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Abstract: This paper investigates, through numerical simulations, the application of piezoelectric
materials in energy generation. The mathematical model describes a U-shaped portal frame system,
excited by an engine with unbalanced mass and coupled to a nonlinear energy sink (NES), which
is used as a passive vibration absorber. The influence of the piezoelectric material parameters used
in the energy collection and the dimensioning parameters of the NES system is deeply analyzed in
this paper. Numerical simulations are presented considering all combinations of the parameters of
the piezoelectric material model and the NES. The system dynamics were analyzed through phase
diagrams and the 0–1 test. The estimation of energy collection was carried out by calculating the
average power. The numerical results show that a more significant potential for energy generation is
obtained for certain combinations of parameters, as well as chaotic behavior in some cases.

Keywords: piezoelectric material; passive absorbers; electromechanical systems

1. Introduction

Electric energy is essential for technological development, economic growth, and
population life quality improvement. Fossil fuels, such as oil, coal, and natural gas, are
still the most used sources for electricity production. However, the use of fossil fuels is
related to the increase in the greenhouse gases concentration in the atmosphere, which is
responsible for environmental problems, such as air pollution and climate change [1,2].

As nonrenewable resources, fossil fuels are finite. However, estimates indicate that
global demand in the mid-21st century will exceed the available reserves of fossil fuels [3].
The concern with energy security and environmental protection highlighted the need to
produce electricity from renewable sources, such as water, the sun, wind, biomass, and
geothermal energy [4,5].

Energy harvesting is a promising technology that sustainably contributes to electricity
production, capturing wasted or unused energy from the environment. Energy can be
captured from various sources, such as solar irradiation, wind, vibration, heat, and water
flow. The main advantage of energy harvesting is that it is not dependent on weather
and environmental conditions like solar, wind, and thermal energy. In addition, energy
harvesters can be installed in places often subjected to mechanical stress, such as bridges
or highways. In this way, collecting clean and renewable energy is a sustainable alter-
native that alleviates the environmental impacts generated by energy production from
fossil fuels [6–9].

In the current era, Internet of Things (IoT) devices are essential for controlling and
collecting information. They are applied in the most diverse areas, such as biomedicine
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and health, the environment, public safety, and industry. Thus, the demand for electronic
devices has been rising recently, so there are concerns about the power supply to these
devices. The life of the batteries is limited, and recharging or replacing them can be difficult
in some cases due to the human effort and cost involved. In this context, energy harvesters
are presented as an efficient and ecological solution to this challenge, as they capture and
store energy for electronic devices [10–12]. There are several energy harvesting systems,
such as piezoelectric, triboelectric, thermoelectric, pyroelectric, and photovoltaic systems
and energy harvesting systems based on water evaporation [13].

Among the energy harvesting methods, the present work opted for the vibrational
collection method using piezoelectric materials. According to [14], research on vibration
energy collectors arouses great interest and is widely cited in the literature. Ref. [15] stated
that harvesting vibrational energy via piezoelectric materials has the advantages of a good
configuration, electromechanical conversion efficiency, and output power.

Piezoelectric materials can convert mechanical vibrations into electrical voltage, a
property also called piezoelectricity. The process of the application of mechanical stress to
the material producing electrical energy is called the direct piezoelectric effect. In contrast,
the process in which mechanical deformation occurs in the material because of an applied
electrical voltage is known as the indirect piezoelectric effect [16,17]. These characteristics
make piezoelectric materials extremely versatile, as they can be used as energy collectors,
sensors, or actuators. As sensors, they can be used to determine structure deflections. As
actuators coupled to a structure, they can transfer the mechanical deformation they suffer
when receiving an electrical voltage to the structure.

Since their discovery, piezoelectric materials have been applied in advanced tech-
nologies in diverse areas, like energy harvesting, given their ability to sense and collect
vibrations [18,19].

