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Abstract: In order to solve the external periodic disturbance and unknown dynamics influence in
the passive rehabilitation process of a rope-driven lower limb rehabilitation robot, a control method
with periodic repeated learning was designed. In this control method, the closed-loop dynamics
are divided into a periodic disturbance term, an unknown dynamics term, and a basic term, and
the shape function is designed by using the Stone–Weirstrass theorem. In the process of periodic
operation, the estimated value of the shape function coefficient is repeatedly learned to obtain the
periodic disturbance term approximation and to realize the compensation in advance. Through the
design of the impedance learning rate, the unknown dynamic term is periodically learned, and the
unknown dynamics approximation is obtained. By combining the two approximations with the
basic terms which can be solved directly, the external periodic disturbance is compensated for in
advance and the control precision is improved. The control algorithm was verified by simulation,
and the error fluctuation of the system gradually decreases and reaches the ideal value within several
cycles. The performance of the control system is stable, and the problem of limb impedance caused
by different patients is well solved.

Keywords: lower limb rehabilitation robot; compensation for external periodic disturbances; repetitive
learning control; trajectory planning; Stone–Weirstrass theorem

1. Introduction

At the 67th World Health Assembly, the draft of the WHO Global Disability Action
Plan for 2014–2021: Improving the Health of All Persons with Disabilities shows that over
1 billion people worldwide suffer from some form of disability, of which 100 to 200 million
have extremely severe functional impairments. With the increasingly serious aging of
the global population and continuous regional wars, the number of people with physical
disabilities will gradually increase. In addition to being discriminated against due to
their own shortcomings, people with disabilities also lack health care and rehabilitation
services. Therefore, the research and development of rehabilitation facilities is becoming
increasingly important. In China, compared with various data from 2011 and 2019, the
number of rehabilitation institutions increased by 74%, the total number of rehabilita-
tion personnel increased by 179.90%, and the proportion of business personnel increased
from 69.18% to 71.70%. The ratio of rehabilitation institution personnel to disabled persons
has increased from 40.0 people per 10,000 people to 70.2 people per 10,000 people [1]. Under
the dual influence of the large number of disabled people and the continuous improvement
of medical standards, the demand for rehabilitation robots is increasing.

Traditional rehabilitation training such as manual massage and orthosis has high
labor intensity, poor sustainability, and weak targeting, which requires a large amount
of energy from medical personnel. Moreover, the rehabilitation process highly relies on
the experience of doctors, which is far from meeting the current rehabilitation needs [2].
With the rapid development of artificial intelligence technology, control engineering, and
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medical levels, lower limb rehabilitation robots have an intelligent feedback system and
stable control system, which can provide high-intensity and repetitive targeted treatment,
greatly relieving medical pressure, and they have been widely used as an auxiliary facility
of rehabilitation medicine. The Chicago Rehabilitation Research Center has developed
a gait training and balance training robot, KineAssist [3], as shown in Figure 1. The
robot has a flexible support system that uses power to drive the position of the support
arm to change the ground support reaction force and control pelvic spatial movement
and horizontal rotation through pelvic restraint devices, and it adopts a mixed use of
active and passive joints to avoid forced injuries during the rehabilitation process and can
achieve gait simulation and load training modes. However, the overall structure of the
robot is complex and expensive, and the flexibility of the active and passive joints is poor,
resulting in less-than-ideal practical promotion. In the research on rehabilitation robot
technology carried out by the Fraunhofer Institute in Germany, some research results have
been achieved in the field of rope traction rehabilitation robot technology [4], as shown in
Figure 2. The rehabilitation robot controls the trunk through rope drive, with four ropes
pulling downwards and three ropes pulling upwards. During the driving process, the
trunk motion parameters are measured, and then the rope tension is adjusted using the
motion parameters, which have good flexibility, and weight reduction training and strength
training can be realized during gait training. The robot has a simple structure, a wide
range of motion space, and high flexibility. However, due to large external disturbance
and the poor stability of the rope drive, the control accuracy is relatively low. Therefore,
in order to meet the requirements of high flexibility and low cost for rehabilitation robots,
research on the control accuracy of rope-driven lower limb rehabilitation robots is becoming
increasingly important.
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Due to the differences in various physical parameters, degree of damage, and reha-
bilitation stages among different patients, multiple corresponding rehabilitation plans are
required. Therefore, lower limb rehabilitation robots generally have problems of low control
accuracy and poor universality [5,6]. In order to meet the requirements of adaptive control
for lower limb rehabilitation robots in different patient rehabilitation processes, a periodic
repetitive learning control was designed using external periodic cyclic disturbances [7]
and the method of solving approximate values of unknown dynamics and periodic dis-
turbances. Corresponding to the muscle tension, joint friction, and mechanical equipment
errors that may be generated by different patients [8], advance compensation and fitting
estimation values were carried out. The implementation of lower limb rehabilitation robots
has high accuracy and universality characteristics.

