the dependence level of system model information with the optimization
process for ESO gains [20–22]. The disturbance observer (DOB)-based PI controller removes
true system parameter dependency by only requiring nominal parameter values, and it
has also been used to secure an improved robustness by suppressing the disturbances that
occur when the model plant mismatches when using DOB (which is an improved version
of the FL controller with a PZC property and stability guarantee [23]). The conventional
sliding-mode controller (SMC) adopts a discontinuous sign function for both the feedback
and feed-forward loops to ensure the desired performance and closed-loop stability despite
the model plant mismatches, which leads to a conservative voltage command that suffers
from the steady-state chattering phenomenon. An improved version of SMC involves
the DOB to lower the steady-state chattering level by updating the feed-forward terms
continuously [24]. Finite control set model predictive controllers search the finite voltage
command set to determine the optimal control signal with a reduced dependency on the
pulse-wide modulation (PWM) operation [25–27], thereby requiring extra online system
identifiers to ensure optimality and to improve the precision of the state prediction. Novel
multi-loop proportional controllers embed DOB to replace the integral action and to es-
timate the feed-forward terms with performance recovery and the stability guarantees.
Moreover, they boost the feedback gain and restore it as it approaches a steady state [28],
which forms the simple structure and keeps the closed-loop system stable. The resultant
proportional-type feedback system structure could limit closed-loop robustness against
sudden load variations owing to the absence of integral actions in the controller.

Different from the extant results discussed above, this work systematically consid-
ers practical concerns, such as limited measurement, imperfect model information, and
implementability, to propose an advanced solution to the speed control problem of servo
drives. The proposed solution constitutes an observer-based output feedback system while
preserving a simple structure and lowering the system model dependence for convenient
actual implementations. The contributions of this paper can be summarized as follows:

1. The proposed third-order observer yields the speed and acceleration along the diag-
onalized error dynamics through the order reduction property without any system
model information, thus specifying the nonlinear structure of the observer gain.

2. The proposed controller preserves the simple proportional–integral–integral (PII)
structure that involves the observer and active damping as the subsystems for indus-
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trial applications, thereby tuning only one of the design parameters, which determines
all of the control gains for a given specification.

3. The resultant output feedback system guarantees the desired critically damped second-
order transfer function, which lowers the peak current level for transient periods.

Furthermore, a rigorous closed-loop analysis is conducted to derive beneficial closed-
loop properties, which includes accomplishment of the design purpose. The experimental
validation enlightens the practical contributions of the proposed technique using a hard-
ware testbed that includes a 500 W brushless DC motor (BLDCM) and a 32-bit digital signal
processor (DSP) as the servo motor and controller, respectively, under various scenarios.

2. Servo Motor Model

This work considers a DC servo motor (which includes DCM and BLDCM) to present
the design purpose and result effectively and clearly; it consists of a stator, rotor (inertia :
J (kgm2), and friction B (Nm/rad/s)) as the main parts. The voltage va (V) causes an
armature current ia (A) across the stator coil (inductance : L (H) and resistance : Ra (Ω)),
thereby generating the rotational torque Te(ia) = kTia (Nm) for some kT > 0. Then, the
torque overwhelms the load torque TL (Nm), thus resulting in the rotor speed ω (rad/s)
and position θ (rad) to lead to the back EMF ϕb(ω) = keω (V) for some ke > 0. These
mechanisms can be described by the third-order differential equations that satisfy

θ̇ = ω, (1)

Jω̇ = −Bω + Te(ia)− TL, (2)

La i̇a = −Raia − ϕb(ω) + va, ∀t ≥ 0, (3)

whose uncertain parameter variations ∆(·) are such that (·) = (·)0 + ∆(·), and whose
mismatched uncertain disturbance TL plays a vital role in degrading the feedback system
performance or causing instability, where (·)0 represents the known nominal parameters
for (·) = J, B, kT , La, Ra, and ke (for instance, J = J0 + ∆J with a known value J0 and its
uncertain variation ∆J). Using this concept, the two equations in (2) and (3) yielded the
second-order system va 7→ ω by applying the additional time derivative to (2):

csc,0ω̈ = va + dω, ∀t ≥ 0, (4)

whereby the known constant csc,0 and unknown time-varying signal dω are defined as
csc,0 := J0La,0

kT,0
and dω := −∆cscω̈ − Bω̇ − Raia − ϕb − ṪL, respectively (where ∆csc = csc −

csc,0 represents the deviation for the lumped constant defined as csc := JLa
kT

). The system
representation of (4) made it possible to not only lower the system model dependence, but
to also remove the requirement of the current feedback, which was then used as a basis for
designing the proposed feedback system in the following section.

