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Abstract: This paper aims to develop a visual servo control of a robotic manipulator for cherry
tomato harvesting. In the robotic manipulator, an RGB-depth camera was mounted to the end
effector to acquire the poses of the target cherry tomatoes in space. The eye-in-hand-based visual
servo controller guides the end effector to implement eye–hand coordination to harvest the target
cherry tomatoes, in which a hybrid visual servo control method (HVSC) with the fuzzy dynamic
control parameters was proposed by combining position-based visual servo (PBVS) control and
image-based visual servo (IBVS) control for the tradeoff of both performances. In addition, a novel
cutting and clipping integrated mechanism was designed to pick the target cherry tomatoes. The
proposed tomato-harvesting robotic manipulator with HVSC was validated and evaluated in a
laboratory testbed based on harvesting implementation. The results show that the developed robotic
manipulator using HVSC has an average harvesting time of 9.40 s/per and an average harvesting
success rate of 96.25% in picking cherry tomatoes.

Keywords: hybrid visual servo control; robotic manipulator; cherry tomato; harvesting

1. Introduction

With the elderly population increasing gradually, insufficient available labor has
arisen everywhere. Especially in agriculture, a serious lack of manpower may threaten crop
production in the world. Therefore, research in smart agriculture offers an advantage to
reduce the labor required. Among the attempts made, crop or fruit harvesting using an
agricultural robot is an important priority [1–3].

An available agricultural robot can successfully pick crops and fruits that are grown in
a complex, unknown, and unstructured environment. Hence, the agricultural robot must
have the ability to detect targets. In this regard, vision is required for the agricultural robot
to identify the positions and postures of targets. Moreover, fruits and crops have different
shapes, colors, sizes, and types; therefore, harvesting algorithms must be developed for
robots to perform successful picking. Currently, the key technique for overall performance
of a harvesting robot lies in the performance of vision-based feedback control [4].

Vision-based control aims to detect and recognize the target crops and fruits via camera;
their position and pose in space are acquired so that the coordinates and orientations are
then used to control the motion of the robotic manipulator. In the detection and recognition
of target fruit, many approaches rely on deep learning algorithms. Ji et al. [5] proposed
the Shufflenetv2-YOLOX-based apple object detection to enable the picking robot to detect
and locate apples in the orchard’s natural environment. This method provides an effective
solution for the vision system of the apple picking robot. Xu et al. [6] used an improved
YOLOv5 for apple grading. The experiments indicated that this method has a high grading
speed and accuracy for apples. Sa et al. [7] presented deep convolutional neural networks
for fruit detection. The proposed detector can handle approximately 50% of scaled-down
object detection. However, control by visual servo is also essential for the successful
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operation of the robotic harvesting system. Based upon error signals, the visual servo
controls are generally classified as PBVS and IBVS [8,9].

In the PBVS algorithm, a 3D model of target objects and camera parameters are required.
The relevant 3D parameters are computed through the pose of the camera within a reference
frame. The absolute or relative positions of the harvesting robot with respect to target objects
can thus be determined using the visual 3D parameter information [10]. The controllers are then
designed based on the position errors so that the robotic manipulator can move to an operation
position to execute a picking action. For the application of PBVS to agricultural harvesting,
Jun et al. [11] proposed a harvesting robot that combines robotic arm manipulation, object 3D
perception, and an end cutting mechanism. For software integration, the Robot Operating
System (ROS) was used as a framework to integrate the robotic arm, gripper, and related sense
tester. Edan et al. [12] described the intelligent sensing, planning, and control of a robotic
melon harvester. Image processing for PBVS is used to detect and locate the melons. Planning
algorithms with the integration of task, motion, and trajectory were presented. Zhao et al. [13]
developed an apple-harvesting robot that is composed of a manipulator, an end effector, and
an image-based vision servo control system. The apple was detected using a support vector
machine-based fruit recognition algorithm. The apple harvesting success rate was evaluated
through PBVS. Lehnert et al. [14] presented a robotic harvester that can autonomously pick
sweet pepper. A PBVS algorithm acquires 3D localization to determine the cutting pose and
then to grasp the target with an end effector. Field trials demonstrated the efficacy of this
approach. However, for PBVS, exact knowledge of the intrinsic parameters of the camera is
required for control performance. Even very small errors in the camera calibration may greatly
affect the control accuracy of robots [15].