The organization of this article is as follows. After the introduction, in Section 2, the
structural design and some parameters of a rope-driven lower limb rehabilitation robot are
introduced. In Section 3, we explain the problem of external periodic disturbances, collect
human gait trajectory parameters, and design a control system. In Section 4, the stability of
the repetitive learning control system was analyzed and proven. Presentation of simulation
experiment results, in Section 5. The paper is concluded in Section 6, summarizing the
present work.

2. Structural Design of the Lower Limb Rehabilitation Robot Driven by Rope

Compared with exoskeleton robots, rope-driven lower limb rehabilitation robots have
the advantages of wide motion range, low inertia force, and high control accuracy [9]. The
overall structure design uses an industrial aluminum profile, 5050L-8, to build the frame
and adopts an S7-1200 PLC, a V90-PTI servo motor, and a 1204 screw drive to form the
driving unit, as shown in Figure 3. The single leg is controlled by the first three and the
last three, a total of six groups of driving units. The human body is suspended from the
center of the frame by a five-point safety rope and stands on the walking machine. In terms
of drive control, the C++ control algorithm is written, and the calculated results are used
to communicate with PLC through Snap7 (an open-source software package based on the
s7 communication protocol) [10,11] to transmit and receive the driving parameters and
current motion parameters of the rehabilitation robot. After receiving the data, the PLC
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changes the DI10 pin value of the V90-PTI servo motor to realize the switching of the torque
and speed control mode and then complete the force control through the analog output.
The rehabilitation process of the rope-driven lower limb rehabilitation robot is achieved by
scaling four ropes on the thigh in the same plane to perform flexion/extension motion on
the hip joint and by using ropes on two lower legs to achieve flexion/extension motion on
the knee joint. This is used to simulate the gait posture of patients walking in a straight line,
thereby achieving rehabilitation training for some motor functions. The main parameters
of the lower limb rehabilitation robot driven by ropes are shown in Figure 4 and Table 1.

Actuators 2023, 12, x FOR PEER REVIEW 4 of 16 
 

 

achieved by scaling four ropes on the thigh in the same plane to perform flexion/extension 
motion on the hip joint and by using ropes on two lower legs to achieve flexion/extension 
motion on the knee joint. This is used to simulate the gait posture of patients walking in a 
straight line, thereby achieving rehabilitation training for some motor functions. The main 
parameters of the lower limb rehabilitation robot driven by ropes are shown in Figure 4 
and Table 1. 

 
Figure 3. Drive unit. 

 
Figure 4. Rope-driven lower limb rehabilitation robot framework. 

Table 1. Main parameters of the robot framework. 

No. Item Parameter Numerical Value 
1 Frame size 1600 mm × 1000 mm × 2350 mm 
2 Activity space: 1200 mm × 800 mm × 1900 mm 
3 Maximum pulling force of the drive unit 400 N 
4 Suspension measures maximum load bearing 480 kg 

Figure 3. Drive unit.

1 

 

 

Figure 4. Rope-driven lower limb rehabilitation robot framework.



Actuators 2023, 12, 284 5 of 16

Table 1. Main parameters of the robot framework.

