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Abstract: An analytical dynamic model is presented for a spacecraft with multiple large flexible
structures. Based on the partial differential equations (PDEs) of the motion of the solar panel and
deployable arm, the governing equations of the main-body and deployable antenna and the boundary
conditions at each end point are used to obtain the frequency and mode shapes of the system. Then,
the ordinary differential equations (ODEs) of the system can be obtained from the orthogonality
relations and mode shape. The influence of the deployable antenna on the frequencies and mode
shapes of the spacecraft is investigated. The frequency veering and mode interchanged phenomenon
are observed with the variation of the diameter of the deployable antenna. Using the ODEs, the
dynamic responses of the spacecraft are calculated to study the influence of the control torque on the
attitude and position of the antenna in the attitude maneuver.

Keywords: flexible structures; flexible spacecraft; global mode shapes; orthogonality relations;
analytical dynamic model; dynamical characteristic

1. Introduction

With the rapid development of space communication technology, the new generation
of satellites is required to be multi-functional and have a long life and high performance.
Thus the required spacecraft often need installation of solar wings and deployable antennas.

A large deployable antenna structure is widely used to increase the gain of the space-
borne antenna [1]. In 2000, the United States successfully launched the commercial commu-
nications satellite Thuraya with a 12.25-m aperture and 55 kg mass [2]. Subsequently, the
two Thuraya communication satellites launched in 2003 and 2008 used the same deployable
antenna [3]. Thomson [4] found that increasing the antenna size within a certain range
does not change its structure and that the unit mass does not increase proportionally but
shows a significant downward trend. In the design of the spacecraft attitude control, the
main source of radiation force is direct exposure to the sun. Bohling et al. [5] studied the
torques produced by the radiation forces on the spacecraft. Solar heating of spacecraft
causes antennas far from the sun to bend in the direction of satellite rotation, while antennas
near the sun bend in the opposite direction of satellite rotation. Palmerini and Sgubini [6]
enhanced the stability of the gravity gradient by adjusting the solar reflector and absorption
surface.

For the large-scale space-borne annular truss antenna system, the main components
include a two-stage flexible deployable arm, deployable annular truss, wire reflection
network, and tension network [4]. For such a complex circular truss antenna structure, the
use of finite element software is a practical and effective way to analyze its dynamics [7–14].
Mobre et al. [14] established a finite element model for a deployable antenna structure
consisting of two flexible deployable arms and an annular truss; the model obtained the first
three natural frequencies and modal shapes of the antenna structure, including pitching,
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rolling of the annular trusses, and bending vibration of the deployable arms. Based on the
finite element method (FEM), Chodimella et al. [13] found that the thermal strain on the
antenna can cause great disturbance to the shape, so it is necessary to add sun-visor and
multi-layer insulating material to reduce the thermal disturbance amplitude on the system.

Due to the large and flexible structure of spacecraft, the corresponding system mod-
eling, identification, and control problems have become increasingly complex. Based on
experimental methods [15–18], Sabatini et al. [16] used a vibration data acquisition method
based on image technology to simulate highly flexible solar panels using aluminum sheets
for identifying the vibration modes and characteristic frequencies of spacecraft’s flexible
structures. Ivanov et al. [17] studied the vibration testing methods of spacecraft with elastic
elements such as sensors based on direct inverse Piezoelectricity, sensors and accelerome-
ters based on fiber grating, etc. Wang et al. [18] studied centralized vibration control for
measuring flexible dynamic behavior using optical cameras instead of attaching intelligent
sensors or actuators nearby to separate the vibration of flexible attachments from distur-
bances. Angeletti et al. [15], based on the design of spacecraft vibration control structure,
carried out numerical simulation through a nonlinear orbit simulator and compared the
results with those obtained using a baseline PID controller, finding that robust control has
better performance.

Although the FEM and experimental methods can provide an effective approach for
the dynamic analysis of complex high-dimensional nonlinear systems, it is necessary to un-
derstand and extract the dynamic behavior of the system of the finite element model based
on tens of thousands of degrees of freedom. Relatively speaking, analytical methods based
on analytical or semi-analytical solutions are helpful to grasp the dynamic characteristics
of the system and to explore the global dynamic phenomena of the system.