IBVS directly uses image features that are converted from pixel-expressed images by the
camera system to design the controllers. Visual features are first extracted from the image space.
The errors are computed from points or vectors by the visual features [16]. Mehta et al. [17]
developed a vision-based harvesting system for robotic citrus fruit picking. The cooperative
visual servo controller was presented to servo the end effector to the target fruit location using
a pursuit-guidance-based hybrid translation controller. The visual servo control experiment
was performed and analyzed. Li et al. [18] investigated an image-based uncalibrated visual
servoing control for harvesting robots and tried to resolve the overlapping effects of the target
motion and the uncalibrated parameter estimation. The effectiveness of the proposed control was
demonstrated by the comparative experiments. Barth et al. [19] reported the agricultural robotics
in dense vegetation with software framework design for eye-in-hand sensing and motion control.
An image-based visual servo control was designed to correct the motion of the robot so that the
geometrical feature error was minimized. Qualitative tests were performed in the laboratory
using an artificial dense vegetation sweet pepper crop. Li et al. [20] proposed an IBVS controller
that mixes proportional differential control and sliding mode control. However, the visual
servo controller is not completely designed to be perfect 100%, and there are unexpected
interference phenomena in different environments or different hardware devices. Although the
IBVS schemes are robust against the calibration errors in the camera, large calibration errors may
cause the closed-loop system to be unstable [21–23]. As a result, an advanced control design
is required for stability. Moreover, an IBVS using a fixed camera on a robotic manipulator is
limited to a field of view. That is, the target may always move out of the field of view as the
manipulator turns, so that the IBVS controller will fail to control the manipulator.

In this paper extending from our previous study [24], a robotic manipulator for cherry
tomato harvesting was investigated in greater detail. The main contributions are highlighted as
follows. A novel cutting and clipping integrated mechanism was designed for cherry tomato
harvesting. The position of the cherry tomato in space was determined by the proposed feature
geometry algorithm. To accurately and efficiently pick the target cherry tomato, an HVSC
that improves PBVS and IBVS without camera calibration or a target model was proposed for
visual feedback control. HVSC combines the Cartesian and image measurements for error
functions. The rotation and the scaled translation of the camera between the current and
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desired views of an object were thus estimated as the displacement of the camera, and thus
the harvesting system may perform with better stability.

2. Robotic Manipulator System for Harvesting

Harvesting robotic manipulators aim to perform effective picking on fruits and vegetables.
Designs for harvesting robotic manipulators must take into account the machine perception of
crops, and thus a machine vision system is required to recognize the status and postures of the
target crops. Based on the identified crops, the robotic manipulator moves to a position where
it is appropriate to harvest the detected crops in an uncertain, unstructured, and varying
environment. The manipulation is always performed by visual servo control to make an
end effector reach to the planned location and orientation. End effectors for harvesting are
developed according to different harvesting methods, crops, and separated points from the
stems. As a consequence, the proposed robotic manipulator in the paper for cherry tomato
harvesting will be developed and designed according to these concepts.

2.1. Architecture Design and Software Setup

The architecture setup of the robotic manipulator for cherry tomato harvesting is
presented in Figure 1, in which the hardware is composed of a 6-DOF UR5 manipulator, a
harvesting mechanism, and an RGB-D camera (Intel Realsense D435i). The RGB-D camera
is mounted to the end effector of the manipulator in an eye-in-hand setup to transmit the
data of the detected tomato to the embedded board. The images taken by the camera are
used for visual recognition and visual servo feedback control such that the harvesting
mechanism can be driven precisely and robustly by the manipulator to perform picking.
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Figure 1. Architecture setup of the robotic manipulator system for cherry tomato harvesting.