3. Design Purpose

When denoting the variable ω∗ as the desired speed response, which is triggered by
the reference ωre f , the Laplace transforms Ω∗(s) = L{ω∗} and Ωre f (s) = L{ωre f } define
the desired transfer function for the actual feedback system ωre f 7→ ω as follows:

Ω∗(s)
Ωre f (s)

= (
ωsc

s + ωsc
)2, ∀s ∈ C, (5)

which is critically damped by the multiple real pole at −ωsc for a given specification ωsc > 0
as the bandwidth ωsc (rad/s, fsc =

ωsc
2π Hz) for the transfer function (5).

The accomplishment of the exponential convergence can be expressed as follows:

lim
t→∞

ω = ω∗, (6)
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which thus permits the feedback system to ensure the desired transfer function (5). There-
fore, the exponential convergence (6) was defined as the design purpose of this paper,

where ω∗ satisfies the system for the x∗ :=
[

ω∗

ω̇∗

]
(which is obtained by inverse Laplace

transform for (5)). As such, this can be expressed as follows:

ẋ∗ = Aωsc x∗ + bωsc ωre f , ω∗ = cT
ωsc x∗, ∀t ≥ 0, (7)

which involve matrices defined as Aωsc :=
[

0 1
−ω2

sc −2ωsc

]
, bωsc :=

[
0

ω2
sc

]
, and cωsc :=[

1
0

]
.

4. Implementation of the Proposed Single-Loop Feedback System

This section presents the structure and algorithm of the proposed solution for a conve-
nient implementation. Sections 4.1 and 4.2 provide the implementations of the proposed
single-loop feedback system, which consist of an observer and controller, respectively,
including a system block diagram as the conclusion of this section. Sections 5.1 and 5.2
show how the closed-loop properties were derived so as to prove the accomplishment of
the design purpose, which is described in Section 3.

4.1. Observer

The position measurement θ that is obtained from the hall sensor or rotary encoder
suffers from discontinuity due to limited sensor resolution, which involves undesirable
high-level noises when obtaining the speed and acceleration via the time derivative op-
eration (e.g., ω = θ̇ and a = ω̇(= θ̈)). This challenge can be addressed by adopting the
conventional Luenberger observer, which requires exact model information (model depen-
dency). To remove the model dependency, this work adopts the general identity for any
function yielding a = a0 + ∆a for ȧ0 = 0 (e.g., DC offset) and ∆ȧ ̸= 0 (e.g., AC variations).

With the facts that θ̇ = ω and ω̇ = a, this leads to the observable system for θ :=

 θ
ω
a

:

θ̇ = Aθθ+ bθ fa, (8)

θ = cT
θ θ, ∀t ≥ 0, (9)

where Aθ :=

 0 1 0
0 0 1
0 0 0

, bθ :=

 0
0
1

, cθ :=

 1
0
0

, (unknown disturbance) fa := ∆ȧ,

and | fa| ≤ f̄a, ∀t ≥ 0. The proposed observer estimates the speed and acceleration by

updating θ̂ :=

 θ̂
ω̂
â

 such that

˙̂θ = Aθ θ̂+ lθ(θ − θ̂), (10)

θ̂ = cT
θ θ̂, ∀t ≥ 0, (11)

thereby equipping the gain lθ =

 lθ,1
lθ,2
lθ,3

, which is defined as

lθ,1 = ko,1 + 2ko,2, lθ,2 = 2ko,1ko,2 + k2
o,2, lθ,3 = ko,1k2

o,2, (12)
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whose nonlinear structure for the two design parameters ko,1 > 0 (for estimation error
convergence) and ko,2 > 0 (for disturbance attenuation level) corresponds to a main feature
of this study.