Using the mode functions to describe the elastic deformation of flexible structures can
greatly reduce the degree of freedom of the established system dynamics model, which is
very suitable for the design of structural vibration controllers. Spacecraft with a very rigid
bus have appendages that demonstrate flexible behavior; in these cases, it is convenient to
use the cantilever and other constrained boundary modes to obtain the assumed modes.
Therefore, the assumed mode method (AMM) is most widely used in the dynamic modeling
of flexible spacecraft for which rigid body platforms are dominant [19–23].

For flexible spacecraft in which the inertia of the rigid body platform does not dom-
inate, the assumed mode can no longer accurately describe the real deformation of the
flexible component. In this regard, the dynamic model of large flexible spacecraft estab-
lished using the global mode is more accurate, because the global mode can truly reflect the
elastic vibration of each flexible component in the spacecraft and the motion of the rigid
body platform. Based on GMM, Hablani [24] conducted a comprehensive study of the
dynamic characteristics and control of flexible spacecraft. Hablani [25] pointed out that, in
comparison with the AMM, the dynamic model has its accuracy determined by the inertial
ratio of the spacecraft system. Because the global mode contains the modal information of
the entire system, selecting a small number of global modes can better describe the motion
of the system [26], which makes the global mode very suitable for multiple large flexible
structures.

In summary, for large flexible spacecraft, compared with the AMM, the dynamic
model established by the global mode has lower degrees of freedom and higher accuracy.
However, the global mode is not as direct as the assumed mode, and how to accurately
obtain the global mode of the system becomes the key point. Based on the development
of the GMM, Wei and Cao applied it to the dynamic modeling and analysis of flexible
spacecraft with jointed solar wings [27,28], flexible space manipulators [29], and multi-beam
jointed structures [30,31].

Based on the methodology in [28,29,31], a rigid-flexible coupled global modal analysis
method for the vibration of the rigid-body platform and flexible appendages (solar wing
and deployable antenna) of spacecraft is developed, and the influence of the deployable
antenna on the frequencies and mode shapes of the spacecraft is investigated. The frequency
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veering and mode interchanged phenomenon is observed with the variation of the diameter
of the deployable antenna. The explicit orthogonal relationship between the body and the
deployable antenna is described, and the global modal shape and orthogonality are used to
derive a set of ODEs governing the motion of the system; the dynamic responses of the
spacecraft are calculated to investigate the influence of the control torque on the attitude
and position of the antenna in the attitude maneuver.

2. Dynamic Modeling for a Spacecraft with Multiple Large Flexible Structures
2.1. Governing Equations of Motion

Consider the planar motion of a spacecraft that consists of a main-body, two solar
arrays, a deployable arm, and deployable antenna, as shown in Figure 1. The solar array
and deployable arm are modeled as a Euler–Bernoulli beam. The main-body is assumed to
be a rigid body. Because the elastic deformation of the deployable antenna is much smaller
than that of the solar wing and the deployable arm, the deployable antenna is simplified as
a rigid disk.
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Figure 1. Spacecraft with multiple flexible structures: (a) spatial motion model and (b) planar motion
model.

The moment of inertia of the solar array is I1, elastic modulus is E1, length is L1, and
mass per unit length is ρ1. Similarly, the mass per unit length, elastic modulus, moment
of inertia, and length of the deployable arm are denoted by ρ2, E2, I2, and L2, respectively.
mc and Jc are the mass and moment of inertia of the main-body, respectively. mr and Jr
are the mass and moment of inertia of the deployable antenna, respectively. d is used to
describe the radius of the deployable antenna. Let (xc, yc) and (xr, yr) be the coordinates of
the main-body and deployable antenna, respectively. Let (x1, y1), (x2, y2), and (x3, y3) be
the coordinates of the left solar array, right solar array, and deployable arm, respectively.
θc is used to describe the rotational displacement of the main-body, yc is the translational
displacements in the vertical directions, and xc is the translational displacements in the
horizontal direction of the main-body. yr and θr are the translational displacement in the
horizontal direction and rotational displacement of the deployable antenna, respectively.