The software system of the harvesting robot manipulator is defined in the Robot
Operating System (ROS) environment. Each subsystem can be represented as a node. The
ROS supports Python and C++ programming languages, and the software is running on
Ubuntu 18.04. Image data and depth data are processed by Python. The visual servo
control is developed using C++ for tomato harvesting. Various open software libraries
are linked for function implementation. The robotic manipulator moves by enabling the
motion controller via software ROS packages.
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2.2. Harvesting Mechanism

Many harvesting mechanisms have been designed to pick cherry tomatoes. Tradition-
ally, a scissor type of cutting method must rely on the detection of the fruit stem by vision.
However, it is not easy to identify the fruit stems because fruit stems are often occluded by
leaves and fruits or easily misidentified as twigs. As a result, it is preferred to detect the
target fruits directly but try to cut them from the fruit stems.

In this paper, a novel cutting and clipping integrated mechanism was proposed to
pick cherry tomatoes, as presented in Figure 2. Two blades are, respectively, mounted at the
front and back of the rectangle sleeve. The rectangle sleeve can stretch out to pick cherry
tomatoes and then return to its initial position. When the rectangle sleeve captures the
target cherry tomato, the back blade moves forward to cut the fruit stem and clip the fruit.
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2.3. Determination of Feature Points

As the basis of our architecture setup of the robotic manipulator system for cherry tomato
harvesting, the orthogonal frames, as shown in Figure 3, FB, Fe, Fc, FC∗ , and FT are defined and,
respectively, attached to the base of the robotic manipulator, the end effector, the camera, the
initial operable position, and the cherry tomato center. For simplicity, the eye-in-hand camera is
installed so that the camera frame {c} and end effector frame {e} are purely translational, and there
is a rotational matrix Re

c = I. Because the interrelationships between these assigned coordinate
frames affect the success rate of reaching target fruits, the coordinate transformation relationship
is essential. And the coordinate transformation is characterized by a rigid transformation
including rotations and translations. The homogeneous transformation matrices HT

C, HC*

C ,

and HC*

T , respectively, represent the transformations from the camera coordinate frame to
the tomato coordinate frame and from the camera coordinate frame to the initial operable
position. Accordingly, the operation position needed to cut the fruit stem can be estimated
using the relationships of the homogeneous transformation matrices, which enables the robotic
manipulator to reach the harvesting position to pick cherry tomatoes.
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To pick fruits effectively, target detection and the determination of positions and
orientations are required functions for the proposed harvesting robotic manipulator. The
recognition and localization process rely on reliable recognition algorithms in a visual
system. Most recognition algorithms adopt multiple-feature fusion approaches to extract
the desired information of the target fruits. Among them, color, geometry, and texture
are popular extracting features for target fruits [25]. Color can be used to facilitate the
segregation of target fruit from a complex environmental background. In general, the RGB
images first captured by the camera are transformed to the YCrCb color space. Since a
mature cherry tomato always appears red in color, only the Cr images that indicate the
concentration offset of a red color are taken into account for mature cherry tomatoes. The
color threshold values in OpenCV were applied to the filtered images [26], in which a color
value range is specified. The pixels in the image that satisfy the specified range will be
registered; otherwise, the pixels out of the range are labeled as different colors or values.
This method allows for the extraction or segmentation of specific color regions in the image,
and thus the locations of tomatoes can be distinguished and determined.

The shape of the cherry tomato in space may be regarded as an ellipsoid, and the
corresponding image is a 2D ellipse as projected onto the image plane. Due to its efficiency,
this shape in the image plane is first recognized using the contour method [27]. For the
contour determination, a boundary point in the image must be determined as the starting
point. This point will serve as the starting point to search the contour. All adjacent boundary
points are traversed from this initial point along a closed boundary path. For each boundary
point, the connectivity to its neighboring points must be examined to determine whether it
is a branch point or a cross point. If there exist branch points or cross points, the topological
structure features need to be updated. These features may contain a number of holes or
connected regions. Finally, the shape in the image is thus determined after finishing the
contour-following process until returning to the initial point.