The study developed by [20] proposed a piezoelectric energy harvester for rotating
machines, which can not only harvest mechanical energy from the bending deformation
of a rotating shaft but also has the capability of detecting typical rotor faults, such as
crack and rub-impact faults. Hence, the proposed system can be used to power wireless
sensors, as well as a self-powered sensor to monitor the rotating machine’s conditions. A
piezoelectric energy harvester to collect the energy generated by pedestrian movement was
proposed by [21]. The harvested energy can be employed to power LED lights and charge
mobile devices. The study conducted by [22] developed a piezoelectric energy harvester
for smart pavements. The proposed system can power low-power electronics, self-powered
sensors, and remote electrical equipment in transportation infrastructures. A vibro-impact
piezoelectric energy harvester for low-frequency vibration enhanced by acoustic black
holes (ABHs) was presented in the work conducted by [23]. The proposed energy harvester
has two beams that collide with each other, and the impact of this collision can transfer the
vibration energy from the low-frequency band to the high-frequency band, where the ABH
obtains a desirable energy focalization effect to improve the output performance of the
energy harvester. Lead-free eco-friendly cement-based piezoelectric composites for smart
concrete structure applications were designed and manufactured by [24] to harvest the
building environment energy, such as vibration energy, impact energy, and wind energy,
among others. An energy harvest based on a bistable Origami Mechanism was proposed
by [25]. The system presents a compact size, light weight, large deformability, stretchability,
and flexibility, which makes the system advantageous for integration into various hosts
subjected to vibrations. All-in-one self-charging supercapacitor power cells (SCSPCs) were
manufactured by [26]. In the study, graphene-based SCSPC devices using a porous PVDF
piezopolymer separator (incorporated with an ionic liquid electrolyte) were proposed for
the direct conversion and storage of mechanical energy into electrical energy. The findings
of the study contribute to research on the design and development of a single device
capable of collecting, converting, and storing energy.

According to [27], the most used type of piezoelectric material in energy collection
is piezoelectric ceramics. These materials, however, have a high fragility, limiting the
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amount of voltage they withstand without suffering damage. Studies aimed at developing
more flexible piezoelectric materials, so-called polymeric piezoelectric materials, have
been designed to overcome the limitations of piezoelectric ceramics. Some examples
of polymeric piezoelectric materials are reported in the literature, such as the flexible
composites NBT-BT/PVDF (ceramic filler powders ([(NaBi)TiO3] − BaTiO3) mixed with
PVDF powder) developed by [28], an elastic composite material from polymer powders
(polyurethane and polypropylene) with the addition of BaTiO3 proposed by [29], and a
piezoelectric energy harvester based on polyvinylidene fluoride with the addition of lithium
chloride (PVDF/LiCl) electrospun nanofibers presented by [30]. The literature also presents
studies focused on piezoelectric nanogenerators [31,32], which, due to their small size, have
applications in emerging technologies of electronics and biology, such as wearable electronic
devices, implantable biomedical devices, sensors, and portable electronics [33,34].

Energy harvesting through piezoelectric materials can be a potential solution to the
challenges of energy production since it makes it possible to transform environmental
energy sources into valuable energy, which until then would be wasted [35]. Some ex-
amples are presented in the literature, such as the energy collection from oceans [36],
wind [37], rain [38], and road vibration [39]. Energy harvesting by piezoelectric materials
has applications in areas such as biomedicine and health [40,41], wireless data transmis-
sion [42–44], aeronautics [45–47], environmental monitoring, and artificial intelligence [48],
among others.

Vibration mitigation and energy dissipation in mechanical systems is a rapidly de-
veloping field, as it is necessary to protect these systems from vibration-related problems.
Vibration absorbers protect structural dynamic systems via the passive transfer and dissipa-
tion of energy. This occurs through a process called Target Energy Transfer (TET), in which
energy is transferred from a primary dynamic structure to an attached receiving dynamic
system irreversibly. TET is triggered by the nonlinear interaction caused by the coupling of
the nonlinear energy sink (NES) with the structure [49–51].

The nonlinear energy sink (NES) concept was first proposed in 2001 by [52,53]. The
NES device is composed of an additional mass component attached to the primary structure,
with a highly nonlinear stiffness. In vibration control, the NES presents the advantages of a
high robustness, structural simplicity, high reliability, and effective vibration suppression.
Therefore, it is increasingly used in different structures and is being applied in research in
numerous fields [54–56], including civil engineering [57], mechanical engineering [58–60],
aeronautics [61], and energy harvesting [62–65].