Remark 1. The proposed observer of (10) and (11) equipping the gain (12) yields the diagonal

system for eθ := θ− θ̂(=

 eθ

eω

ea

 =

 θ − θ̂
ω − ω̂
a − â

) as follows:

ėθ = −ko,1eθ , ∀t ≥ 0,

which, due to the nonlinear structure of the observer gain lθ , constrain ko,2 into some admissible
range. Therefore, the proposed observer requires a simple repetitive tuning process for only one scalar
design parameter ko,2 for the desired convergence rate ko,1. Thus, unlike a conventional observer,
which involves complicated matrix calculations for the tuning process, this is a practical merit of
this paper. Section 5 includes the detailed property with the proof.

4.2. Controller

An open-loop system (4) yields another system for va 7→ ω̂ via the identity csc,0ω̂ =
csc,0ω + csc,0eω, which can be expressed as follows:

csc,0 ¨̂ω = va + dω + cT
1 ëθ , ∀t ≥ 0, (13)

where c1 :=

 0
csc,0

0

. The proposed algorithm for va, driven by the error ω̃ := ωre f − ω̂,

is given by incorporating the observer state θ in the form of PII control as follows:

va = −kd,1 â − kd,2ω̂ − kd,3θ̂ + kP,scω̃ + kI,sc

∫ t

0
ω̃dτ + kI I,sc

∫ t

0

∫ t

0
ω̃dτ2, ∀t ≥ 0, (14)

whereby the active damping gains are equipped as

kd,1 := 2(ωsccsc,0 +
√

csc,0kc), kd,2 := 4kc
√

csc,0ωsc + k2
c , kd,3 := 2k2

c ωsc, (15)

and the PII gains are

kP,sc := csc,0ω2
sc, kI,sc := 2kc

√
csc,0ω2

sc, kI I,sc := k2
c ω2

sc, (16)

whose nonlinear structure with respect to the design parameter kc > 0 for a given specifica-
tion ωsc > 0 corresponds to a main feature of this work.

Remark 2. The resultant system controlled by the proposed controller is obtained by substituting
(14) into (13) such that

csc,0
....
ω̂ = −kd,1

...
ω̂ − kd,2 ¨̂ω − kd,3 ˙̂ω + kP,sc ¨̃ω + kI,sc ˙̃ω + kI I,scω̃ + d̈ω

+cT
1

....e θ + cT
2 ëθ + cT

3 ėθ , ∀t ≥ 0, (17)

where c2 :=

 kd,1lθ,2
0
0

 and c3 :=

 −kd,2lθ,1
0
0

. At this time, it is questionable that the

complicated fourth-order system (17), which includes the six gains kd,1, kd,2, kd,3, kP,sc, kI,sc, and
kI I,sc, ensures exponential convergence (6). Section 5 systematically addresses this issue by further
analyzing the closed-loop dynamics (17). Figure 1 visualizes the proposed feedback system structure
as the block diagram by showing the simple output feedback structure and convenient tuning tasks
via the four design parameters of ko,1, ko,2, ωsc, and kc.
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Figure 1. Block diagram of the proposed feedback system structure with four design parameters.

5. Convergence Analysis Results

The main objective of this section is to prove the accomplishment of the design
purpose (6) through the analysis of the controlled system of (17) with the gains of (15) and
(16), as well as the observer of (10) and (11) with the gains of (12). Section 5.1 starts from
the analysis of the observer dynamics, which makes the control loop analysis convenient,
as shown in Section 5.2.

5.1. Observer

This subsection proves the statement of Remark 1. To this end, Lemma 1 derives the
output error dynamics as the perturbed first-order system through the combination of the
systems of (10) and (11), as well as the nonlinear structure of the observer gain of (12),
which invokes the order reduction property.

Lemma 1. The proposed observer of (10) and (11) drives its output error eθ to be governed by

ėθ = −ko,1eθ + eT
1 pθ , (18)

with pθ(=

[
pθ,1
pθ,2

]
) solving the perturbed system by fa as follows:

ṗθ = Apθ
pθ + e2 fa, ∀t ≥ 0, (19)

where the matrices are defined as Apθ
:=

[
−ko,2 1

0 −ko,2

]
, e1 :=

[
1
0

]
, and e2 :=

[
0
1

]
.