The proposed image processing permits us to further find geometric feature points
to recognize the status and orientations of the target cherry tomatoes. To identify the
orientations of cherry tomatoes, the centroid of the shape is first determined by an image
moment approach [28]. Shape and distribution can be obtained by calculating the moments
of an image. Furthermore, based on moment invariants, features remain unchanged under
transformations such as rotation, scaling, and translation. As a result, the center point of
the image is inferred by the central moments as shown in Figure 4a for the centroid of
the cherry tomato. The point P1(u1, v1) on the contour of the ellipse with the maximum
distance from the centroid is detected and defined as one of the endpoints of the major axis
of the ellipse. Taking the equal length to P1C to obtain the point Q, the point Q must be
located outside of the ellipse, as shown in Figure 4b. And hence it may not be the other
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endpoint of the major axis. By searching the points along the contour of the ellipse, the
closest point P2(u2, v2) to Q will become the other modified endpoint of the major axis of
the ellipse, as shown in Figure 4c. These feature points are extracted to further recognize a
tomato’s posture for reliable harvesting.

Actuators 2023, 12, x FOR PEER REVIEW 6 of 19 
 

 

of the ellipse, as shown in Figure 4c. These feature points are extracted to further recognize 

a tomato's posture for reliable harvesting. 

 

Figure 4. Feature point calibration with (a) the farthest point from the centroid, (b) the opposite 

point of P1, and (c) Q, the closest point to the tomato P2. 

2.4. Pose of the Cherry Tomato 

The control and motion guidance of a robotic manipulator for target cherry tomato 

harvesting are influenced by the targets’ poses in space. In general, the orientation of a 

fruit can be suitably expressed in spherical coordinates with respect to the image plane. 

The parameters describing the status of a fruit are the length l of the major axis and two 

angles, 𝜑 and 𝜃, respectively, referred to as the polar and azimuthal angles. As shown in 

Figure 5, the polar angle 𝜑 is the angle between the x axis and the projection of the major 

axis on the image plane and can be determined using the extracted feature points P1 and 

P2 as 

𝜑 = 𝑡𝑎𝑛−1[(𝑢1 − 𝑢2)/(𝑣1 − 𝑣2)] (1) 

 

 

Figure 5. Polar angle of a cherry tomato in the XY plane of the tool frame. 

The azimuthal angle is defined as the angle between the actual major axis and the y 

axis. As shown in Figure 6, the azimuthal angle can be determined by the projected length 

l of the actual major axis onto the image plane and the depth difference 𝑑𝑒 of both feature 

points P1 and P2 in the z direction such that 

𝜃 = 𝑡𝑎𝑛−1(𝑑𝑒/𝑙) (2) 

 

in which the depth difference 𝑑𝑒 =𝑧1 − 𝑧2, with 𝑧1, 𝑧2 being acquired by the depth cam-

era of the visual system. The projected length l =𝑣1 − 𝑣2 is the difference of the y coordi-

nates of the two feature points in the image frame. 

Figure 4. Feature point calibration with (a) the farthest point from the centroid, (b) the opposite point
of P1, and (c) Q, the closest point to the tomato P2.

2.4. Pose of the Cherry Tomato

The control and motion guidance of a robotic manipulator for target cherry tomato
harvesting are influenced by the targets’ poses in space. In general, the orientation of a fruit
can be suitably expressed in spherical coordinates with respect to the image plane. The
parameters describing the status of a fruit are the length l of the major axis and two angles,
ϕ and θ, respectively, referred to as the polar and azimuthal angles. As shown in Figure 5,
the polar angle ϕ is the angle between the x axis and the projection of the major axis on the
image plane and can be determined using the extracted feature points P1 and P2 as

ϕ = tan−1[(u1 − u2)/(v1 − v2)] (1)
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The azimuthal angle is defined as the angle between the actual major axis and the y
axis. As shown in Figure 6, the azimuthal angle can be determined by the projected length
l of the actual major axis onto the image plane and the depth difference de of both feature
points P1 and P2 in the z direction such that

θ = tan−1(de/l) (2)

in which the depth difference de = z1 − z2, with z1, z2 being acquired by the depth camera
of the visual system. The projected length l = v1 − v2 is the difference of the y coordinates
of the two feature points in the image frame.
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3. Visual Servo Controller for the Robotic Manipulator

A harvesting robotic manipulator must be capable of searching for a target and then
driving to the desired position for the ensuing actions. Therefore, machine vision must
be installed for visual servo control to realize the point-to-point localization. So, in this
section, the visual servo control design will be presented for fruit picking.