According to the results obtained in the studies of [66–69], the use of an absorber com-
bined with a nonlinear energy sink and a piezoelectric energy harvest can simultaneously
improve vibration suppression and energy harvesting.

In this context, this paper investigates the application of materials with piezoelectric
characteristics for micropower generation. A mathematical model was used to describe a
U-portal frame system coupled to a motor in continuous operation and a nonlinear energy
sink (NES), acting as a passive vibration absorber. As its main contribution, this paper
presents a deep analysis of the influence of the parameters of the piezoelectric material and
the NES system coupled to the structure. Through numerical simulations, all combinations
of the parameters are presented, and the dynamics of the system and the estimated energy
collection for each parametric variation are analyzed. The 0–1 test was applied to examine
whether the system behavior is periodic or chaotic and the calculation of the average power
for the energy collection estimate.

2. Materials and Methods

The analyzed energy collection system is represented by Figure 1, consisting of a
U-shaped portal frame structure base with nonlinear rigidity and a nonlinear energy sink
(NES), with the piezoelectric material attached to the side of the structure.
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Figure 1. U-shaped portal frame structure with NES and coupled piezoelectric material.

The lateral displacements of the structure come from the excitation generated by a
direct current (DC) electric motor, which has an unbalanced mass (m0), thus characterizing
a nonideal vibrating system (NIS) [70] attached to the structure of an NES. The magnetic
components of the NES, as shown in Figure 1, provide, according to [71], cubic rigidity
and linear damping to the lateral movements of the mass m2 that slide with its axis
in two bearings. And two plates of piezoelectric material are coupled to the structure
according to [72].

Figure 2 presents the physical model of the system represented in Figure 1, where m0
is the unbalanced mass of the motor, m1 is the mass of the portal frame, k is the stiffness of
the portal frame, b is the damping of the portal frame, X1 is the displacement of the portal
frame, ϕ is the angular displacement of the motor, J is the inertia moment of the motor, r
is the eccentricity of the unbalanced mass of the motor, k1 is the nonlinear stiffness of the
NES, b1 is the damping of the NES, and X2 is the displacement of the NES. The parameter k
is composed of two components: kl + knl , with kl being the linear stiffness component and
knl the nonlinear stiffness component.
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The torque of the motor is a function of the angular and is given by: V1 −V2
.
ϕ, where

V1 is related to the voltage applied across the armature of the DC motor and V2 is the
constant for each model of DC motor considered [70].

The equation of motion of the electromechanical system represented by Figure 2 is
given by the following equation [72–74]:

(m1 + m0)
..
X1 + b

.
X1 + b1

( .
X1 −

.
X2

)
− klX1 + knlX1

3 + k1
(
X1 − X2)

3 =

m0r
( ..

ϕsin(ϕ
)
+

.
ϕ

2cos(ϕ
))

+ d(X1)
C q

m2
..
X2 − b1

( .
X1 −

.
X2

)
− k1

(
X1 − X2)

3 = 0(
J + r2m0

) ..
ϕ− rm0

..
X1sin(ϕ

)
= V1 −V2

.
ϕ

R
.
q− d(X1)

C X1 +
q
C = 0

(1)

According to [75], the electrical charge developed in the coupled circuit is given by
q, and the term d(X1)

C q represents the piezoelectric coupling to the mechanical component,
with a strain-dependent coupling coefficient d(x).

The system represented by Equation (1) can be rewritten in a dimensionless form con-
sidering the following substitutions [72–74]: τ = ω1t, x = rX1

ω2
1

, z = rX2
ω2

1
,

ω1 =

√(
kl

(m1+m0

)
, α1 = b

(m1+m0)ω1
, β1 = kl

(m1+m0)ω
2
1
, β3 = knlr2

(m1+m0)ω
6
1
, δ1 =

m0ω2
1

(m1+m0)
,

ρ1 = m0r2

(J+r2m0)ω
2
1
, ρ2 = V1

(J+r2m0)ω
2
1
, ρ3 = V2

(J+r2m0)ω1
, α2 = b1

m2ω1
, α3 = k1r2

m1
, ε1 = m1b1

m2ω1
,

ε2 = k1r2, v = q
q0

, ]ρ = RC
ω1

, and d(X1) = θ(1 + Θ|x|) .
Considering the substitutions above, system 1 can be represented in the following

dimensionless form:

..
x− β1x + α

.
x + α2

( .
x− .

z
)
+ β3x3 + α3

(
x− z)3 − θ(1 + Θ|x|)v = δ1

..
ϕsinϕ + δ1

.
ϕ

2cos]ϕ
..
z− ε1

( .
x− .

z
)
− ε2

(
x− z)3 = 0

..
ϕ = ρ1cosϕ

..
x− ρ3

.
ϕ + ρ2

ρ
.
v− θ(1 + Θ|x|)x + v = 0

(2)
Using new variables defined as x1 = x, x2 =

.
x, x3 = z, x4 =

.
z, x5 = ϕ, x6 =

.
ϕ, and

x7 = v, the equations may be rewritten in a state space representation as follows:

.
x1 = x2

.
x2 = 1

∆

 β1x1 − α1x2 − α2(x2 − x4)− β3x3
1 − α3

(
x1 − x3)

3+

+θ(1 + Θ|x1|) x7 + δ1cos(x5) x2
6 + δ1sin(x5

)
(−ρ3x6 + ρ2)


.
x3 = x4.
x4 = ε1(x2 − x4) + ε2

(
x1 − x3)

3

.
x5 = x6

.
x6 = 1

∆

 −ρ3x6 + ρ2 + ρ1cos(x5)
(

β1x1 − α1x2 − α2(x2 − x4)− β3x3
1−

−α3
(
x1 − x3)

3 + θ(1 + Θ|x1|)x7 + δ1cos(x5
)

x2
6
) 

.
x7 = (θ(1 + Θ|x1|)x1 − x7)/ρ

(3)

where ∆ = 1− ρ1cos(x5) δ1sin(x5).
The average power is obtained through the formula below [74]:

Pavg =
1
T

∫ T

0
P(τ)dτ (4)
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where instantaneous power is calculated using the following:

P = ρ
.
v2 (5)

For analysis of the periodic or chaotic behavior of the system, the 0–1 test proposed
by [76,77] is considered, consisting of estimating a parameter K. The test assesses a system
variable xj, where two new coordinates (p, q) are defined as follows [78,79]:

p
(

n,
−
c
)
=

n

∑
j=0

xjcos(j
−
c ) (6)

q
(

n,
−
c
)
=

n

∑
j=0

xjsin(j
−
c ) (7)

where
−
c ∈ (0, π) is a constant. The mean square displacement of the new variables p

(
n,
−
c
)

and q
(

n,
−
c
)

are given by the following [78,79]:

M(n, c) = lim
n→∞

1
N

N

∑
j=1

[(
p
(

j + n,
−
c
)
− p

(
j,
−
c
))2

+
(

q
(

j + n,
−
c
)
− q
(

j,
−
c
))2]

(8)

where n = 1, 2, . . . , N and, therefore, it is obtained the parameter Kc in the limit of a very
long time [78,79]:

Kc =
cov
(

Y, M(
−
c )
)

√
var(Y)var(M(

−
c ))

(9)

where Y = [1, 2, . . . , nmax].
Given any two vectors x and y, the covariance cov(x, y) and variance var(x) of nmax

elements are usually defined as follows [78,79]:

cov(x, y) =
1

nmax

nmax

∑
n=1

((x(n)− x)((y(n)− y))) (10)

var(x)= cov(x, y) (11)

where
−
x is the average of x(n) and

−
y is the average of y(n).

The value of the K is obtained by taking the median of 100 different values of the
parameter Kc, considering that the system is periodic for K values close to 0 and the system
is chaotic if the K value is close to 1 [78,79].

For numerical simulations, Equation (3) was considered, integrated by the 4th-order
Runge–Kutta method, with integration step (h = 0.01), variation in parameters ε1, ε2, θ, Θ,
and ρ and the following fixed parameters: α1 = 0.1, α2 = 0.1, α3 = 0.5, β1 = 1, β3 = 0.2,
δ1 = 8.373, ρ1 = 0.05, ρ2 = 100, ρ3 = 200, ε1 = 1, ε2 = 5, θ = 0.20, Θ = 0.60, and
ρ = 1 [72,74].

