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Abstract: We propose a deep learning-based reduced order modelling approach for micro-electrome-
chanical systems. The method allows treating parametrised, fully coupled electromechanical prob-
lems in a non-intrusive way and provides solutions across the whole device domain almost in real
time, making it suitable for design optimisation and control purposes. The proposed technique
specifically addresses the steady-state response, thus strongly reducing the computational burden
associated with the neural network training stage and generating deep learning models with fewer
parameters than similar architectures considering generic time-dependent problems. The approach is
validated on a disk resonating gyroscope exhibiting auto-parametric resonance.
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1. Introduction
Even if the rapid advancement of processing resources has made it possible to simu-

late complicated structures incorporating multiple scales and physics, the corresponding
increase in the computational burden continues to push the search for accurate but effective
reduced order modelling methodologies. Nowadays, well-known methods are used to
address linear vibratory systems, and they typically use linear normal modes as the best
projection basis. The identification of efficient procedures for nonlinear dynamics, however,
remains an open question. Modelling nonlinear equations of motion by applying a subset of
linear mode basis is usually ineffective because of the existence of strong nonlinear coupling
terms between low-frequency master modes and high-frequency ones. These make the
choice of the trial space a delicate matter [1,2]. Among these approaches, we find the proper
orthogonal decomposition (POD) method, which makes use of linear subspaces, possibly
of the local type, optimally aligned to better fit the curvatures of nonlinear data [3–5]. The
subspace bases are built from data obtained by simulating the behaviour of the system
in a small number of configurations [6]. Nevertheless, the locality of the approximation
and the need to explore the parameter space to build a proper set of bases might remain a
computational bottleneck. To account for the amplitude dependence of modes, additional
methods such as implicit condensation and expansion [7–10] or modal derivatives [11,12]
have been developed. These, however, are only effective when there is sufficient slow/fast
separation between the slave and master coordinates and are limited to the reproduction of
moderate transformations [13].

More recently, truly nonlinear methods for nonlinear vibratory systems connected to the
concepts of invariant manifolds [14–16] have been used to compute reduced order models
(ROMs) of large finite element models (FEMs). A noteworthy example is given by the direct
parametrisation of invariant manifolds (DPIM) [17–21], which bypasses the requirement
of computing the whole modal basis. However, their extension to coupled problems and
nonlinearities of generic type is still an open issue and requires dedicated developments.

To overcome these issues, deep learning-based methods represent an alternative for the
construction of nonlinear reduced models. Deep learning-based reduced order models take
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advantage of the generalisation and modelling capabilities of neural networks. These tools,
starting from data, can model and discover the relationship between inputs and outputs of
a given system. In recent years, a number of modelling approaches built on deep learning
methods have been proposed. These rely on different architectures and frameworks rang-
ing from deep feedforward neural networks (DFNN) [22,23] to convolutional autoencoders
(CAE) [24], long short-term memory networks [25,26], graph neural networks [27], rein-
forcement learning [28], physics-informed neural networks [29] and transformers [30–32].
Fresca et al. [33–35] proposed the POD-enhanced deep learning reduced order modelling
(POD-DL-ROM) technique to handle the fast simulation of parametrised differential prob-
lems in a non-intrusive way. POD-DL-ROM exploits a preliminary projection onto a linear
subspace built using POD bases, and then a CAE and a DFNN allow building an ROM. The
encoder component performs a feature extraction process that forces the high-dimensional
data to be reduced to a small number of variables at the bottleneck layer. This compressed
information represents a new coordinate system that allows reconstructing the full order
problem with a decoder. This method has also been used to model micro-electromechanical
systems (MEMSs) [36,37], demonstrating an excellent prediction ability. The application
of deep learning- and general machine learning-based techniques may not be limited to
MEMSs; they can also be retrieved, e.g., in real-time monitoring of sediment particles [38]
or control in hydraulic fracturing [39–41].