No. Item Parameter Numerical Value

1 Frame size 1600 mm × 1000 mm × 2350 mm

2 Activity space: 1200 mm × 800 mm × 1900 mm

3 Maximum pulling force of the drive unit 400 N

4 Suspension measures maximum load bearing 480 kg

5 Applicable height range 1.6~1.9 m

6 Applicable weight range 35~80 kg

7 Material: alloy aluminum profile 5050 L-8

8 Total mass 53.7 kg

3. External Periodic Disturbance Control Design
3.1. Tracking Control Problem Description

Human lower limb rehabilitation training is generally divided into two parts. In the
case of complete loss of motor function, external assistance is usually used to realize passive
rehabilitation [12] of gait simulation. In this rehabilitation process, the joints carry out a
repetitive round-trip motion, and the round-trip cycle is determined by the rehabilitation
gait trajectory set in advance. For the control system, in the process of realizing the
reciprocating motion, the periodic interference from the outside is the biggest uncertain
factor. This unknown disturbance mainly comes from the supporting resistance of the sole
of the foot, the tensioning force generated by the damaged muscle groups and ligaments
after healing, and the friction force during the movement of the hip joint and knee joint [13],
etc., which will make the actual gait trajectory control effect in the process of movement less
than ideal. Nowadays, PD control [14] and impedance control [15], etc., are commonly used
in rope-driven lower limb rehabilitation robot, generally ignoring unknown interference in
the process of motion and not making full use of periodic motion, which leaves more room
for improvement in control accuracy. Therefore, the control scheme with the function of
feedforward torque compensation and periodic repeated learning is more prominent.

Repetitive learning control is a control method with periodic repetitive motion, which
has been applied in the field of exoskeleton-assisted robots and flexible space robots and
shows excellent control performance [16,17]. At present, the main optimization direc-
tion of rope traction rehabilitation robots is the optimization of feedback parameters and
disturbance estimation error compensation. However, in actual rehabilitation, different
patients have different degrees of muscle damage, resulting in different external periodic
disturbance, and fixed feedback compensation cannot be accurately applied to different
patients. The control scheme with a repetitive learning function is more suitable for this
kind of rehabilitation equipment.

3.2. Trajectory Planning and Dynamics Model of the Lower Limb Rehabilitation Robot

The movement mode and range of human lower limb joints are limited, with the range
of hip joint flexion/extension angles being −30◦/120◦ and knee joint flexion/extension
angles being −120◦/0◦ [18]. After determining the angle range, it is necessary to collect the
angle changes during the motion process, so the infrared NOKOV capture system is used
for dynamic capture experiments on the human body, as shown in Figure 5a,b.
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The motion points of normal walking of the human body are obtained, and the motion
trajectories are fitted by the eighth-order Fourier function. The trajectory of knee joint
movement is shown in Figure 6.

Actuators 2023, 12, x FOR PEER REVIEW 6 of 16 
 

 

 

(b) 

Figure 5. (a) Human dynamic capture experiment. (b) Human dynamic capture and collection. 

The motion points of normal walking of the human body are obtained, and the mo-
tion trajectories are fitted by the eighth-order Fourier function. The trajectory of knee joint 
movement is shown in Figure 6. 

 
Figure 6. Knee joint motion trajectory. 

The knee joint motion function is: 𝜃 = 14.38 − 7.089 cos(𝑤𝑡) − 16.19𝑠𝑖𝑛(𝑤𝑡) −  8.119𝑐𝑜𝑠(2𝑤𝑡) + 9.122𝑠𝑖𝑛(2𝑤𝑡) + 4.434𝑐𝑜𝑠(3𝑤𝑡)+ 3.721𝑠𝑖𝑛(3𝑤𝑡) + 0.02693𝑐𝑜𝑠(4𝑤𝑡) − 0.842𝑠𝑖𝑛(4𝑤𝑡) + 0.3988𝑐𝑜𝑠(5𝑤𝑡)+ 0.7564𝑠𝑖𝑛(5𝑤𝑡) + 0.4781𝑐𝑜𝑠(6𝑤𝑡) − 0.146𝑠𝑖𝑛(6𝑤𝑡) − 0.182𝑐𝑜𝑠(7𝑤𝑡)+ 0.08417𝑠𝑖𝑛(7𝑤𝑡) − 0.008469𝑐𝑜𝑠(8𝑤𝑡) + 0.06557𝑠𝑖𝑛(8𝑤𝑡) 

(1)

In the formula, w = 2.094. 
The motion trajectory of the hip joint is shown in Figure 7. 