The calculation of the average power will be obtained through Equation (4). The
behavior analysis is performed by analyzing the variations in K from test 0–1, according
to Equation (9). This paper will consider chaotic behavior for the system when K ≥ 0.8,
undefined behavior when 0.3 ≤ K ≤ 0.79, and periodic behavior when K < 0.3.

3. Results

In this section, analyses of the system dynamics and their potential for energy gen-
eration will be presented, considering the following control variables: ε1 = [0.01 : 2],
ε2 = [1 : 10], θ = [0.01 : 0.4], Θ = [0.01 : 1.2], and ρ = [0.01 : 2].
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3.1. Dynamics and Potential of Energy Generation for Variation in Parameters ε1 and ε2

Figure 3 presents the K variations in the 0–1 test and the variations in the average
power when setting the parameters θ = 0.20, Θ = 0.6, and ρ = 1.0 and considering
ε1 = [0.01 : 2] versus ε2 = [1 : 10].
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According to the results presented in Figure 3b, the greatest potential for energy
generation is obtained when parameters close to ε1 = 0.0502 and ε2 = 1.182 are considered,
providing an average power estimate Pavg ≈ 1.198. It can also be observed in Figure 3a that
the lateral displacements for these parameters become chaotic with the value of K ≈ 0.9.

However, analyzing the results of Figure 3, it is observed that for ε1 = 0.3919 and
ε2 = 1 there is also a potential for energy generation in regions of maximums, with an
estimated average power of Pavg ≈ 1.184. However, in this case the lateral displacements
have periodic behavior, with K ≈ 0.

3.2. Dynamics and Potential of Energy Generation for Variation in Parameters ε1 and θ

In Figure 4, you can see the K variations in the 0–1 test and the variations in the
average power when fixing the parameters ε2 = 5, Θ = 0.6, and ρ = 1.0 and considering
ε1 = [0.01 : 2] versus θ = [0.01 : 0.4].
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As shown in Figure 4, the potential energy increases as the value of θ increases. We
can also observe that the highest energy potentials are in the region where the lateral dis-
placement is periodic. So, a higher energy generation value is obtained for the parameters
ε1 = 0.0502 and θ = 0.3961, with Pavg ≈ 4.238 and K ≈ 0.

3.3. Dynamics and Potential of Energy Generation for Variation in Parameters ε1 and Θ

Setting the parameters ε2 = 5, θ = 0.20, and ρ = 1.0 and performing variations
in the parameters ε1 = [0.01 : 2] versus Θ = [0.01 : 1.2], the results shown in Figure 5
are obtained.
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Figure 5. Variation in parameters ε1 = [0.01 : 2] versus Θ = [0.01 : 1.2]: (a) test 0–1. (b) average power.

According to the analysis of the results presented in Figure 5, the value of the average
power increases as the value of Θ increases, and the region of the most significant potential
for energy generation is also in the region of periodic behavior of the system. This behavior
is similar to that observed for the parameter θ. So, we obtain an average power Pavg ≈ 1.975,
with K ≈ 0, for the parameters ε1 = 0.2311 and Θ = 1.188. It is also possible to observe that
a small strip of the chaotic behavior region presents a high energy value, since we have an
average power of Pavg ≈ 1.587, with K ≈ 0.9, for the parameters ε1 = 0.01 and Θ = 1.152.

3.4. Dynamics and Potential of Energy Generation for Variation in Parameters ε1 and ρ

In Figure 6, the variation in the average power of energy generation and the K param-
eter of test 0–1 are presented, considering variations in ε1 = [0.01 : 2] versus ρ = [0.01 : 2],
with fixed values for α2 = 0.1, θ = 0.20, and Θ = 0.6.
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Figure 6 shows that we have a more significant potential for energy generation for
lower values of ρ, taking the system to defined regions with quasi-periodic behavior. Thus,
in the case of ε1 = 0.03316 and ρ = 0.01, an average power Pavg ≈ 1.355 is obtained, with
K ≈ 0.5, configuring the system with quasi-periodic behavior, as it is neither completely
periodic nor chaotic. We can also observe that there is a region with chaotic behavior
that also provides a good level of energy generation for values close to ε1 = 0.0904 and
ρ = 0.0703. For these parameters, we obtain an average power of energy Pavg ≈ 1.253,
with K ≈ 0.9.