Despite the success achieved by the POD-DL-ROM approach, when tackling MEMS
operative conditions some specific features must be considered. MEMSs usually oscillate
at resonance with a period imposed by an external excitation signal. The standard POD-
DL-ROM can be used to model this steady state response by considering a time series of
data representing a single period, as proposed for instance in [36,37]. However, this way of
approaching the problem does not exploit its specific features and is not optimal. Indeed, a
periodic series can be expressed in a more efficient way through a projection onto a Fourier
subspace. This representation has some advantages: (1) data can be compacted in the
preprocessing stage and (2) the periodic behaviour is preserved in an exact way. Starting
from these remarks, we propose a specialised version of the POD-DL-ROM for periodic
problems, named Periodic DL-ROM. The Periodic DL-ROM technique exploits Fourier
series decomposition in order to eliminate the redundant dependence of the input data on
the time variable and further reduce their dimensionality, enhancing the computational
efficiency during the offline (ROM training) stage.

This work is organised as follows: The governing equations of the system are reported
in Section 2 and a general overview of the POD-DL-ROM method is given in Section 3,
along with some comments on the issues encountered in periodic problems. In Section 4,
the Periodic DL-ROM approach is proposed and the main differences compared to POD-
DL-ROM are highlighted. Details regarding the modelling of frequency response functions
are reported in Section 5, while in Section 6, the proposed technique is validated in a fully
coupled electromechanical problem formulated on a disk resonating gyroscope (DRG)
displaying auto-parametric resonance. Finally, some concluding remarks are made in
Section 7.

2. Problem Formulation
Let us assume that the device initially occupies the domain Ω0 described by material

coordinates X and is subjected to a transformation x = X + u(X, t), where u is the dis-
placement vector and x are the spatial coordinates. Let Ω denote the current configuration,
Figure 1. The boundary in the initial (material) configuration ∂Ω0 is partitioned in ∂Ω0D
and ∂Ω0N , where Dirichlet and Neumann periodic boundary conditions are enforced,
respectively. The Dirichlet boundary conditions are in general time dependent with an
angular frequency Ω and an amplitude ũD(x). Electrostatic potentials Vk are applied to
different portions of the device which is hence subjected to the effects of an electric field.
Zero electric flux is assumed on an infinitely distant surface S∞.
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∂Ω0,D

Ω0,V0

Ω

fe grad ϕ

Ωk,Vk

Figure 1. Electromechanical problem reference quantities describing the PDE problem in
Equations (1)–(8).

Neglecting body forces, the corresponding system of PDEs enforcing periodicity reads:

ρ0ü(X, t)−∇ · P(X, t) = 0 for (X, t) in Ω0 × [0, T], (1)

P(X, t) ·N(X) = f̃e for (X, t) in ∂Ω0N × [0, T], (2)

u(X, t) = ũD(X, t; µ) for (X, t) in ∂Ω0D × [0, T], (3)
u(X, 0) = u(X, T) for X in Ω0, (4)
u̇(X, 0) = u̇(X, T) for X in Ω0, (5)

div(gradφ(x)) = 0 in Ω∞ −Ω, (6)
φ(x) = Vk on ∂Ωk, (7)

gradφ(x) · n = 0 on S∞. (8)

Equation (1) expresses the conservation of momentum. ρ0 is the initial density, P is the first
Piola–Kirchhoff stress [42], N and n denote the normal vectors to the device surface in ma-
terial and current configurations, respectively, and φ is the electrostatic potential scalar field.
Here, the gradient operator grad refers to the current configuration x. Equations (2) and (3)
are the Neumann and Dirichlet boundary conditions, respectively, with ũD being time
periodic. Equations (4) and (5) enforce the periodicity condition on displacements and
velocities. The electrostatic pressure fe on the conductor surface is:

fe =
1

2ε0

(
ε0

∂φ(x)
∂n

)2

n. (9)

where f̃e represents the same force pulled back to the reference configuration.
MEMS devices are usually made of cubic single crystal silicon or polysilicon, thus

admitting only small strains, a condition which is well described by the Saint Venant–
Kirchhoff constitutive model:

S(X, t) = A(X) : E(X, t) for (X, t) in Ω0 × [0, T], (10)

where S is the second Piola–Kirchhoff stress, P(X, t) = (I +∇u(X, t)) · S(X, t), E is the
Green–Lagrange strain tensor, E = 1

2
(
∇u(X, t) +∇Tu(X, t) +∇Tu(X, t) · ∇u(X, t)

)
and

A is the fourth-order elasticity tensor endowed with major and minor symmetries. It is
worth stressing that while mechanical equilibrium is naturally formulated in the material
coordinates, the electrostatic problem is set in the spatial framework. This additional
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complexity represents a formidable challenge for modelling approaches like the DPIM
which indeed has not been extended to electromechanical problems yet.