Figure 6. Knee joint motion trajectory.



Actuators 2023, 12, 284 7 of 16

The knee joint motion function is:

θ1 = 14.38− 7.089cos(wt)− 16.19sin(wt)− 8.119cos(2wt) + 9.122sin(2wt) + 4.434cos(3wt)
+3.721sin(3wt) + 0.02693cos(4wt)− 0.842sin(4wt) + 0.3988cos(5wt)
+0.7564sin(5wt) + 0.4781cos(6wt)− 0.146sin(6wt)− 0.182cos(7wt)
+0.08417sin(7wt)− 0.008469cos(8wt) + 0.06557sin(8wt)

(1)

In the formula, w = 2.094.
The motion trajectory of the hip joint is shown in Figure 7.
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The motion function of the hip joint is:

θ2 = −5.081− 13.95cos(wt)− 4.602sin(wt)− 1.944cos(2wt) + 3.305sin(2wt) + 1.96cos(3wt)
+0.5971sin(3wt)− 0.2532cos(4wt)− 1.001sin(4wt)− 0.3967cos(5wt)
−0.01045sin(5wt) + 0.1376cos(6wt) + 0.04932sin(6wt)− 0.08074cos(7wt)
−0.05228sin(7wt)− 0.2824cos(8wt)− 0.02406sin(8wt)

(2)

In the formula, w = 2.094.
The dynamic model of lower limb rehabilitation robot can be expressed as:

τ(t) = M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ) + E(θ) + V
( .

θ
)
+ D(t) (3)

In the formula, M(θ) ∈ R2×2 represents the inertia matrix; C
(

θ,
.
θ
)
∈ R2×2 represents

the centripetal force and coriolis force matrix; G(θ) ∈ R2 represents the gravity vector;
E(θ) ∈ R2 represents the elastic force vector of the joint; V

( .
θ
)
∈ R2 represents the joint

rotation when the viscous friction force vector is considered; D(t) ∈ R2 represents the
external periodic perturbative force vector; and τ(t) ∈ R2 represents the torque vector of
the hip joint and knee joint [19,20].

3.3. Design of Repetitive Learning Control

The roped-driven lower limb rehabilitation robot studied in this paper makes the legs
of patients move periodically and reciprocally by imitating the walking gait of normal
human beings through the traction coupled with the rope. Therefore, we set the expected
position trajectory of the active joint for periodic motion θe, expected velocity trajectory

.
θe,

and the expected acceleration trajectory
..
θe.

We set the expectations trajectory tracking error e f and the desired speed trajectory
tracking error

.
e f , which are defined respectively as:

e f = θ − θe,
.
e f =

.
θ −

.
θe (4)
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In the formula, θ is the locus of the actual position and
.
θ is the actual speed trajectory.

To reduce the steady-state error in the control system, the introduction of the tracking
error integral item

∫ t
0 e f dt, define the position of reference trajectory θr as follows:

θr = θe −Λ
∫ t

0
e f dt (5)

In the formula, Λ is a user-defined positive value. The reference velocity trajectory
after derivative

.
θr is: .

θr =
.
θe −Λe f (6)

For reference speed trajectory
.
θr, use position tracking error e f correction expect for

speed in order to ensure the convergence of the tracking error. When using the actual speed
θ to expect the speed

.
θe lag, the reference speed

.
qr increases.

The reference speed track tracking error es is set and defined as [21]:

es =
.
θ −

.
θr =

.
e f + Λe f (7)

Using Formula (7) and the dynamics model of the lower limb rehabilitation robot,
obtain the output τ(t) as:

τ(t) = M(θ)
( .

es +
..
θr

)
+ C

(
θ,

.
θ
)(

es +
.
θr

)
+ G(θ) + E(θ) + V

( .
θ
)
+ D(t) (8)

Setting F
(

θ,
.
θ
)

as follows:

F
(

θ,
.
θ
)
= M(θ)

..
θr + C

(
θ,

.
θ
) .