3.5. Dynamics and Potential of Energy Generation for Variation in Parameters ε2 and θ

Now, considering the case of varying the parameters ε2 = [1 : 10] versus θ = [0.01 : 0.4]
and setting the parameters α1 = 0.1, Θ = 0.6, and ρ = 1, we obtain the results shown in
Figure 7.
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The value of θ has a significant influence on energy generation, and ε2 has an influence
on the behavior of the system. Therefore, the greater the θ, the greater the capacity of the
system to generate energy, and the smaller the value of ε2, the greater the possibility that
the lateral movements of the structure have periodic behavior. In the case of using the
parameters ε2 = 5 and θ = 0.4, an average power of energy Pavg = 4.238 is obtained with
test value 0–1 K ≈ 0.

3.6. Dynamics and Potential of Energy Generation for Variation in Parameters ε2 and Θ

Figure 8 shows the K variations in the 0–1 test and the variations in the mean power
for the case of ε2 = [1 : 10] versus Θ = [0.01 : 1.2], with ε1 = 1, θ = 0.20, and ρ = 1. An
average power was obtained for these parameters.
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Figure 8. Variation in parameters ε2 = [1 : 10] versus Θ = [0.01 : 1.2]: (a) test 0–1; (b) average power.

According to the results presented in Figure 8, the average power increases as the
value of Θ increases, and the highest potential energy is found in the system’s periodic
behavior range. An average power energy of Pavg = 1.930 was obtained with K ≈ 0 for
ε2 = 5 and Θ = 1.2.

Another region with a significant energy potential value is obtained when ε2 = 3.364
and Θ = 1.176 are considered, providing an average potential energy Pavg ≈ 1.587, with
K ≈ 0.9, indicating that the system will have chaotic behavior for this case.

3.7. Dynamics and Potential of Energy Generation for Variation in Parameters ε2 and ρ

Figure 9 shows the dynamics of the system and the potential for power generation, con-
sidering variations in the parameters ε2 = [1 : 10] and ρ = [0.01 : 2] and fixed parameters
ε1 = 1, θ = 0.20, and Θ = 0.6.
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Figure 9 shows that a higher energy generation value is obtained as the value of ρ
decreases, leading the system to quasi-periodic or periodic behavior. It was possible to
obtain an average power energy of Pavg = 1.299 and K ≈ 0.4 for the parameters ε2 = 4.909
and ρ = 0.0301 and an average power of energy Pavg = 1.291 and K ≈ 0 for the parameters
ε2 = 6.636 and ρ = 0.01.

3.8. Dynamics and Potential of Energy Generation for Variation in Parameters θ and Θ

Now, consider the dynamics of the system and the potential for energy generation
for variation in the parameters θ = [0.01 : 0.4] versus Θ = [0.01 : 1] with fixed parameters
α1 = 0.1, α2 = 0.1, and ρ = 1.

Figure 10 presents the K variations in the 0–1 test and the variations in the mean power.
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As shown in Figure 10, energy generation increases as values of θ and Θ increase.
The increase in the value of the parameters leads the system to periodic behavior. We
can observe in Equation (3) that the parameters θ and Θ are related to the coupling of the
piezoelectric material to the structure, so using the two parameters at maximum values
may be physically impossible.
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Consider the possibility of using the maximum values θ = 0.4 and Θ = 1, values that
provide an average power expectation Pavg ≈ 49.844 with K ≈ 0.

3.9. Dynamics and Potential of Energy Generation for Variation in Parameters θ and ρ

The K variations from the 0–1 test as well as the average power variations for
θ = [0.01 : 0.4] versus ρ = [0.01 : 2] for α1 = 0.1, α2 = 0.1, and Θ = 0.6 are presented
in Figure 11.
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Figure 11 shows that a higher energy generation value is obtained as the values of θ
and ρ increase, as well as the periodic behavior of the system, since we have an average
power estimate Pavg ≈ 4.687 with K ≈ 0 for θ = 0.4 and ρ = 2.