3. POD-DL-ROM Technique: Outline and Critical Issues
Here, we briefly review the construction of the deep learning-based ROM (DL-ROM)

technique and its extension to the POD-enhanced version (POD-DL-ROM), referring to
general time-dependent problems. Later, we will detail why this method is suboptimal for
parametrised periodic problems.

The DL-ROM technique is efficient in modelling highly nonlinear time-dependent
problems through the identification of the solution manifold underlying the dynamics of
the system. This procedure is performed in a non-intrusive, data-driven, black box fashion.

Denoting µ ∈ Rnµ as the set of input parameters and U ∈ RNh as the full order model
field to be approximated, DL-ROMs aim at approximating the map (t, µ) → U(t, µ) by
describing both the trial manifold that embeds the transformations between the full order
space and the reduced one and the reduced dynamics through deep neural networks.

The method is articulated in three stages. The first one is the encoding stage, in which the
encoder function fE

n maps the full order model (FOM) solutions in a low-dimensional space
representation, i.e., latent coordinates z̃n ∈ Rn. This is executed through a convolutional
autoencoder (CAE). The transformation is formalised as follows:

z̃n(t; µ, θE) = fE
n (U(t; µ); θE), (11)

where fE
n (·; θE) : RNh → Rn and θE is the parameter vector of the CAE. The second stage is

reduced dynamics learning, which aims at describing the dynamical evolution of the intrinsic
(latent) coordinates of the ROM approximation. The corresponding function modelled is:

zn(t; µ, θDF) = φDF
n (t; µ, θDF), (12)

where φDF
n (·; ·, θDF) : R(nµ+1) → Rn. In the standard DL-ROM method, reduced dynamics

learning is performed through a deep feedforward neural network with parameters θDF.
The third and final stage is the decoding stage, where the latent coordinates are mapped back
to the full order model space:

S̃n
h = {fD

h (zn(t; µ, θDF); θD) : zn(t; µ, θDF) ∈ Rn , t ∈ [0, T) , µ ∈ Rnµ} ⊂ RNh , (13)

where S̃n
h is the approximation of the full order solution manifold, and fD(·; θD) : Rn →

RNh depends upon a vector θD collecting all the corresponding weights and biases. Fur-
thermore, in this case, we employ a CAE to represent this function [43,44]. During the
training stage, two loss functions L have to be enforced:

L1 =
ωh
2
||fD

h (zn)−U||2

L2 =
1−ωh

2
||fE

n (U)− zn||2
(14)

with the ωh parameter tuning the relative importance of the two losses.
The DL-ROM approximation in the testing stage Ũ(t; µ) ≈ U(t; µ) involves only

reduced dynamics learning and decoding stage functions, and is then given by

Ũ(t; µ, θDF, θD) = fD
h (φ

DF
n (t; µ, θDF); θD). (15)

Further details are available in [33].
This approach is quite general; nevertheless, training the neural network with a set of

coordinates as large as the original FOM system leads easily to a computational burden not
manageable with standard computing facilities. These issues are partially solved by the
POD-DL-ROM variant of the DL-ROM method. The corresponding architecture is depicted
in Figure 2. In particular, POD is initially applied to the snapshot set using randomised
SVD (rSVD), which reduces the dimensionality of the snapshots. Next, a DL-ROM is
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constructed to represent the map between (t, µ) and the POD-generalised coordinates
uN(t; µ) = VT

NU(t; µ) ∈ RN , with VT
N proper orthogonal modes computed by the rSVD.

Referring to the DL-ROM stages detailed previously, this basically adds the application
of a linear transformation onto the linear trial manifold defined by VN to the encoding
and decoding stages. The input of the encoder and the output of the decoder functions
will have dimension N instead of Nh, while no relevant changes are applied to the reduced
dynamics learning stages.