The Euler–Bernoulli beam theory suggests the motion equations of the solar arrays
can be expressed as

ρ1
..
vi + E1I1v

′′′′
i = 0, i = 1, 2. (1)

where a prime represents partial differentiation with respect to x, and an overdot represents
partial differentiation with regard to time t. v1 and v2 are the displacements of the left and
right solar arrays, respectively.
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Similarly, the motion equation of the deployable arm is expressed as

ρ2
..
v3 + E2I2v

′′′′
3 = 0. (2)

where v3 is the displacement of the deployable arm.
Using the matching conditions, as illustrated in Figure 2a, the motion equations of the

main-body for the translation in the horizontal and vertical directions are

mcx
..
xc + E2I2v′′′3 (−L2

2
, t) = 0, (3)

mcy
..
yc − E1I1v′′′1 (

L1

2
, t) + E1I1v′′′2 (−L1

2
, t) = 0. (4)

where mcx = mc + 2ρ1L1 and mcy = mc + ρ2L2 + mr.
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Figure 2. Schematic of the (a) natural and (b) geometrical matching conditions of the main-
body: (a) Q1, Q2, and Q3 are the shear forces acting on the main-body, Q1 = E1I1v′′′1 (L1/2, t),
Q2 = E1I1v′′′2 (−L1/2, t), and Q3 = E2I2v′′′3 (−L2/2, t); M1, M2, and M3 are the bending moment
acting on the main-body, M1 = E1I1v′′1 (L1/2, t), M2 = E1I1v′′2 (−L1/2, t), M3 = E2I2v′′3 (−L2/2, t);
(b) ṽ1 = v1(L1/2, t), v′1 = v′1(L1/2, t), ṽ2 = v2(−L1/2, t), v′2 = v′2(−L1/2, t), ṽ3 = v3(−L2/2, t),
and v′3 = v′3(−L2/2, t).

The motion equation of the main-body for the rotation is

Jc
..
θc + E1I1v′′1 (

L1
2 , t)− E1I1v′′2 (−

L1
2 , t)− E2I2v′′3 (−

L2
2 , t)

+d1

[
E1I1v′′′1 (L1

2 , t) + E1I1v′′′2 (−L1
2 , t)

]
+ d2E2I2v′′3 (−

L2
2 , t) = Mc.

(5)

where d1 is the distance from the center of the main-body to the solar array, and d2 is the
distance from the center of the deployable antenna to the deployable arm. The attitude
control torque acting on the main-body is denoted by Mc.

As shown in Figure 3a, using the natural matching conditions, the motion equations
of the deployable antenna for the translation and rotation are

mr
..
yr − E2I2v′′′3 (

L2

2
, t) = 0, (6)

Jr
..
θr + E2I2v′′ 3 (

L2

2
, t)− d3E2I2v′′′3 (

L2

2
, t) = 0. (7)

Next, the boundary condition of the spacecraft is analyzed. The geometric matching
conditions of the main-body are illustrated in Figure 2b.{

v1(
L1
2 , t) = yc − d1θc, v2(−L1

2 , t) = yc + d1θc, v3(−L2
2 , t) = xc + d2θc,

v′1(
L1
2 , t) = θc, v′2(−

L1
2 , t) = θc, v′3(−

L2
2 , t) = θc.

(8)
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Figure 3. Schematic of the (a) natural and (b) geometrical matching conditions of deployable antenna:
(a) Q is the shear force acting on deployable antenna, Q = E2I2v′′′3 (L2/2, t); M is the bending moment
acting on deployable antenna, M = E2I2v′′3 (L2/2, t); (b) ṽL = v3(L2/2, t), v′L = v′3(L2/2, t).

The geometric matching conditions of the deployable antenna are depicted in
Figure 3b.

yr = v3(
L2

2
, t)− d3θr, θr = v′3(

L2

2
, t). (9)

The A and B of the solar arrays are the free ends of the cantilever beam, with zero
bending moment and shear force.{

E1I1v′′1 (−
L1
2 , t) = 0, E1I1v′′′1 (−L1

2 , t) = 0,
E1I1v′′2 (

L1
2 , t) = 0, E1I1v′′′2 (L1

2 , t) = 0.
(10)

2.2. Natural Frequencies and Global Mode Shapes

In order to obtain a low-dimensional dynamic model, it is necessary to study the
eigenvalue problem of the system to obtain the global mode shapes. It is assumed that the
displacements of the spacecraft are separable in space and time. Whereω is an unknown
constant relating to the system’s natural frequency, let

vi(x, t) = ϕi(x)ejω t, xc = Xc ejω t, yc = Yc ejω t, θc = Θcejω t,
xr = Xr ejω t, yr = Yr ejω t, θr = Θr ejω t, i = 1, 2, 3.