3.1. PBVS for Cherry Tomato Harvesting

A PBVS is usually referred to as a 3D feedback control in the inertial frame. Features
are extracted from the image to estimate the pose of the target tomato with respect to the
camera. In this way, the error between the current and the desired pose of the target in the
task space can be used to synthesize the control input to the robotic manipulator.

In the PBVS control method, the target is identified by the color depth camera with
respect to the base frame. The image-expressed information is first processed and then
converted to the position with respect to the camera frame according to the ideal pinhole
camera model and further transformed to the coordinates with respect to the base frame
using the relationship between the object frame and the camera frame. As such, the
transformation from the coordinates of the object point (X, Y, Z) expressed in the base frame
to the corresponding image point (u, v) is written as

z
[
u v 1

]T
= AB

[
X Y Z 1

]T (3)

in which A is the camera intrinsic matrix, with A =

 fx γ mx
0 fy my
0 0 1

 representing the rela-

tionship between the camera frame and the image frame. It can be obtained through
measurement or calculation using the given FOV; fx and fy are the effective focal length
in pixels of the camera along the xc and yc axes; γ is the camera skew factor, and (mx, my)
indicate the difference between the camera center and the image center. In addition, the
extrinsic coordinate transformation matrix B =

[
RC

T t
]

expresses the relationship between
the object frame and the camera frame with RC

T being defined as the rotational matrix and t
as the translational displacement from the camera to the object. The rotational matrix RC

T
can be determined from the equivalent angle-axis representation that is constructed by the
polar and azimuthal angles, as discussed in Section 2.4.

To harvest cherry tomatoes with camera alignment control, PBVS first serves as a
coarse alignment and is then followed by IBVS for image-based fine alignment control.
The coarse alignment control will enable the manipulator to move to a desired operation
position ready to cut. The desired operation position is assigned as (uc, vc) near the principal
point of the image plane. The corresponding desired position with respect to the base frame
is determined as noted above. Since the rotation of the tomato around its central axis is
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considered invariant, only these two angles between the tomato central axis and the x and
z axes are taken into account.

Utilizing the pixel error values, the depth values obtained from the depth camera,
and the external and internal parameter matrices, the translational displacement is thus
calculated. The PBVS control for cherry tomato harvesting is shown in Figure 7.
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3.2. IBVS for Cherry Tomato Harvesting

IBVS calculates the control input to the manipulator directly using image feature
errors to reduce computational delay and thus is less sensitive to calibration. The control
design of IBVS and the selections of the associated control gains need to be examined
in an image Jacobian matrix that relates the feature velocity to the camera velocity in an
image coordinate. Let vc =

[
vx vy vz

]T and ωc =
[
ωx ωy ωz

]T be the linear velocity
and the angular velocity of the camera expressed with respect to the camera frame. The
image Jacobian matrix L of a point P(X, Y, Z) in the camera frame with the corresponding
projected coordinate in image space P(u, v) can be written as [29]

[ .
u
.
v

]
=

− f
Z 0 u

Z
0 − f

Z
v
Z

uv
f

− f 2−u2

f v
f 2+v2

f − uv
f −u

[vc
ωc

]
= LVc

(4)

For feedback control by IBVS for the robotic manipulator, the errors in the image frame
are required. If the desired image position is defined as (ud,vd) = (u0,v0), the desired depth
distance of the centroid zd and (ϕd, θd) are referred to as the desired polar and azimuthal
angles. Conventionally, six control errors should be defined in the image space for feedback
control. However, the amount of rotation about the principal axis does not affect the picking
motion due to our harvesting mechanism design. So, one may define the five errors of
feedback control of the robotic manipulator for harvesting as follows:

(e1 , e2) = (u− u0 , v− v0). (5)

e3 = zd − zC. (6)

e4 = θd − θ = θd − tan−1
(

z1 − z2

zC|v1 − v2|/ fy

)
. (7)

e5 = ϕd − ϕ = ϕd − tan−1[(u1 − u2)/(v1 − v2)]. (8)

These five errors that encompass three main feature points, i.e., the two end points P1, P2
and the centroid point PC in the pixel plane, are used to compensate for the alignment positioning
and orientation errors during the reaching and harvesting phase. The basic visual controller
design for a conventional IBVS almost employs proportional control to generate the control
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signal. However, this method cannot have a faster control convergence and a smaller error. In
this paper, a PD control with fuzzy gains is adopted to improve the visual feedback quality.