U(t;μ)

zn(t;μ)(t;μ)

zn(t;μ)˜

U(t;μ)˜
L1

L2

uN(t;μ) uN(t;μ)

VT

fnE

ϕn
DF

fhD

N
VN

˜

Figure 2. POD-DL-ROM architecture. Starting from the FOM solution U(t; µ), the POD subspace
coordinates uN(t; µ) = VT

NU(t; µ) are computed. The neural network provides their approxima-
tion ũN(t; µ) as an output. The reconstructed solution U(t; µ) is then recovered through the basis
matrix VN .

Despite the generality of POD-DL-ROM [33,34,36,45,46], some difficulties arise when
tackling parameterised periodic problems. In particular, when modelling periodic solutions,
the standard POD-DL-ROM approach would require the parametrisation of the dynamic
behaviour directly with respect to the time variable. This means that one should generate
enough snapshots to describe the time evolution over the period up to the desired resolution,
and this has to be done for each parameter value to guarantee a proper generalisation.
This procedure is quite inefficient for two reasons: (1) the amount of data to be processed
by the neural network grows with the number of snapshots retained along the period,
which is critical as their number and distribution highly influence the time response
quality of the solution and (2) it requires more parameters to be trained since the time
dependency must be explicitly modelled. This is not optimal for a periodic problem where
the underlying dynamics are inherently simple and time invariant. This work addresses
these issues by exploiting the a priori knowledge of the periodic behaviour of the data in
the pre-processing stage of the POD-DL-ROM approach. This is achieved by resorting to a
harmonic decomposition of the periodic time series feeding the POD-DL-ROM method,
thus removing the time variable dependence in the modelling with a strong reduction in
the number of snapshots to be provided and consequently a reduction in the number of
parameters to be trained in the neural networks.

4. Periodic DL-ROM Technique
The proposed method, i.e., Periodic POD-enhanced deep learning-based ROM (Peri-

odic POD-DL-ROM or Periodic DL-ROM for short), is composed of the same main stages
as the standard POD-DL-ROM with additional pre-processing and post-processing steps.
The reduced dynamics learning will now be named periodicity pattern learning.

The encoding stage includes three separate encoding functions: POD linear subspace
projection, harmonic decomposition, and nonlinear encoding towards the latent coordinate
manifold. The harmonic decomposition functionH aims at removing the time dependence
from the periodic signal. This is possible if the period T(µ) of the time series can be
determined with some data pre-treatment, e.g., a fast Fourier transform.
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Given a training set of FOM solutions projected onto the linear POD subspace uj
N(t; µ)

with j = 1, .., N, these can be approximated by expanding the system state as a Fourier
series with angular frequency ω = 2π/T, truncated up to the desired order K:

uj
N(t; µ) ≈ H(t; ω, ak(µ), bk(µ)) =

aj
0

2
+

K

∑
k=1

aj
kcos(kωt) + bj

ksin(kωt), (16)

where aj
k ∈ R and bj

k ∈ R are the coefficients multiplying the k-th harmonics of the
Fourier series approximation of the j-th coordinate. An order K approximation leads to
NF = 2K + 1 coefficients. These coefficients for each POD coordinate are collected in a
matrix cN(µ). These harmonic coefficients depend on the parameter values µ. The new
specialised encoding stage is formalised as follows:

z̃n(µ, θE) = fE
n (H−1(VT

NU(t; µ)); θE) = fE
n (cN(µ); θE); (17)

The second stage, now named periodicity pattern learning, aims at describing the re-
duced latent representation of the evolution of the harmonic coefficients. This is modelled
by means of interpolation methods using, e.g., piecewise linear functions or splines, and
generates a function I such that:

zn(µ) = I(µ) (18)

The decoding stage is consequently expressed as:

c̃N(µ) = fD
h (zn(µ); θD) (19)

where c̃N(µ) is an approximation of the harmonic coefficient matrix provided to the system.
The Periodic POD-DL-ROM approximation in the testing stage is then given by:

Ũ(t; µ, θD) = VNH(t; ω, fD
h (I(µ); θD)) (20)

During the training stage, only one loss function L1 has to be minimised and it is
based on the harmonic coefficients matrices:

L1 = ||fD
h (z̃n)− cN ||2 (21)

Even though the procedure highlighted here is very similar to the standard POD-
DL-ROM, one should nevertheless also consider that the harmonic decomposition (and
its inverse) requires knowing the period of the system response, which may be given
as an input parameter or, as detailed in the following, treated as another target value
to be modelled with respect to the input parameters. This feature does not significantly
change the stages of the Periodic DL-ROM approach; it will only need additional tools to
parametrise the period along with the system response. The Periodic DL-ROM procedure
is schematically represented in Figure 3.