(11)

Integrating Equation (11) into Equations (1)–(7) without external force yields

ω2ρ1ϕi(x)− E1I1ϕ
′′′′
i (x) = 0, i = 1, 2, (12)

ω2ρ2ϕ3(x)− E2I2ϕ
′′′′
3 (x) = 0, (13)

ω2mcxXc − E2I2ϕ
′′′
3 (−L2

2
) = 0, (14)

ω2mcyYc + E1I1ϕ
′′′
1 (

L1

2
)− E1I1ϕ

′′′
2 (−L1

2
) = 0, (15)

ω2JcΘc − E1I1ϕ
′′
1 (L1

2 ) + E1I1ϕ
′′
2 (−L1

2 ) + E2I2ϕ
′′
3 (−L2

2 )

−d1

[
E1I1ϕ

′′′
1 (L1

2 ) + E1I1ϕ
′′′
2 (−L1

2 )
]
− d2E2I2ϕ

′′′
3 (−L2

2 ) = 0,
(16)

ω2mrYr + E2I2ϕ
′′′
3 (

L2

2
) = 0, (17)

ω2JrΘr − E2I2ϕ
′′
3 (

L2

2
) + d3E2I2ϕ

′′′
3 (

L2

2
) = 0. (18)
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The main-body geometric matching conditions are simplified to{
ϕ1(

L1
2 ) = Yc − d1Θc,ϕ2(−L1

2 ) = Yc + d1Θc,ϕ3(−L2
2 ) = Xc + d2Θc,

ϕ′1(
L1
2 ) = Θc,ϕ′2(−

L1
2 ) = Θc,ϕ′3(−

L2
2 ) = Θc.

(19)

The geometric matching conditions of the deployable antenna are reduced to

Yr = ϕ3(
L2

2
)− d3Θr, Θr = ϕ′3(

L2

2
). (20)

The boundary conditions at A and B become{
E1I1ϕ

′′
1 (−L1

2 ) = 0, E1I1ϕ
′′′
1 (−L1

2 ) = 0,
E1I1ϕ

′′
2 (L1

2 ) = 0, E1I1ϕ
′′′
2 (L1

2 ) = 0.
(21)

The solutions of Equations (12) and (13) are
ϕ1(x) = A1 cos(β1x) + B1 sin(β1x) + C1 cosh(β1x) + D1sinh(β1x), x ∈ [0, L1],
ϕ2(x) = A2 cos(β1x) + B2 sin(β1x) + C2 cosh(β1x) + D2sinh(β1x), x ∈ [0, L1],
ϕ3(x) = A3 cos(β2x) + B3 sin(β2x) + C3 cosh(β2x) + D3sinh(β2x), x ∈ [0, L2].

(22)

where β1 =
(
ρ1ω

2

E1I1

)1/4
and β2 =

(
ρ2ω

2

E2I2

)1/4
. Let

ψi =
[
Ai Bi Ci Di

]
, i = 1, 2, 3, (23)

ψ =
[
ψ1 ψ2 ψ3 Xc Yc Θc Yr Θr

]T. (24)

Substituting Equation (22) into Equations (19)–(21), and then determining the main-
body and deployable antenna using Equations (14)–(18), the following characteristic equa-
tion can be obtained:

H(ω)ψ = 0, (25)

where the matrix H(ω) ∈ R17×17.
Let det(H(ω)) = 0. ωs is the s-th natural frequency, and ψ(s) is the s-th global mode

shapes for the system.

2.3. Orthogonality

φm(x) and φs(x) represent the global mode shapes associated with the two unique
eigenvaluesωm andωs.

φr(x) =
[
ϕ1 ϕ2 ϕ3 Xcm Ycm Θcm Yrm Θrm

]T, m = 1, 2, · · · . (26)

By Equations (12)–(18), one has

ω2
mρ1ϕim(x) = E1I1ϕ

′′′′
im(x), i = 1, 2, (27)

ω2
mρ2ϕ3m(x) = E2I2ϕ

′′′′
3m(x), (28)

ω2
mmcxXcm = E2I2ϕ

′′′
3m(−L2

2
), (29)

ω2
mmcyYcm = −E1I1ϕ

′′′
1m(

L1

2
) + E1I1ϕ

′′′
2m(−L1

2
), (30)
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ω2
mJcΘcm = E1I1ϕ

′′
1m(L1

2 )− E1I1ϕ
′′
2m (−L1

2 )− E2I2ϕ
′′
3m (−L2

2 )

+d1

[
E1I1ϕ

′′′
1m(L1

2 ) + E1I1ϕ
′′′
2m(−L1

2 )
]
+ d2E2I2ϕ

′′′
3m(−L2

2 ),
(31)