Proof. The error eθ satisfies (8) and (10) such that

ėθ = Aθ,leθ + brr + bθ fa, (20)

eθ = cT
θ eθ , ∀t ≥ 0, (21)
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with the matrices defined as Aθ,l := Aθ − lθcT
θ (=

 −(ko,1 + 2ko,2) 1 0
−(2ko,1ko,2 + k2

o,2) 0 1
−ko,1k2

o,2 0 0

), br :=

 ko,1
2ko,1ko,2
ko,1k2

o,2

, and r := 0, whose Laplace transforms (e.g., Eθ(s) = L{eθ}, R(s) = L{r},

and Fa(s) = L{ fa}) yield that

Eθ(s) = cT
θ (sI3×3 − Aθ,l)

−1brR(s) + cT
θ (sI3×3 − Aθ,l)

−1bθ Fa(s), ∀s ∈ C. (22)

The pair of (Aθ,l , br) derive interesting calculation results for the first term of the right-hand
side (RHS) of (22) as

cT
θ (sI3×3 − Aθ,l)

−1br =
ko,1(s + ko,2)

2

(s + ko,1)(s + ko,2)2 =
ko,1

s + ko,1
. (23)

The second term of the RHS is obtained as

cT
θ (sI3×3 − Aθ,l)

−1bθ =
1

(s + ko,1)(s + ko,2)2 , (24)

which follows from (22) that

(s + ko,1)Eθ(s) =
1

(s + ko,2)2 Fa(s), ∀s ∈ C. (25)

Therefore, the definitions Pθ,1(s) := 1
s+ko,2

Pθ,2(s) and Pθ,2(s) := 1
s+ko,2

Fa(s) confirm the

result of this lemma by eθ = L−1{Eθ(s)}, pθ,1 = L−1{Pθ,1(s)}, pθ,2 = L−1{Pθ,2(s)}, and
fa = L−1{Fa(s)}.

Lemma 2 provides the essential property for the diagonalized error dynamics (stated
in Remark 1) with the feasible tuning range of ko,2 > 0 via the result of Lemma 1.

Lemma 2. The proposed observer of (10) and (11) ensures

lim
t→∞

eθ = e∗θ (26)

which exponentially, with e∗θ , satisfies the following system:

ė∗θ = −ko,1e∗θ , ∀t ≥ 0, (27)

for any ko,2 such that 2 f̄a
ko,2

≈ 0.

Proof. It follows from the definitions of δθ :=
[

δθ

pθ,1

]
and δθ := e∗θ − eθ , as well as the

systems (18) and (19) that

δ̇θ = Aδθ
δθ + e2 pθ,2, ∀t ≥ 0, (28)

where the matrices are defined as Aδθ
:=

[
−ko,1 −1

0 −ko,2

]
and e2 =

[
0
1

]
. The conditions

ko,1 > 0 and ko,2 > 0 ensure the solvability of the equation AT
δθ

Pδθ
+ Pδθ

Aδθ
= −I2×2 with

respect to a unique solution Pδθ
= PT

δθ
> 02×2, which yields for the positive definite function

Vo := 1
2 δT

θ Pδθ
δθ +

αo
2 p2

θ,2 with αo > 0 that V̇o = δT
θ Pδθ

(Aδθ
δθ + e2 pθ,2) + αo pθ,2(−ko,2 pθ,2 +

fa) when using the second row of (19) and (28). The fact xTy ≤ ϵ
2∥x∥2 + 1

2ϵ∥y∥2, ∀x, y ∈ Rn,
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∀ϵ > 0 (Young’s inequality) leads to the inequality V̇o ≤ − 1
4∥δθ∥2 − (

αoko,2
2 − ∥Pδθ

∥2)p2
θ,2 +

αo pθ,2(−
ko,2
2 pθ,2 + fa) results in

V̇o ≤ −γoVo, ∀t ≥ 0, ∀|pθ | ≥
2 f̄a

ko,2
, (29)

whereby the removal of the indefinite terms by the choice αo = 2
ko,2

(∥Pδθ
∥2 + 1

2 ) is γo :=

min{ 1
2λmin(Pδθ

)
, 1

αo
}, thus validating the proof of this lemma.

The property (26) as the result of Lemma 2 means that one can infer that ėθ = −ko,1eθ

after a short transient period. Through this, the chain reasoning process is derived using
the first row of (10) such that ëθ = −ko,1 ėθ ⇔ (ω̇ − ¨̂θ) = −ko,1(ω − ˙̂θ) ⇔ (ω̇ − (lθ,1 ėθ +
˙̂ω)) = −ko,1(ω − (lθ,1eθ + ω̂)) ⇔ ėω + lθ,1ko,1eθ = −ko,1eω + lθ,1ko,1eθ . Thus, it holds that

ėω = −ko,1eω is from ėθ = −ko,1eθ , thereby showing that ėa = −ko,1ea is obtained via the
same process detailed above when using the second row of (11). Therefore, this subsection
concludes that

ėθ = −ko,1eθ , ∀t ≥ 0, (30)

as the proof of Remark 1.