The proposed PD control scheme in the alignment of the tomato centroid to the center
position of the image plane is described as [30][

vx vy
]T

=
[
kp1e1 + kd1

.
e1 kp2e2 + kd2

.
e2
]T , (9)

in which (vx, vy) is the translation velocity relative to the current camera frame; kpi, kdi,
i = 1, 2, are positive gains. Taking the derivative of Equation (5) and from the image
Jacobian matrix, Equation (4), along with the controller, Equation (9), the error dynamics
are obtained as [

.
e1 +

(
f z−1

C kp1

1+ f z−1
C kd1

)
e1

.
e2 +

(
f z−1

C kp2

1+ f z−1
C kd2

)
e2

]T
= 0 (10)

It is seen that the controller in Equation (9) drives the errors to zero.
Moreover, to reach the desired depth zd for the centroid of the cherry tomato and to

rotate the end effector for the harvesting, the PD control law is used when e1 = e2 = 0

vz = kp3e3 + kd3
.
e3. (11)

ωx = kp4e4 + kd4
.
e4. (12)

ωz = kp5e5 + kd5
.
e5. (13)

Following the above procedures, the error dynamics for the depth, polar, and az-
imuthal angle are, respectively, derived as

.
e3 = −

(
kp3

1− kd3

)
e3. (14)

.
e4 = −

(
kp4

1 + θ2 + kd4

)
e4. (15)

.
e5 = −

(
kp5

1 + ϕ2 + kd5

)
e5. (16)

The stability is examined by formulating a Lyapunov function as V = 1
2
(
e2

3 + e2
4 + e2

5
)
,

and then taking a derivative of the function, one leads to

.
V= −

(
kp3

1− kd3

)
e2

3 −
(

kp4

1 + θ2 + kd4

)
e2

4 −
(

kp5

1 + ϕ2 + kd5

)
e2

5. (17)

If the gains kp3, kp4, kp5, kd4, kp5, are chosen larger than zero, and 0 < kd3< 1, the
asymptotic stability is guaranteed. Thus, the steady state errors (e3, e4, e5) are driven to zero.

3.3. Adaptive Fuzzy Gains for IBVS

In the PD type of IBVS, the control gains kpi,kdi, i = 1, . . . , 5 are constants that are
determined from the Lyapunov stability theorem. However, the control gains can be
further determined dynamically to improve the visual feedback performance of the robotic
harvesting manipulator. In this regard, a fuzzy inference system based on the Mamdani
fuzzy theory [31] is proposed for the design of the gains. Seven fuzzy partitions for the two
error inputs ei,

.
ei and outputs kpi, kdi are, respectively, denoted to perform fuzzy reasoning

according to the rules in the fuzzy rule base. From the stability proof and many trials, the
corresponding membership functions of input and output linguistic variables are presented,
respectively, in Figure 8 for the control gains kpi, kdi. In addition, the triangular membership
functions were adopted because of their simplicity and computational efficiency. The input–
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output relationships in the fuzzy inference system are determined as shown in Table 1 based
on the fuzzy logic IF–THEN rule base. The centroid defuzzification- based correlation-
minimum inference is used for the fuzzy implications, and thus the corresponding control
gains can be adjusted adaptively according to the tracking errors and the corresponding
rate errors. The whole IBVS control structure is shown in Figure 9.
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Table 1. Fuzzy rules in the fuzzy inference system.

e2

e1

NB NM NS ZE PS PM PB

NB B B M M M B B

NM B M M S M M B

NS B M M ST M M B

ZE B M S ST S M B

PS B M M ST M M B
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Table 1. Cont.

e2

e1

NB NM NS ZE PS PM PB

PM B M M S M M B

PB B B M M M B B
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3.4. HVSC Algorithm