ω2
mmrYrm = −E2I2ϕ

′′′
3m(

L2

2
), (32)

ω2
mJrΘrm = E2I2ϕ

′′
3m(

L2

2
)− d3E2I2ϕ

′′′
3m(

L2

2
). (33)

Then, multiply Equation (27) by ϕ1s and ϕ2s; for the two solar arrays, integrate the
resulting equations across the domain 0 ≤ x ≤ L1, respectively; multiply Equation (28) by
ϕ3s; integrate the resulting equations over the domain 0 ≤ x ≤ L2 for the deployable arm;
and add the resulting equations to obtain∫ L1

0 E1I1ϕ
′′′′
1m(x) ϕ1s(x)dx +

∫ L1
0 E1I1ϕ

′′′′
2m(x) ϕ2s(x)dx +

∫ L2
0 E2I2ϕ

′′′′
3m (x) ϕ3s(x)dx =

ωm
2
(∫ L1

0 ρ1ϕ1m(x)ϕ1s(x)dx +
∫ L1

0 ρ1ϕ2m(x)ϕ2s(x)dx +
∫ L2

0 ρ2ϕ3m(x)ϕ3s(x)dx
)

.
(34)

Multiply Equations (29)–(33) by Xcs, Ycs, Θcs, Yrs, and Θrs, respectively, and then sum
the resulting equations to obtain

E2I2ϕ
′′′
3m (−L2

2 )Xcs +
[
−E1I1ϕ

′′′
1m (L1

2 ) + E1I1ϕ
′′′
2m (−L1

2 )
]
Ycs

+
[
E1I1ϕ

′′
1m (L1

2 )− E1I1ϕ
′′
2m (−L1

2 )− E2I2ϕ
′′
3m (−L2

2 )
]
Θcs

+
[
d1E1I1ϕ

′′′
1m (L1

2 ) + d1E1I1ϕ
′′′
2m (−L1

2 ) + d2E2I2ϕ
′′′
3m (−L2

2 )
]
Θcs

−E2I2ϕ
′′′
3m (L2

2 )Yrs +
[
E2I2ϕ

′′
3m (L2

2 ) + d3E2I2ϕ
′′′
3m (L2

2 )
]
Θrs

= ω2
m
[
mcxXcmXcs + mcyYcmYcs + JcΘcmΘcs + mrYrmYrs + JrΘrmΘrs

]
.

(35)

Using the boundary and matching conditions in Equations (19)–(21), adding Equa-
tion (35), and integrating Equation (34) by parts yields∫ L1

0 E1I1ϕ
′′′′
1m (x) ϕ1s(x)dx +

∫ L1
0 E1I1ϕ

′′′′
2m (x) ϕ2s(x)dx +

∫ L2
0 E2I2ϕ

′′′′
3m (x) ϕ3s(x)dx =∫ L1

0 E1I1ϕ
′′
1m (x) ϕ′′1s(x)dx +

∫ L1
0 E1I1ϕ

′′
2m (x) ϕ′′2s(x)dx +

∫ L2
0 E2I2ϕ

′′
3m (x) ϕ′′3s(x)dx

−ω2
m
[
mcxXcmXcs + mcyYcmYcs + JcΘcmΘcs + mrYrmYrs + JrΘrmΘrs

]
.

(36)

Substituting Equation (36) into the left-hand side of Equation (34) yields∫ L1
0 E1I1ϕ

′′
1m (x) ϕ′′1s(x)dx +

∫ L1
0 E1I1ϕ

′′
2m (x) ϕ′′2s(x)dx +

∫ L2
0 E2I2ϕ

′′
3m (x) ϕ′′3s(x)dx

= ω2
m

[ ∫ L1
0 ρ1ϕ1m(x)ϕ1s(x)dx +

∫ L1
0 ρ1ϕ2m(x)ϕ2s(x)dx +

∫ L2
0 ρ2ϕ3m(x)ϕ3s(x)dx

+mcxXcmXcs + mcyYcmYcs + JcΘcmΘcs + mrYrmYrs + JrΘrmΘrs

]
.