θr + G(θ) + E(θ) + V
( .

θ
)

(9)

By substituting the above formula into Formula (8), its closed-loop dynamic model
can be written as follows:

τ(t) = M(θ)
.
es + C

(
θ,

.
θ
)

es + F
(

θ,
.
θ
)
+ D(t) (10)

By (10), M(θ) and C
(

θ,
.
θ
)

are a known quantity and
.
es and es are measurable values,

as long as F
(

θ,
.
θ
)

and D(t) can obtain the real value output torque value. Although you

cannot measure the F
(

θ,
.
θ
)

and D(t) of the real value, they can be measured by means of
repetition in the process of tracking the periodic reciprocating motion of the lower limb
with the constantly updated F

(
θ,

.
θ
)

and D(t) estimate, which after several cycles tends to

be the real value, and this realizes the F
(

θ,
.
θ
)

and D(t) for the real value of learning.

About the calculation of F
(

θ,
.
θ
)

, because of the dynamic model of

M(θ), C
(

θ,
.
θ
)

, G(θ), E(θ), and V
( .

θ
)

related to the stiffness and damping of
the lower limb joints, they are related to the impedance of the lower limb rehabilitation
robot system dynamics, and the nature of which is as follows [22,23]:

Theorem 1. Set L = [l1, l2, l3, l4]
T ∈ R4 and Φ =

[
1, ‖ .

q‖, ‖ .
q‖ ‖ .

qr‖, ‖
..
qr‖
]T ∈ R4. There are

a finite number of positive constants l∗w > 0(w = 1, 2, 3, 4), for ∀q ∈ R2 and ∀ .
q ∈ R2, there

exists ‖F
(
q,

.
q
)
‖ = ‖M(q)

..
qr + C

(
q,

.
q
) .
qr + G(q) + E(q) + V

( .
q
)
‖ < L∗TΦ = l∗1 + l∗2‖

.
q‖ +

l∗3‖
.
q‖‖ .

qr‖+ l∗4‖
..
qr‖.

In Theorem 1, ‖·‖ represents a scalar value of a vector and L∗T ∈ R4 represents the
true value of the vector L for the stiffness and damping coefficients.

Therefore, the available F
(

θ,
.
θ
)

as follows:

F
(

θ,
.
θ
)
= L̂TΦ (11)
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In the formula, L̂T is the L∗T estimate.
Estimate L̂T iterative learning based on the vector impedance update as follows [21,24]:

.
L̂(t) = −ψ(h(t)L̂(t)− ‖es‖Φ (12)

In the formula,
.
L̂(t) is the time function after learning iteration of the estimated value

L̂(t); ψ is a positive constant that affects the learning speed of L*;and h(t) is the custom time
function, and to satisfy h(t) > 0, lim

t→∞
h(t) = 0,

∫ ∞
0 h(t)dt = a < ∞.

As for the calculation of D(t), the estimated value can be calculated by means of a
linear combination. Its function is to compensate the external periodic disturbance in the
lower limb rehabilitation movement because the lower limb rehabilitation robot is driven
by six ropes in one leg and can be converted into the torque output points of the knee
and hip joints. Therefore, D(t) has two components Di(t)(i=1,2) ∈ R, where each term in
the linear combination is the product of a form function ξ j(t) ∈ R, and a corresponding
constant coefficient ki∗

j ∈ R, so Di(t)(i=1,2) can be expressed as:

Di(t) = ∑N−1
j=0 ki∗

j ξ j(t) (13)

In the formula, N is the number of form functions; ki∗
j is the exact value of the constant

coefficient corresponding to the form function.
Due to the periodic movement of the lower limb rehabilitation robot, Di(t) also has

periodicity and continuity, so the interval dense form function of the Stone–Weirstrass
theorem can be used to approximate the exact value of Di(t), and the optional form function
is defined as follows [25]:

Definition 1. SetS(T) to represent a periodic function subspace in continuous function space
C[0, T], which satisfies equal values of left and right endpoints, and consider a countable set of
linearly independent

{
ξ j ∈ S(T)

}
in that:

1. The identity element can be expressed as a linear combination containing the finite term ξ j

2. The span of
{

ξ j
}

is dense over S(T) , that is, for any Di(t) ∈ S(T) and ζ > 0, there are
positive integers N and ki

j such that:

sup
t∈[0,T] |Di(t)−∑N−1

j=0 ki
jξ j(t)| < ζ (14)

In this chapter, N piecewise linear functions conforming to Definition 1 are selected as
shape functions. They are defined as follows:

β j(t) =
N
T

t− j (15)

When j = 0, form function ξ j(t) in t∈[0,T] can be expressed as:

ξ j(t) =


1− β j(t), i f 0 ≤ β j(t) < 1

1 + β j(t)− N, i f N − 1 ≤ β j(t) < N
0, else

(16)

When j = 1, 2, . . . , N − 1, the form function ξ j(t) of t∈[0, T] can be expressed as:

ξ j(t) =


1− β j(t), i f 0 ≤ β j(t) < 1
1 + β j(t), i f − 1 ≤ β j(t) < 0

0, else
(17)

In addition, the form function ξ j(t) is a time function that satisfies the period T.
After the shape function ξ j(t) is selected, the external periodic disturbance value

Di(t) can be obtained by obtaining the approximate value of its corresponding coefficient

ki∗
j . Since Di(t) is two perturbations, let ki∗

j =
[
k1∗

j , k2∗
j

]T
, whose estimated value is
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k̂i
j =

[
k̂1

j , k̂2
j

]T
, and the periodic perturbation learning law of the designed estimated

value k̂i
j is:

k̂i
j = −Θj

N
2

∫ t

0
es(t)ξ j(t)d(t) (18)

In the formula,
.

k̂ j is the iterative value of the estimated value k̂i
j; Θj is a positive

constant that affects the learning speed of
.

k̂ j; N
2 is the reciprocal of the effective interval

length (non-zero value) of the form function; and es(t)ξ j(t) is the correlation between
velocity trajectory tracking error and ξ j(t), and their product value affects the value of
constant coefficient Kj of ξ j(t). The mean value of es(t)ξ j(t) correlation on time axis t is

obtained through integration as the iteration value
.

k̂ j.
Finally, according to Theorem 1 and Formulas (11) and (13), the repetitive learning

controller for calculating the output torque of the joint can be put forward as:

τ(t) = −Kpe f − Kses − sgn(es)L̂T + ∑N−1
j=0 k̂ jξ j(t) (19)

The rope-driven lower limb rehabilitation robot needs to achieve the same joint torque
with the rope coupling torque. The space force sealing formula of the rope-driven rehabili-
tation robot is as follows:[

U1 · · · Ui
O
QR

→
QA1 ×U1 · · · O

QR
→

QAi ×Ui

] f1
...
fi

 =

[
F

τ(t)

]
(20)

In the formula, Ui is the unit vector of the i rope, O
QR is the rotation matrix, and

→
QAi

is the position vector of the traction point Ai on the local coordinate system Q. Set the

force Jacobian matrix A′ =

[
U1 · · · Ui

O
QR

→
QA1 ×U1 · · · O

QR
→

QAi ×Ui

]
in the horizontal plane,

the tension of each rope T =

 f1
...
fi

, and the resultant force of a single limb on the horizontal

plane W =

[
F

τ(t)

]
. Therefore, Formula (20) is transformed into:

A′T = W (21)

In lower limb rehabilitation training, patients carry out rehabilitation training with in
situ reciprocating exercise. The reaction force generated by the bottom of the thigh under
the translational displacement of the lower leg is regarded as the fifth traction rope, and the

lower leg and thigh are only subjected to torque, namely, W =

[
0

τ(t)

]
. Given the required

torque W and force Jacobian matrix A′, the tension T of each rope can be calculated:

T = A′+W (22)

In the formula, A′+ is the generalized inverse of matrix A′.
The structure of the repetitive learning control system in passive rehabilitation mode

is shown in Figure 8 as follows:
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In this chapter, the passive rehabilitation link of the rope-driven lower limb rehabil-
itation robot is optimized by the repeated learning control method. The control scheme
consists of three control rings:

1. Formula (12) was used to learn the accurate value L∗T of the impedance dynamic

parameters of the lower extremity, and F
(

θ,
.
θ
)

was estimated according to Theorem 1.