U(t;μ)

zn(μ)=I(μ)

zn(μ)˜

U(t;μ)˜
L1uN(t;μ) uN(t;μ)

VT

fnE fhDN

VNH

cN(μ)



H-1

cN(μ)



˜
˜

˜

Figure 3. Periodic DL-ROM architecture.

5. Frequency Response Function Modelling: Arch Length Abscissa
In MEMS simulations and experimental analyses, one of the most commonly used

outputs is the frequency response curve (FRC), which defines the steady-state periodic
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response of the dynamical system, i.e., the collection of periodic solutions (stable and
unstable) along a given branch. The FRC represents the outcomes of the device’s behaviour
as a function of the actuation intensity and frequency. In nonlinear systems, like those
emerging from the electromechanical modelling of MEMSs, the FRC is not a single-valued
function of the forcing frequency ω, see Figure 4a. To overcome these difficulties, a possible
solution is given by the approach proposed in [37], where instead of using the actuation
frequency as an input parameter, this is replaced by a curvilinear abscissa that directly
parametrises the FRC of interest. This additionally requires a model for the frequency
value with respect to the other input parameters and the abscissa itself, see Figure 4b. In
general, this model is nonlinear and can be represented in different ways. Here, we resort
to a simple interpolation method.

s

s

A

ω

ω

(a) (b) 

Figure 4. Arc length abscissa. (a) Arc length abscissa s and (b) angular frequency ω as a function of
the arc length abscissa s in the case of a autoparametric resonance like those reported in Section 6 e.g.,
Figure 6.

6. Application: Electromechanical Disk Resonating Gyroscope
In this section, as an example with industrial relevance, we will address a disk resonat-

ing gyroscope (DRG) inspired by the device proposed in [47]. The DRG is modelled with
the software Coventor MEMS+TM 7.1 using one of the templates available in the software
itself, slightly modified for the purposes of this work [48–50].

6.1. Problem Description
In Figure 5a,b, the gyroscope geometry is reported, and its components are coloured

according to their function.

500 μm

Input electrodes - channel 2
Sense electrodes - channel 2

Input electrodes - channel 1
Sense electrodes - channel 1

DRG body

x

y

z

100 μm 220 μm

thickness=4 μm
gap=1.4 μm

18.5°

4°

10 μm

20 μm
Grounded electrodes

fDrive≈fSense= 32.699 kHz
Q= 20545.7

(a) (b)

(c) (d)

Figure 5. Disk resonating gyroscope. (a) Geometry of the device, (b) close-up of the electrodes,
(c) drive mode and (d) sensing modes

Euler–Bernulli beam elements are used to discretise the arch suspensions (two elements
each) and the external ring of the DRG (32 elements). A stiff cylinder, restrained to the
ground, serves as a central support. The ring is surrounded by a sequence of parallel plate
electrodes, and the software uses conformal mappings to describe the electrostatic forces.
We emphasise that the predicted displacements are minimal with respect to the element
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size, allowing us to ignore geometric nonlinearities as all nonlinear effects are induced by
the electromechanical interaction.

In particular, the DRG has the two degenerate modes shown in Figure 5c,d, which
are characterised by radial displacements of the outer ring proportional to cos(2θ) and
sin(2θ), with the θ polar coordinate running on the external ring. This device is designed to
sense angular velocities around the Z axis. Indeed, if the former (drive) mode is actuated,
the Coriolis effect also activates the latter mode, which can be sensed [47]. However, for
certain operating conditions, the coupling between the modes gets stronger and the device
displays an autoparametric resonance between the drive and the sense mode. Indeed,
the drive mode modulates the stiffness of the sense one at a frequency of 2 fdrive and this
triggers the parametric resonance.

The drive mode in Figure 5c is activated during operations by applying the bias VAC sin ωt
to the blue electrodes and the bias −VAC sin ωt to the yellow electrodes. A constant poten-
tial bias of VDC = 1 V is imposed on the gyro (red structure). All the remaining electrodes
are grounded.