5.2. Control Loop

Before proceeding with the proof of the accomplishment of the design purpose (6),
Lemma 3 derives the controlled speed dynamics as a perturbed second-order system
through a further analysis of the system (17) with the nonlinear structure of control gains
(15) and (16), thus invoking the order reduction property.

Lemma 3. The proposed PII controller of (14) equipping the gains (15) and (16) drives ω̂ to be
governed by the second-order system:

¨̂ω + 2ωsc ˙̂ω + ω2
scω̂ = ω2

scωre f + cT
ω,1(pω,1 + pω,2), (31)

with pω,1(=

[
pω,1,1
pω,1,2

]
) and pω,2(=

[
pω,2,1
pω,2,2

]
) solving the systems as follows:

ṗω,1 = Apω,1pω,1 + bpω,1 fω, (32)

ṗω,2 = Apω,2pω,2 + bpω,2eθ , ∀t ≥ 0, (33)

where the matrices are defined as Apω,1 :=

[
− kc√csc,0

− kc√csc,0

0 − kc√csc,0

]
, Apω,2 =

[
− kc√csc,0

1

0 − kc√csc,0

]
,

cω,1 =

[
1

csc,0

0

]
, bpω,1 :=

[
1
1

]
, and bpω,2 :=

[
01×3
cT

4

]
. In addition, the disturbance fω is

defined as fω := ḋω, thereby satisfying | fω | ≤ f̄ω, ∀t ≥ 0.

Proof. It follows from the systems (17) and (30) that
....
ω̂ = − kd,1

csc,0

...
ω̂ − kd,2

csc,0
¨̂ω − kd,3

csc,0
˙̂ω +

kP,sc
csc,0

¨̃ω +
kI,sc
csc,0

˙̃ω +
kI I,sc
csc,0

ω̃ + 1
csc,0

d̈ω + 1
csc,0

cT
4 eθ , where c4 := k4

o,1c1 + k2
o,1c2 − ko,1c3, ∀t ≥ 0.

Defining signals such that z2 :=
∫ t

0 (−kd,2ω̂ + kP,scω̃ + z2 + dω,e)dτ, z3 :=
∫ t

0 (−kd,3ω̂ +

kI,scω̃ + z3)dτ, z4 := kI I,sc
∫ t

0 ω̃dτ, and dω,e := dω + cT
4
∫ t

0

∫ t
0 eθdτ2 for the vector zω :=[

ω̂ z2 z3 z4
]T yield another expression for the system (17) as

żω = Azω zω + bzω ,rωre f + bzω ,ddω,e, (34)

ω̂ = cT
zω

zω, ∀t ≥ 0, (35)
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with the matrices defined as Azω :=


− 2(ωsccsc,0+

√csc,0kc)
csc,0

1
csc,0

0 0
−(4kc

√csc,0ωsc + k2
c + csc,0ω2

sc) 0 1 0
−(2k2

c ωsc + 2kc
√csc,0ω2

sc) 0 0 1
−k2

c ω2
sc 0 0 0

,

bzω ,r :=


0

csc,0ω2
sc

2kc
√csc,0ω2

sc
k2

c ω2
sc

, bzω ,d :=


0
1
0
0

, and czω :=


1
0
0
0

. The variables Ω̂(s) =

L{ω̂}, Ωre f (s) = L{ωre f }, and Dω,e(s) = L{dω,e}(= Dω(s) + 1
s2 cT

4 Eθ(s)) derive an equiv-
alent expression for the system, consisting of (34) and (35) as

Ω̂(s) = cT
zω
(sI4×4 − Azω )bzω ,rΩre f (s) + cT

zω
(sI4×4 − Azω )bzω ,dDω,e(s), ∀s ∈ C. (36)