2. Based on the periodic external disturbance characteristics of rehabilitation training
and the Stone–Weirstrass theorem, formulas (13) and (18) are established to solve
the external periodic disturbance Di(t) and the external disturbance feedforward
compensation is carried out.

3. Use −Kpe f to achieve the expected position error feedback and −Kses to achieve the
reference speed error feedback.

Finally, the repetitive learning control is realized, which makes the lower limb rehabil-
itation robot achieve higher control precision.

4. System Stability Proof

The stability analysis of the control system of the rope-driven lower limb rehabilitation
robot is proven by the stability theory of Lyapunov [26].

Theorem 1 considers nonlinear systems:
.
x(t) = f (x(t), t) f (0, t) ≡ 0

If there exists a scalar function V(x, t) with continuous first-order partial derivatives,
the following conditions are satisfied:

(1) V(x, t) is positive definite;

(2) The derivative of V(x, t) with respect to time dV(x,t)
dt is negative definite; then, the

system is asymptotically stable everywhere at the origin.

To set the initial state of θ(0),
.
θ(0),

.
L̂(0),

.
k̂ j(0), if desired location error e f , speed

trajectory error es, estimate error L̃ of the impedance dynamic coefficient L∗T and estimate
error k̃ periodic disturbance coefficient k∗ all converge to zero over time, there is system
stability. According to the closed dynamics model and two kinds of learning rates, the
Lyapunov function is selected:

V(η, t) = Vj + Vs + Vl + Vk (23)

According to Formula (6) setting:

Vj =
1
2

eT
j Kpej (24)
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To solve its derivative is:
.

Vj = −eT
j KpΛej + eT

j Kpes (25)

According to Formulas (10) and (19) setting:

Vs =
1
2

eT
s M(θ)es (26)

Its derivative is:
.

Vs =
1
2 eT

s

.
M(θ)es + eT

s

[
τ(t)− C

(
θ,

.
θ
)
− F

(
θ,

.
θ
)
+ D(t)

]
= 1

2 eT
s

.
(M(θ)− 2C

(
θ,

.
θ
)
)es + eT

s

[
−Kpe f − Kses − sgn(es)L̂TΦ +

N−1
∑

j=0
k̂ jξ j(t)− F

(
θ,

.
θ
)
+ D(t)

]
≤ eT

s
[
−Kpe f − Kses − ‖es‖L̂TΦ + ‖es‖L∗TΦ + ∑N−1

j=0 k̂ jξ j(t) −∑N−1
j=0 k∗j ξ j(t)

]
≤ eT

s

[
−Kpe f − Kses − ‖es‖L̃TΦ + ∑N−1

j=0 k̃ jξ j(t)
]

(27)

In the formula,
.

M(θ)−2C
(

θ,
.
θ
)

is the skew symmetric matrix according to the dynamics
theorem and is negative definite.

According to Formula (12) setting:

Vl =
1
2

∫ t

t−T
L̃T(x)ψ−1 L̃(x)dx (28)

Its derivative is:
.

Vl =
1
2

[
L̃T(t)ψ−1 L̃(t)− L̃T(t− T)ψ−1 L̃(t− T)

]
= 1

2ψ

(
L̃(t)− L̃(t− T)

)T (
L̃(t)− L̃(t− T)

)
= 1

2ψ

.
L̃

T(
2L̃(t)−

.
L̃
)

= ‖es‖L̃TΦ− 1
2ψ

.
L̃

T .
L̃ + h(t)L̂T(t)

(
L∗ − L̂(t)

)
≤ ‖es‖L̃TΦ− 1

2ψ

.
L̃

T .
L̃h(t) +

(
1
2 L∗T L∗

)
(29)

According to Formula (18) setting:

Vk = ∑N−1
j=0 k̃T

j Θ−1
j k̃ j (30)

Its derivative is: .
Vk = N ∑N−1

j=0 k̃T
j k̃ j es(t)ξ j(t) (31)