6.2. Hyperparameters and Training
The collected dataset used during the training process is given by 1797 combinations

of frequency and external excitation amplitudes distributed on the FRC. The number of
POD bases retained is 11, and the harmonic decomposition is truncated at order 9. The
training parameter space spans f = [32.620, 32.6498] kHz, VAC = [2, 3, 4, 5, 6, 7, 8, 9, 10]mV,
and the sampling points are reported in Figure 6a. The neural network was trained with
AdaMAX and an early stopping algorithm setting the maximum number of epochs to
5000. The collected dataset was randomly split into a training and validation set with a
0.7 ratio, see Figure 6b. The batch size is 16. In this application, the latent space dimension
n was fixed at 4. Choosing an appropriate latent size is essential. The minimum latent
size is influenced by the number of input parameters and the dynamic features of the
problem. Since the system displays modal interaction between two modes, the minimum
size is 2, but to ensure the quality of the problem, a higher dimensional space is advised,
see [37]. The framework used for this implementation was the Julia library Flux [51]. Details
concerning the convolutional autoencoder are reported in Tables 1 and 2. Motivated by the
fact that the number of parameters to be trained is kept low and the proposed architecture is
particularly robust since it stems from the well-established POD-DL-ROM framework, the
hyperparameter tuning procedure is performed by trial and error experiments. A detailed
description of this procedure can be found in previous publications, e.g., [34].

32.62 32.625 32.63 32.635 32.64 32.645 100 200 300 400 500 600 700
epochs

lo
ss

train
validation

f[kHz]

u[
μm

]

uDRIVE

10-4

10-5

10-6

10-7

(b)(a)

VAC=10 mV
VAC=9 mV
VAC=8 mV
VAC=7 mV
VAC=6 mV
VAC=5 mV
VAC=4 mV
VAC=3 mV
VAC=2 mV

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 6. Training . (a) FRCs reporting the sampling points used in the training process. The
displacements refer to the point highlighted in the figure. (b) Loss function evolution during the
training process considering the training and the validation dataset.
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Table 1. Features of convolutional and dense layers in the encoder fE
n . The total number of parameters

is 6651. The stride was always set to one and a padding equal to zero was used. There are two input
channels because the FOM deploys Euler–Bernulli beams, so displacements and rotations DOFs are
kept separated. The encoding process reduces the input matrix with a shape of N, NF, 2 towards a
bottleneck representation with a size n, with N number of POMs, NF number of harmonic terms, and
n latent dimensions.

Layer Input Output Kernel # of Filters
Dimension Dimension Size

1 [N, NF, 2] [N − 1, NF − 1, 3] [2, 2] 3

2 [N − 1, NF − 1, 3] [N − 2, NF − 2, 5] [5, 5] 5

3 [N − 2, NF − 2, 5] [N − 3, NF − 3, 5] [5, 5] 5

5 (N − 3)(NF − 3)5 10

6 10 n

Table 2. Features of dense and transposed convolutional layers in the decoder fD
N . The total number

of parameters is 7284. The stride was always set to one and a padding equal to zero was used. There
are two input channels because the FOM utilises Euler–Bernulli beams with both displacements
and rotations DOFs. The decoding process expands the latent representation matrix with a size n
towards a matrix with a shape N, NF, 2, with N number of POMs, NF number of harmonic terms,
and n latent dimensions.

Layer Input Output Kernel # of Filters
Dimension Dimension Size

1 n 10

2 10 (N − 3)(NF − 3)5

3 [N − 3, NF − 3, 5] [N − 2, NF − 2, 5] [2, 2] 5

4 [N − 2, NF − 2, 5] [N − 1, NF − 1, 3] [2, 2] 3

5 [N − 1, NF − 1, 3] [N, NF, 2] [2, 2] 2

6.3. Latent Coordinates and Frequency Features
After the convolutional autoencoder training stage, the resulting latent coordinates,

as well as the frequency, are modelled with spline interpolation functions. The latent
coordinates and angular frequency are plotted in Figure 7a–e versus the parameters of the
problem at hand, i.e., s and VAC. The resulting surfaces are smooth with local discontinuity
at the switching point between different abscissa intervals, i.e., s = 1, 2. Such a behaviour
is expected and is a consequence of the arc length abscissa approach used to uniquely
define the relationship with respect to the amplitude and the frequency. The limit points
of different abscissa regions are such that they align with important features, e.g., peak
response and resonances. These lead to regions with different sizes and, consequently, a
local discontinuity between the regions modelled.
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Figure 7. Latent coordinates (a–d) and frequency function (e) interpolations. The black dots mark the
reference values given by the training datasets and the interpolated surface is in red.