The pair (Azω , bzω ,r) derive an interesting calculation result for the first term of the RHS
of (36) as

cT
zω
(sI4×4 − Azω )bzω ,r =

ω2
sc(

√csc,0s + kc)2

(s + ωsc)2(
√csc,0s + kc)2 = (

ωsc

s + ωsc
)2, (37)

and the second term of the RHS is obtained as

cT
zω
(sI4×4 − Azω )bzω ,d =

s2

(s + ωsc)2(
√csc,0s + kc)2 , (38)

which follows from (36) that

(s + ωsc)
2Ω̂(s) = ω2

scΩre f (s) +
1

csc,0
(

s
s + kc√csc,0

)2Dω(s) +
1

csc,0

1

(s + kc√csc,0
)2

cT
4 eθ , (39)

∀s ∈ C. Therefore, the definitions Pω,1,1(s) = (1 −
kc√
csc,0

s+ kc√
csc,0

)Pω,1,2(s), Pω,1,2(s) = (1 −

kc√
csc,0

s+ kc√
csc,0

)Dω(s), Pω,2,1(s) = ( 1
s+ kc√

csc,0

)Pω,2,2(s), and Pω,2,2(s) = ( 1
s+ kc√

csc,0

)cT
4 Eθ(s) complete

the proof by pω,i = L−1{Pω,i(s)} and pω,2,i = L−1{Pω,2,i(s)}, i = 1, 2, with pω,1 =[
pω,1,1 pω,1,2

]T and pω,2 =
[

pω,2,1 pω,2,2
]T .

In conclusion, Theorem 1 ends this section by proving the accomplishment of the
design objective (6) with the specification of the tuning range of kc > 0 when using the
results of Lemma 3 and the diagonalized observer error dynamics of (30).

Theorem 1. The proposed controller depicted in Figure 1 establishes the design purpose (6) (e.g.,

limt→∞ ω = ω∗ exponentially) for any kc such that 2√csc,0 f̄ω

kc
≈ 0.

Proof. The vector x defined as x :=
[

ω̂
˙̂ω

]
yields the vector form for the system (31) as

ẋ = Aωsc x+bωsc ωre f + e2(
1

csc,0
pω,1,1 + cT

ω,1pω,2). This leads to another system for deviation,
which is defined as δω := x∗ − x together with the two systems of (7) and (32):

δ̇ω = Aδω
δω + bδω ,1 pω,1,1 + Bδω ,2pω,2, (40)

ṗω,1,1 = − kc√csc,0
pω,1,1 −

kc√csc,0
pω,1,2 + fω, (41)

ṗω,1,2 = − kc√csc,0
pω,1,2 + fω, ∀t ≥ 0, (42)
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where Aδω
= Aωsc , bδω ,1 := − 1

csc,0
e2, and Bδω ,2 := −e2cT

ω,1. The conditions ωsc > 0,

kc > 0 and csc,0 > 0 ensure the solvability of the equation AT
δω

Pδω
+ Pδω

Aδω
= −I2×2

and AT
pω,2

Ppω,2 + Ppω,2Apω,2 = −I2×2 with respect to a unique solution Pδω
= PT

δω
> 02×2

and Ppω,2 = PT
pω,2

> 02×2, respectively, which leads to the positive definite function

Vsc := 1
2 δT

ωPδω
δω +

αsc,1
2 p2

ω,1,1 +
αsc,2

2 p2
ω,1,2 +

αsc,3
2 pT

ω,2Ppω,2pω,2 +
αsc,4

2 ∥eθ∥2 with αsc,i > 0, i =
1, 2, 3, 4 such that V̇sc = δT

ωPδω
(Aδω

δω +bδω ,1 pω,1,1 +Bδω ,2pω,2)+ αsc,1 pω,1,1(− kc√csc,0
pω,1,1 −

kc√csc,0
pω,1,2 + fω) + αsc,2 pω,1,2(− kc√csc,0

pω,1,2 + fω) + αsc,3pT
ω,2Ppω,2(Apω,2 pω,2 + bpω,2eθ)−

αsc,4ko,1∥eθ∥2 when using (30), (33), and (40)–(42). The Young’s inequality leads to
the inequality