3.10. Dynamics and Potential of Energy Generation for Variation in Parameters Θ and ρ

In this subsection, the last combination of the parameters investigated in this paper
is presented, considering variation in Θ = [0.01 : 1.2] and ρ = [0.01 : 2], with parameters
of the dynamics of the system and the potential for energy generation, considering the
parameters α1 = 0.1, α2 = 0.1, and θ = 0.2.

In Figure 12, we can observe the K variation in the 0–1 test and the estimate of the
average power generated by the system.
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The results presented in Figure 12 show that a higher energy generation value is
obtained as the value of Θ increases and ρ decreases, and the system is kept in a region of
periodic behavior. The highest estimated average power value is Pavg = 2.687 with K ≈ 0
for the parameters Θ = 1.2 and ρ = 0.0904.

4. Discussion

Table 1 presents a summary of the results of the average power variation, the value
of the 0–1 test, and the classification of the system’s behavior for variations in the control
parameters, according to the results presented in the previous sections.
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Table 1. Average power estimation and system behavior for parametric variation.

Case Parameter Parameter Average
Power

K Value
(Test 0–1) Behavior

1 ε1 = 0.0502 ε2 = 1.182 Pavg ≈ 1.198 K ≈ 0.9 Chaotic

2 ε1 = 0.3919 ε2 = 1 Pavg ≈ 1.184 K ≈ 0 Periodic

3 ε1 = 0.0502 θ = 0.3961 Pavg ≈ 4.238 K ≈ 0 Periodic

4 ε1 = 0.01 Θ = 1.152 Pavg ≈ 1.587 K ≈ 0.9 Chaotic

5 ε1 = 0.2311 Θ = 1.188 Pavg ≈ 1.965 K ≈ 0 Periodic

6 ε1 = 0.03316 ρ = 0.01 Pavg ≈ 1.355 K ≈ 0.5 Quasi-periodic

7 ε1 = 0.0904 ρ = 0.0703 Pavg ≈ 1.253 K ≈ 0.9 Chaotic

8 ε2 = 5 θ = 0.4 Pavg ≈ 4.238 K ≈ 0 Periodic

9 ε2 = 3.364 Θ = 1.176 Pavg ≈ 1.587 K ≈ 0.9 Chaotic

10 ε2 = 5 Θ = 1.2 Pavg ≈ 1.93 K ≈ 0 Periodic

11 ε2 = 4.909 ρ = 0.0301 Pavg ≈ 1.299 K ≈ 0.4 Quasi-periodic

12 ε2 = 6.636 ρ = 0.01 Pavg ≈ 1.291 K ≈ 0 Periodic

13 θ = 0.4 Θ = 1 Pavg ≈ 49.844 K ≈ 0 Periodic

14 θ = 0.4 ρ = 2 Pavg ≈ 4.687 K ≈ 0 Periodic

15 Θ = 1.2 ρ = 0.0904 Pavg ≈ 2.687 K ≈ 0 Periodic

In Table 1, we can observe the variation in the average power and behavior of
the system for the following combinations of parameters: ε1 = [0.01 : 2], ε2 = [1 : 10],
θ = [0.01 : 0.4], Θ = [0.01 : 1.2], and ρ = [0.01 : 2].

We can observe that the predominance is for periodic behavior. The highest value
observed for the system in periodic, quasi-periodic, and chaotic behavior is highlighted.

In Figure 13, we can observe the phase diagram of x1 versus x2, x3 versus x4, and
the voltage variation in the piezoelectric material (x7), considering the highest average
power value for periodic behavior (case 13) obtained for the following parameters: α1 = 0.1,
α2 = 0.1, α3 = 0.5, β1 = 1, β3 = 0.2, δ1 = 8.373, ρ1 = 0.05, ρ2 = 100, ρ3 = 200, ε1 = 1,
ε2 = 5, θ = 0.4, Θ = 1, and ρ = 1.