Since V(η, t) is positive definite, by satisfying the first term of Theorem 1, the system
can be proven stable as long as its derivative is negative definite, and the derivative of
V(η, t) is:

.
V(η, t) =

.
Vj +

.
Vs +

.
Vl +

.
Vk

≤ −eT
j KpΛej + eT

j Kpes + eT
s

[
−Kpe f − Kses − ‖es‖L̃TΦ +∑N−1

j=0 k̃ jξ j(t)
]
+ ‖es‖L̃TΦ− 1

2ψ

.
L̃

T .
L̃ + h(t)

(
1
2 L∗T L∗

)
+ N ∑N−1

j=0 k̃T
j k̃ j es(t)ξ j(t)

≤ −eT
j KpΛej − eT

s Kses +
1
2 h(t)L∗T L∗

(32)

Since Formula (12) is set to satisfy lim
t→∞

h(t) = 0 and
∫ ∞

0 h(t)dt = a < ∞, when t→ ∞ :

lim
t→∞

1
2

h(t)L∗T L∗ = 0 (33)

And because Kp , Λ , es for the positive definite matrix can determine
.

V(η, t) as negative.

In conclusion, V(η, t) is positive definite and dV(η,t)
dt is negative definite, which satisfies

the Lyapunov stability condition and proves that the control system is asymptotically stable.
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5. Simulation Verification and Analysis

In order to verify the effectiveness and stability of the above repetitive learning
system, this paper will use repetitive learning control and PD control to compare the
performance of the motion position and speed of the joints, respectively, so as to verify that
the repetitive learning control has a more stable and accurate control effect in the face of
external periodic disturbance.

During the experimental process, the normal walking trajectory of the human body
was obtained through dynamic capture experiments and used as the expected function
at the input end. The iterative learning algorithm and impedance dynamics formula in
Section 3.3 were used to establish periodic disturbance modules and impedance modules
to achieve periodic error compensation and impedance approximation estimation, respec-
tively. Periodic step disturbance signals were added to simulate unknown external periodic
disturbances. Then, the dynamic structure model in Figure 9 was established through
Simulink. After constantly adjusting the gain values and learning speed coefficients, the
desired control effect was finally obtained.
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The simulation experiment parameters are shown in Table 2:

Table 2. Parameter values of the repetitive learning control structure model.

Parameter Numerical Value

Λ 1

Kp 10

Ks 20

N 20

Ψ 2× 10−7

h(t) 1/(1 + t)2

Θi 5

Through simulation experiments, the tracking error results of repetitive learning
control and PD control can be obtained, as shown in Figures 10 and 11. Figure 10 shows the
different position tracking effects of the same joint under repetitive learning control and PD
control. The blue dashed line represents the error fluctuation through PD control, and the
tracking error amplitude has almost no change with the periodic fluctuation of the input
signal and external disturbance signal. The red solid line represents the periodic repetitive
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learning control system, and the tracking error continues to decrease and stabilize with the
continuous repetition of the gait cycle, which realized the early compensation function for
external periodic disturbances. Figure 11 shows the comparison of speed tracking errors
achieved by repetitive learning control and PD control. It can be seen that regardless of
how long it has been since the motion cycle has passed, the speed error under PD control
always fluctuates steadily with the cycle. However, repetitive learning control significantly
reduces the range of speed fluctuation values after a few motion cycles, which can prove
that repetitive learning control has better performance in speed tracking.
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6. Conclusions

In this paper, a periodic disturbance compensation control method was proposed
to solve the approximations of the external periodic disturbance term and the unknown
dynamic term in order to solve the problem of the external periodic disturbance term
encountered by the rope-driven lower limb rehabilitation robot during its operation, and
the relevant parameters were constantly learned and updated during each gait cycle. The
control algorithm was verified by simulation and compared with the PD control results.
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It can be concluded that the periodic repetitive learning control can continuously shorten
the tracking error in the process of motion and reach the ideal value in a short time,
which proves the accuracy and effectiveness of the control method. The experimental
results show that the periodic disturbance compensation control can make the lower limb
rehabilitation robot obtain a more accurate adaptive control effect in the face of patients
with different physical indicators and effectively solve the problem of body impedance
caused by differen patients.
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