V̇sc ≤ −1
6
∥δω∥2 − 1

2
(

αsc,1kc

2
√csc,0

− 3∥Pδω
∥2∥bδω ,1∥2)p2

ω,1,1 − (
αsc,2kc

2
√csc,0

− αsc,1kc√csc,0
)p2

ω,1,2

−1
2
(

αsc,3

2
− 3∥Pδω

∥2∥Bδω ,2∥2)∥pω,2∥2 − (αsc,4ko,1 − αsc,3∥Ppω,2∥2∥bpω,2∥2)∥eθ∥2

+αsc,1 pω,1,1(−
kc

2
√csc,0

pω,1,1 + fω) + αsc,2 pω,1,2(−
kc

2
√csc,0

pω,1,2 + fω), ∀t ≥ 0,

thereby resulting in

V̇sc ≤ −γscVsc, ∀t ≥ 0, ∀|pω,1,1| ≥
2
√csc,0 f̄ω

kc
, ∀|pω,1,2| ≥

2
√csc,0 f̄ω

kc
, (43)

with the removals of the indefinite terms by choices such that αsc,1 =
2√csc,0

kc
(3∥Pδω

∥2

∥bδω ,1∥2 + 1), αsc,2 =
2√csc,0

kc
(

αsc,1kc√csc,0
+ 1

2 ), αsc,3 = 2(3∥Pδω
∥2∥Bδω,2∥2 + 1), and αsc,4 =

1
ko,1

(αsc,3∥Ppω,2∥2∥bpω,2∥2 + 1
2 ), where γsc := min{ 1

3λmin(Pδω )
, 1

αsc,1
, 1

αsc,2
, 1

αsc,3λmin(Ppω,2 )
, 1

αsc,4
}.

This validates the results of this theorem.

6. Experimental Results
6.1. Configuration for Experiments

This study constructed the dynamo-meter shown in Figure 2 (500 W BLDCM for test
motor and 700 W permanent magnet synchronous motor for load motor) as the servo drive
to experimentally demonstrate the advantage of the proposed solution. The commercial
board (model: DRV8305; manufacture: Texas Instrument (TI)) used as the three-phase
inverter operated the BLDCM by the duty command from the controller, whose DC source
voltage was set to 25 V. The TI 32-bit DSP (model: LUNCHXL-F28379D) outputted the duty
command from the C-programming implementation of the proposed feedback system, as
shown in Figure 1, through the internal interrupt period of 0.1 ms, which was synchronized
to the control, PWM, and measurement process. The datasheet and repetitive offline
identification experiments found the BLDCM parameters given by (for rotor) J = 1.7× 10−4,
B = 2.9 × 10−5, (for stator) La = 0.13 × 10−3, Ra = 0.0785, and (for flux) kT = ke = 0.068.
The controller area network constituted the real-time communication between the controller
and desktop PC to collect the experimental data through MATLAB/Simulink.
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Figure 2. Hardware testbed: 500 W BLDCM for test motor, PMSM for load, and 32-bit DSP
for controller.

The nominal values chosen as J0 = 0.8J, La,0 = 0.7La, and kT,0 = 1.4kT yielded the
known lumped coefficient csc,0 =

La,0 J0
kT,0

, which was used for the controller to consider the
model plant mismatches detailed in Section 2. As shown in Figure 1, the proposed feedback
system provided the four design parameters ωsc and kc for the controller and ko,1 and
ko,2 for the observer, which were determined as fsc = 5 Hz (ωsc = 2π5 rad/s), kc = 0.5,
ko,1 = 50, and ko,2 = 1000, respectively.

The novel multi-loop PZC (MLPZC) controller (in [8]) was adopted to evaluate the
performance improvement of the proposed technique through a comparison study. For
a fair comparison, the speed loop bandwidth was set to be the same as the proposed
controller under the current loop bandwidth of fcc = 100 Hz (ωcc = 2π100 rad/s), and the
remaining design parameters were tuned for the best performance.