(37)

Exchanging the superscripts m and s in Equation (37) yields∫ L1
0 E1I1ϕ

′′
1m (x) ϕ′′1s(x)dx +

∫ L1
0 E1I1ϕ

′′
2m (x) ϕ′′2s(x)dx +

∫ L2
0 E2I2ϕ

′′
3m (x) ϕ′′3s(x)dx

= ω2
s

[ ∫ L1
0 ρ1ϕ1m(x)ϕ1s(x)dx +

∫ L1
0 ρ1ϕ2m(x)ϕ2s(x)dx +

∫ L2
0 ρ2ϕ3m(x)ϕ3s(x)dx

+mcxXcmXcs + mcyYcmYcs + JcΘcmΘcs + mrYrmYrs + JrΘrmΘrs

]
.

(38)

Subtracting Equation (37) from Equation (38) yields

(
ω2

m −ω2
s)
[∫ L1

0 ρ1ϕ1m(x)ϕ1s(x)dx +
∫ L1

0 ρ1ϕ2m(x)ϕ2s(x)dx +
∫ L2

0 ρ2ϕ3m(x)ϕ3s(x)dx
]

+
(
ω2

m −ω2
s)
[
mcxXcmXcs + mcyYcmYcs + JcΘcmΘcs + mrYrmYrs + JrΘrmΘrs

]
= 0.

(39)
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The first orthogonality relation can be derived from Equation (39).∫ L1
0 ρ1ϕ1m(x)ϕ1s(x)dx +

∫ L1
0 ρ1ϕ2m(x)ϕ2s(x)dx +

∫ L2
0 ρ2ϕ3m(x)ϕ3s(x)dx

+mcxXcmXcs + mcyYcmYcs + JcΘcmΘcs + mrYrmYrs + JrΘrmΘrs = Msδms.
(40)

where Ms is s-th modal mass and δms is the Kronecker delta. The second orthogonality
relation can be calculated using Equations (37) and (40).

∫ L1

0
E1I1ϕ

′′
1m (x) ϕ′′1s(x)dx +

∫ L1

0
E1I1ϕ

′′
2m (x) ϕ′′2s(x)dx +

∫ L2

0
E2I2ϕ

′′
3m (x) ϕ′′3s(x)dx = Kmδms. (41)

where Ks is s− th modal stiffness.

2.4. Dynamic Model with Multi-DOF

By using the global mode shapes obtained by characteristic Equation (25), the displace-
ments of the flexible spacecraft can be written as

v1(x, t) =
n
∑

sr=1
ϕ1sr(x)qsr(t), v2(x, t) =

n
∑

sr=1
ϕ2sr(x)qsr(t), v3(x, t) =

n
∑

sr=1
ϕ3sr(x)qsr(t),

xc =
n
∑

sr=1
Xcsr qsr(t), yc =

n
∑

sr=1
Ycsr qsr(t), θc =

n
∑

sr=1
Θcsrqsr(t), yr =

n
∑

sr=1
Yrsr qsr(t), θr =

n
∑

sr=1
Θrsrqsr(t) .

(42)

The sr-th modal coordinate of the system is qsr(t).
Substituting Equation (42) into Equations (1)–(7) yields

ρ1

n

∑
sr=1

ϕisr(x)
..
qsr(t) + E1I1

n

∑
sr=1

ϕ
′′′′
isr (x)qsr(t) = 0, i = 1, 2, (43)

ρ2

n

∑
sr=1

ϕ3sr(x)
..
qsr(t) + E2I2

n

∑
sr=1

ϕ
′′′′
3sr (x)qsr(t) = 0, (44)

mcx

n

∑
sr=1

Xcsr
..
qsr(t) + E2I2

n

∑
sr=1

ϕ
′′′
3sr(−

L2

2
)qsr(t) = 0, (45)

mcy

n

∑
sr=1

Ycsr
..
qsr(t)− E1I1

n

∑
sr=1

ϕ
′′′
1sr(

L1

2
)qsr(t) + E1I1

n

∑
sr=1

ϕ
′′′
2sr(−

L1

2
)qsr(t) = 0, (46)

Jc
n
∑

sr=1
Θcsr

..
qsr(t) + E1I1

n
∑

sr=1
ϕ
′′
1sr(

L1
2 )qsr(t)− E1I1

n
∑

sr=1
ϕ
′′
2sr(−

L1
2 )qsr(t)− E2I2

n
∑

sr=1
ϕ
′′
3sr(−

L2
2 )qsr(t)

+d1

[
E1I1

n
∑

sr=1
ϕ
′′′
1sr(

L1
2 )qsr(t) + E1I1

n
∑

sr=1
ϕ
′′′
2sr(−

L1
2 )qsr(t)