6.4. Results
The reconstruction of the displacement field of the DRG with the Periodic DL-ROM

allows building the FRCs in Figure 8 related to testing VAC values only. The testing instances
considered here are inside the training parameter space and refer to points representative of
the drive and sense modes of the DRG, respectively, highlighted with red dots in Figure 8f.
The Periodic DL-ROM solution is able to accurately reproduce most of the FRCs features
and shows good agreement with the reference FOM. Some differences can be observed close
to the peaks of the drive motion on the highest forcing levels, see Figure 8b. These curves
represent the most critical ones because they are close to the boundaries of the parameter
space, and thus fewer data points characterise that region’s neighborhood. Nevertheless,
the error given by the Periodic DL-ROM is negligible. The plateau region at the highest
forcing values, i.e., VAC > 7.5 mV, corresponds to the auto-parametric resonance effect
between the drive and the sense modes. Here, the Periodic DL-ROM well reproduces the
overall shape with minor differences with respect to the FOM solution (Figure 8c). Similar
remarks hold also for the FRCs of the sense motion (Figure 8d,e).
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Figure 8. Frequency response curves reconstructed during the testing phase. (a) Envelope of the
FRCs of the drive motion uDRIVE. (b,c) Enlarged views of the FRC peak and main resonance region,
respectively. (d) Envelope of the FRCs of the sense motion uSENSE. The sense motion has been
normalised with respect to the maximum amplitude of drive motion, i.e., for VAC = 9.5 V and
max(uDRIVE) = 0.5019 µm, to better highlight the strength of the autoparametric resonance when
the drive mode is excited. (e) Enlarged view of the FRC peak and main resonance region. (f) Points
selected as representative of the drive and sense motion.

6.5. Key Advantages and Comparison with POD-DL-ROM
The Periodic DL-ROM can reproduce complex dynamics like those presented in this

section in almost real time, a capability shared with the POD-DL-ROM from which our
approach stems. To better highlight the advantages of our proposal with respect to the
POD-DL-ROM, let us consider data taken from the example at hand. Here, the neural
network has 13,935 parameters which is significantly less than the 360,000 parameters
utilised by the POD-DL-ROM in a similar problem [36]. This tremendous reduction, which
is achieved thanks to the harmonic decomposition, sets much less stringent requirements
on the computational resources. Indeed, the Periodic DL-ROM can be trained in a few
minutes on a standard CPU instead of hours on a high-end GPU [37]. Once trained, the
performance of Periodic DL-ROM is almost in real time. For example, the generation of all
the 4660 instances collected in Figure 8 takes less than 10 s on a standard workstation with
an AMD Ryzen 9 5950X CPU. Hence, the time per instance is approximately 2 milliseconds,
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also including the reconstruction of 100 time snapshots over one period starting from the
Fourier coefficients provided by the decoder.

Finally, it is worth stressing that the Periodic DL-ROM, as well as the POD-DL-ROM,
can accurately reproduce any field of interest everywhere in the device, e.g., displace-
ments and stresses [37], that is accessible through the original FOM. All the features listed
here are desirable in many problems and applications ranging from online control to
design optimisation.

7. Conclusions
In this work, we have proposed an alternative algorithm stemming from the POD-

DL-ROM method able to tackle periodic problems in MEMS applications in an effective
way. Starting from simple assumptions about the full order data available, the theoretical
setup of the method has been explained and compared with previous techniques. Then,
the effectiveness of the procedure was verified on a coupled electromechanical problem,
i.e., a disk resonating gyroscope. The proposed method is able to match the performance of
the POD-DL-ROM method while allowing a strong reduction in terms of the number of
parameters of the neural network to be trained and, correspondingly, a reduction in the
computational effort required. Furthermore, the injection of prior knowledge about the
periodicity of the solution into the neural network allows us to enforce it automatically
through a data pre-processing phase.
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