In Figure 14, we can observe the phase diagram of x1 versus x2, x3 versus x4, and
the voltage variation in the piezoelectric material (x7), considering the behavior as the
highest average power estimate for the case of the system having chaotic behavior (case
4), considering the following parameters: α1 = 0.1, α2 = 0.1, α3 = 0.5, β1 = 1, β3 = 0.2,
δ1 = 8.373, ρ1 = 0.05, ρ2 = 100, ρ3 = 200, ε1 = 0.01, ε2 = 5, θ = 0.2, Θ = 1.152, and ρ = 1.

Analyzing the results presented in Figures 13 and 14, it is evident from the phase
diagrams that there is periodic behavior for the first case and chaotic for the second case.

For the case θ = 0.4 and Θ = 1 (Figure 13c), the highest estimate of the average
power was obtained. However, it is observed that the structure has a pronounced lateral
displacement, and its oscillations are concentrated at a point far away from the origin
(Figure 13c), which explains why the average power value is much higher than the others.
As the voltage of the piezoelectric material depends on the deflection of the side frame of
the portal frame, the flexed mantel will maintain a high voltage, and the small oscillations
added to the deflection will only result in slight increases in the constant voltage. However,
this behavior shifts the structure’s center of gravity, generating the buckling effect.

Contrary to what is observed in Figure 13, in Figure 14 it can be observed that the side
of the frame will oscillate around the origin, not displacing the side of its normal axis and
thus maintaining the center of gravity at the base of the frame.

We can observe from the results presented in the previous section and Table 1 that the
addition of the parameter θ has implied an increase in the average potency. However, it
has also changed the structure’s center of gravity, as seen in Figure 13.
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In Figure 15, we present the phase diagram of x1 versus x2 for the other cases in which
Pavg > 4, and it depends on the parameter θ.
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As can be seen in the phase diagrams of Figure 15, the increment of the parameter
θ, in addition to increasing the average power, also causes a permanent deflection in the
portal frame column, changing the center of gravity of the gantry column in all cases.

As can be seen in Equation (3) the power x7 depends on ((θ + θΘ|x1|)x1), as well as the
displacement x1 of ((θ + θΘ|x1|)x7), as we see the θ parameter is the coupling parameter
between the structure and piezoelectric material that influences the energy more in relation
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to the displacement and the rigidity of the structure; so, for θ > 1 the power tends to increase
even for small displacements of x1, as well as the rigidity of the structure.
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Considering the energy potential, we can also see in Table 1 that the parameter Θ is
quite influential, as well as the parameter θ.

Figure 16 shows the phase diagram of x1 versus x2 for the first three highest average
powers, considering the dependence on the parameter Θ and not on θ.
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As seen in Figure 16, parameter Θ has little influence on the center of gravity of the
portal frame column. Its variation will not influence cases of buckling. However, its effect
on the behavior and estimation of the average power of the piezoelectric material is evident.

5. Conclusions

The presented results demonstrate the significant influence of the piezoelectric material
parameters on the system’s dynamic behavior. Since the piezoelectric material can be used
both as an actuator and sensor, its use as a source of energy is essential for green energy
harvesting. The stored energy, in turn, can be used later in applying the piezoelectric
material as an actuator.

Considering the numerical results presented, we can highlight the influence of the
linear coupling parameter “θ” of the piezoelectric material. The results showed that the
increase in the parameter’s value could lead the structure to remain in deflection, which
positively provides a more significant potential for generated energy; however, this action
can leave the frame’s column subject to undesirable effects, such as buckling. It was
also seen that the increase in the value of the piezoelectric material’s nonlinear coupling
parameter “Θ” also increases potential energy but without causing deflection.

With the 0–1 test, it was possible to verify which parameters can lead the system into
chaotic behavior, which is not desired in most applications. The study also confirmed that
the NES system is a good alternative for controlling vibrations without energy consumption.

Based on the contributions of numerical and dimensionless results presented, we
can consider in future works the use of an optimization system through metaheuristics
to determine the best combination of the five parameters simultaneously, as well as the
assembly of an experimental apparatus for the analysis and validation of the model and
the parameters used in dimensionless form, thus obtaining the average power in Watts.
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