]
+ d2E2I2

n
∑

sr=1
ϕ
′′′
3sr(−

L2
2 )qsr(t) = Mc,

(47)

mr

n

∑
sr=1

Yrsr
..
qsr(t)− E2I2

n

∑
sr=1

ϕ
′′′
3sr(

L2

2
)qsr(t) = 0. (48)

Jr

n

∑
sr=1

Θrsr
..
qsr(t) + E2I2

n

∑
sr=1

ϕ
′′
3sr(

L2

2
)qsr(t)− d3E2I2

n

∑
sr=1

ϕ
′′′
3sr(

L2

2
)qsr(t) = 0. (49)

Multiply Equation (43) by ϕ1s and ϕ2s; for the two solar arrays, integrate the resulting
equations across the domain 0 ≤ x ≤ L1, respectively; multiply Equation (44) by ϕ3s;
integrate the resulting equations over the domain 0 ≤ x ≤ L2 for the deployable arm;
multiply Equations (45)–(49) by Xcs, Ycs, Θcs, Yrs, and Θrs, respectively; apply the orthog-
onality relations in Equations (40) and (41); and add all of the resulting equations and
Equations (8)–(10) of the boundary condition. We then have

Ms
..
qs + Ksqs = ΘcsMc, s = 1, 2, · · · , n. (50)

where Ks and Ms are the modal stiffness and modal mass of s-th, respectively.
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3. Results and Discussion

In this section, the first eight mode shapes of the spacecraft with large flexible struc-
tures are provided. Then, the influence of the deployable antenna on the natural frequencies
and global mode shapes of the flexible spacecraft is discussed and then compared with
the influence as obtained from the finite element software ANSYS. Finally, the dynamic
responses of the spacecraft under the attitude control torque are performed. Table 1 lists
the physical parameters of the spacecraft.

Table 1. The parameters of the spacecraft.

Parameter Value

Solar array length L1(m) 8
Solar array mass density ρ1(kg/m) 2.86
Solar array flexural rigidity E1I1(N ·m2) 4072
Deployable arm mass density ρ2(kg/m) 2.29
Deployable arm flexural rigidity E2I2(N ·m2) 9.78× 105

Deployable arm length L2(m) 8
Distance d1 = d2 = d3(m) 1
Main-body mass mc(kg) 640
Main-body moment of inertia Jc(kg ·m2) 426.7
Deployable antenna areal density (kg/m2) 0.3
Deployable antenna diameter 2d(m) 20

For the finite element model, the solar arrays, the main-body, the deployable arm, and
the deployable antenna are modeled by the BEAM 188 element, the SOLID 45 element, the
PIPE 16 element, and the SOLID 45 element, respectively. The flexible spacecraft is divided
into 12,892 elements. Table 2 shows that the first eight natural frequencies and global mode
shape obtained from the proposed model were in excellent agreement with those obtained
from ANSYS, such that the largest difference in natural frequencies was only 3.83%. In
addition, the first eight mode shapes obtained by the proposed model were exactly the
same as those from the model in ANSYS. All the above findings prove the validity of the
dynamic model proposed here.

Table 2. The lowest eight natural frequencies of the bridge systemω(Hz).

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Proposed
model 0.336 0.345 1.934 2.081 2.241 5.689 5.804 7.079

ANSYS 0.336 0.343 1.908 2.082 2.260 5.742 5.805 7.350

3.1. Mode Analysis

Figure 4 depicts the first eight global mode shapes of the flexible spacecraft. As
illustrated in the figure, since the flexible spacecraft is a symmetrical T-shaped configuration,
its global mode shapes show the characteristics of symmetry and antisymmetry. In the
first mode shape, the translational displacement of the main-body in the vertical direction
and the left and right solar arrays are the same. In the second mode shape, the main-
body undergoes rotational displacement, the deployable antenna undergoes translational
displacement in the horizontal direction and rotational displacement, and the left and
right solar arrays are opposite. In the third mode shape, the main-body shows significant
rotational displacement, the deployable antenna exhibits a small degree of horizontal and
rotational displacement, and the left and right solar arrays are opposite. In the fourth
mode shape, the translational displacement of the main-body in the vertical direction
and the left and right solar arrays are the same. In the fifth mode shape, the main-body
shows significant rotational displacement, the deployable antenna undergoes translational
displacement in the horizontal direction and rotational displacement, and the left and
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right solar arrays are opposite. In the sixth mode shape, the main-body shows significant
rotational displacement, the deployable antenna exhibits a small degree of horizontal and
rotational displacement, and the left and right solar arrays are opposite. In the seventh
mode shape, the translational displacement of main-body in the vertical direction and
the left and right solar arrays are the same. In the eighth mode shape, the main-body
shows significant rotational displacement, the deployable antenna exhibits a small degree
of horizontal and rotational displacement, and the left and right solar arrays are opposite.
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The first, fourth, and seventh mode shapes are symmetric, and the rest of the mode
shapes are antisymmetric. The symmetrical mode shapes show the characteristic of local
deformation, where only the solar wing is deformed. The antisymmetric mode shows
global deformation, where the solar arrays and the deployable arm are both deformed.