6.2. Step-Up Reference Tracking Tests

For the step-up reference from the initial value ωre f = 500 to the final value 1500
rpm, this experiment was conducted three times for the different loads of TL = 0.2, 0.4,
and 0.6 Nm to evaluate the speed tracking performance. Figure 3 shows the compari-
son results between the proposed and MLPZC controllers. Both controllers effectively
assigned the desired transfer functions with the bandwidth of fsc = 5 Hz to the closed
loop under different load conditions, as well as for the critical damped transfer function
for the proposed controller and simple damped transfer function for the MLPZC. There
were no significant performance differences between the two controllers, but the critically
damping characteristic by the multiple pole at −ωsc resulted in the improved peak current
suppression capability by the proposed controller, as shown in Figure 4. This corresponded
with a main advantage of this work, in practice, by adopting the second-order transfer
function (5). The speed and acceleration estimation results by the proposed observer are
presented in Figure 5. According to the comment of Remark 1, the proposed observer
renders the speed (left side of Figure 5) and the acceleration estimation errors (right side of
Figure 5) to be rapidly convergent with the zero under the same estimation error dynamics
despite the different load conditions.
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Figure 3. Speed responses for the step-up reference tracking tests under the different loads of TL = 0.2,
0.4, and 0.6 Nm.
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Figure 4. Currentresponses for the step-up reference tracking tests under the different loads of
TL = 0.2, 0.4, and 0.6 Nm.
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( )ˆ: @ 0.6Nm
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Figure 5. Speed and acceleration estimation errors for the step-up reference tracking tests under the
different loads of TL = 0.2, 0.4, and 0.6 Nm.

6.3. Constant Reference Regulation Tests

This section fixed the speed reference to ωre f = 1500 rpm. The three step-up load
torque increments TL = 0.4, 0.6, and 0.8 Nm from the initial setting TL = 0.2 Nm (e.g.,
TL : 0.2 → 0.4/0.6/0.8 Nm) were considered to evaluate the speed regulation performance
under the same settings with Section 6.2. Figure 6 shows that the proposed controller’s
critically damped system also improved the speed regulation performance by significantly
reducing the over/undershoot level for all three different load variation scenarios. Figure 7
indicates that the proposed controller makes the current response similar to the MLPZC
despite improving the speed regulation performance.

( ): @ 0.2 0.8Nm
rpm L

Tω = →

�����

���������	
��������

( ): @ 0.2 0.6Nm
rpm L

Tω = →

( ): @ 0.2 0.4Nm
rpm L

Tω = →

�����
	
��������

�������� ��������

Figure 6. Speed responses for the constant reference regulation tests under the sudden increasing
load torques of TL : 0.2 → 0.4/0.6/0.8 Nm.
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Figure 7. Current responses for the constant reference regulation tests under the sudden increasing
load torques of TL : 0.2 → 0.4/0.6/0.8 Nm.

6.4. Performance Assignability Tests

This experiment was conducted to highlight the effectiveness of the result of Theorem 1.
For this purpose, this section fixed the load torque to TL = 0.2 Nm and adopted the same
step-up reference used in Section 6.2. The three increasing bandwidths of fsc = 5, 8, and
15 Hz were applied to the feedback system to observe the performance changes according to
such various bandwidths. The left of Figure 8 shows that the proposed controller precisely
assigned the desired transfer functions to the closed loop for each bandwidth due to the
accomplishment of the design purpose by Theorem 1. Meanwhile, the right of Figure 8
presents the corresponding current responses without the peaking phenomenon due to the
assigned second-order transfer function (5). With this result and the practical advantage
from Section 6.2, the proposed solution would guarantee consistent performance for the
actual industrial applications despite the load and user specification changes.

�����

( ): @ 15Hz
rpm sc

fω =

���

( ): @ 8Hz
rpm sc

fω =

( ): @ 5Hzrpm scfω =

( ): @ 15Hz
a sc

i f =

( ): @ 8Hz
a sc

i f =

( ): @ 5Hz
a sc

i f =

�������� ��������

Figure 8. Speed responses for the step-up reference tracking tests under the different bandwidths of
fsc = 5, 8, and 15 Hz.

7. Conclusions

This paper exhibited an observer-based feedback system in a simple form for servo
drive applications, which includes the model-independent speed and an acceleration
observer, based on the order reduction technique. The resultant feedback system did not
require the exact system model information, and its nonlinearly structured control and
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observer gains resulted in a desired performance that is subject to a simple or critically
damped system via the PZC. Moreover, it was rigorously proved that the resultant feedback
system accomplished the design purpose by specifying the feasible range of the tuning
parameters. The experimental validation was also conducted to highlight the practical
benefits, such as improved performance consistency and peak current attenuation, despite
the simple output feedback system structure. Therefore, the proposed solution would
be considered as promising actuators for industrial unmanned exploration robot and
aerial vehicle applications. In the future, this result will be applied to multiple servo
drive synchronization applications that adopt large-power three-phase motors with a
systematical closed-loop tuning process by solving an optimization problem.
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