In order to investigate the influence of the deployable antenna on the spacecraft, the
natural frequencies of the spacecraft are calculated when the deployable antenna diameter
varies from 5 to 30 m, as shown in Figure 5. It can be clearly seen that as the antenna
diameter increases, the mode exchange phenomenon occurs with the frequency veering
phenomenon. At antenna diameters of 28 m, 7 m, and 14 m, the interchange of first mode
and second mode, the interchange of third mode and fourth mode, and the interchange
of sixth mode and seventh mode occur, respectively. From Figures 4 and 5, it can be
concluded that the mass and moment inertia of the antenna have a great influence on the
natural frequency corresponding to the antisymmetric mode but almost no effect on the
natural frequency corresponding to the symmetric mode. When the frequency veering
phenomenon occurs, the symmetric and antisymmetric modes are interchanged with each
other.
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3.2. Dynamic Responses

The vibration response of the spacecraft with solar arrays and deployable antenna in
the attitude maneuver is investigated in this section. It is assumed that the attitude control
torque is

Mc(t)

{
M0 sin

(
2π
TM

t) , 0 ≤ t ≤ TM,
0, t > TM.

(51)

where TM and M0 are the period and amplitude of the attitude control torque, re-spectively.
Figure 6 depicts the attitude control torque acting on the flexible spacecraft.
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Figure 6. Time history of attitude control torque.

It is clear from Figure 4 that the symmetrical modes cannot be excited by attitude
control torque. Therefore, there is no translational vibration response of the main-body
in the vertical direction. In this case, the deployable antenna mass and moment of inertia
are 94.25 kg and 2356 (kg·m2), respectively. The first 10 modes are selected to calculate the
vibration responses of the flexible spacecraft, as shown in Figures 7–9.
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Figure 9. Vibration response of the deployable antenna: (a) second mode, (b) third mode, and (c) fifth
mode.

Figure 7 demonstrates that the vibration amplitude of the main-body attitude is much
larger than the vibration amplitude of the antenna attitude, and the vibration amplitude
of the antenna in the horizontal direction is much greater than the vibration amplitude of
the main-body in the horizontal direction. This indicates that the attitude control torque
operating on the main-body has more influence on the horizontal translation of the antenna
than on the attitude of the antenna. The rotational motion of the main-body and deployable
antenna requires more degrees of freedom, and the number of degrees of freedom of its
horizontal translation response has little impact on it. In addition, because the displacement
of the second mode of the antenna cancels out the displacement of the third and fifth modes,
as shown in Figure 9, the vibration response of the antenna appears different, as shown in
Figure 7c. From Figure 8, since only the antisymmetric modes can be excited by the attitude
control torque, the two solar arrays are deformed in the opposite direction.

4. Conclusions

A dynamic modeling approach has been described to obtain an analytical model
for a spacecraft with large solar arrays and deployable antenna. The use of the natural
frequencies, the global mode shapes, and their orthogonality relations results in fewer
degrees of freedom for the decoupled analytical model of the flexible spacecraft, which
is not only convenient for studying the system’s nonlinear dynamic behavior, but also
suitable for vibration control of the spacecraft with multiple large flexible structures.

The flexible spacecraft has been investigated taking into consideration various sizes of
the deployable antenna, and the dynamic responses of the spacecraft have been calculated
in the attitude maneuver. Some conclusions are summarized as follows:

(1) Since the flexible spacecraft is symmetrical, its global mode shapes show the charac-
teristics of symmetry and antisymmetry. As the diameter of the deployable antenna
increases, the frequency veering phenomenon occurs, and the symmetric and the
antisymmetric modes are interchanged with each other.

(2) When the control torque is applied on the main-body to maneuver the attitude of the
spacecraft, its influence on the horizontal position of the deployable antenna is much
greater than the effect on the attitude of the deployable antenna.
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