As mentioned in the preceding, PBVS makes use of a depth stereo camera to identify the
target, and then the associated position is calculated by converting the desired point in the
image frame to spatial coordinates. However, the conversion may result in an uncertain error
because of the intrinsic and external camera parameters. Also, in the process of traveling, the
position errors of the end effector will cause a serious localization deviation due to unexpected
external disturbances. The errors of position are even accumulated more and more with the
traveling distance. IBVS takes advantage of pixel coordinates in the image plane for feedback
control without conversion to spatial coordinates, and thus the required calculation loading is
comparatively lessened. Moreover, the target information is constantly returned for feedback
control while traveling, so it has a higher localization accuracy than PBVS under the identical
disturbances. However, the pixel-based control may cause the robotic manipulator to generate a
larger response in space. The main drawback of IBVS using a fixed camera is the limited field of
view. When the robotic manipulator rotates, the target may be out of the field of view, and the
IBVS will fail to control the manipulator. Therefore, an HVSC integrating PBVS and IBVS was
proposed for the tradeoff.

As HVSC is applied to cherry tomato harvesting, the PBVS is first executed for the
point-to-point coarse localization of the end effector for efficiency. Afterwards, IBVS will be
implemented to continue the ensuing movement to reach the desired operation position.
Then, the remaining cutting task is performed by the PBVS again. The switching mechanism
between PBVS and IBVS is under the following conditions:

(1) PBVS is first executed for the point-to-point localization until the prescribed condition
eu ≤ 5, ev ≤ 5, ed ≤ 0.2.

(2) The mechanism switches to the fuzzy-based IBVS to continue a fine alignment to the
desired operation position.

(3) When the target cherry tomato is aligned, the mechanism switches to PBVS to execute
cutting off the fruit stem.

4. Experimental Results and Discussions

As shown in Figure 10, the proposed visual servo control algorithms for cherry tomato
harvesting were demonstrated by the robotic manipulator. The laboratory-based experimental
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field as shown in Figure 1 was set for the implementation of harvesting, in which an artificial
cherry tomato is installed on stainless steel wires with supposed different growth angles.
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4.1. Point-to-Point Localization for Target Tomato Manipulation

The proposed PBVS, IBVS, and HVSC were tested for point-to-point localization of
a target tomato. The artificial cherry tomato was laid out with the pose angles θ = ϕ = 0.
The position of the centroid in the image plane is located at (222, 141) pixels, and the initial
depth from the image is 322 mm. The operation location is denoted at the location (320, 240)
pixels in the image plane and at a depth of 370 mm. Due to the presumed pose angles, the
robotic manipulator will be controlled to reach the operation position without considering
the orientations of the end effector.

The errors e1, e2, and e3 by the three visual feedback controllers are presented in
Figure 11. It is shown that the three controllers can effectively align the target and reach
the operation position. Their performances were compared as shown in Figure 12. The
PBVS has larger errors in e1, e2, and e3 because of the camera parameters’ uncertainty
and measurement errors that lead to inaccuracy in the coordinates of the target in space.
However, the PBVS has a shorter execution time because the PBVS need not frequently
capture images to serve as feedback information.
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4.2. HVSC with Constant and Fuzzy Feedback Gains

In this subsection, the HVSC with a separation constant and fuzzy feedback, respec-
tively, were performed and compared for target localization with varied poses. The results
for reaching the operation position are presented in Figure 13 with θ = 10

◦
, ϕ = 30

◦
and

Figure 14 with θ = 15
◦
, ϕ = 45

◦
. Even when the target has a far distance from the end

effector, it is seen that the HVSC with fuzzy feedback gains has better stabilization than the
constant gains, due to robusticity against disturbances. In addition, the performance for
larger pose angles may engender a larger localization deviation because the larger pose
angles are difficult to compute and identify accurately.
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4.3. Application to Cherry Tomato Picking

Finally, the artificial target cherry tomatoes were picked by the proposed robotic
manipulator with the fuzzy-based HVSC. After identifying the tomato and determining the
corresponding position and orientation, the harvesting mechanism moves to the operation
position using the HVSC. According to the harvesting mechanism design, if the rectangle
sleeve can successfully capture the target cherry tomato, the object must be picked without
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needing accurate positioning. Also, PBVS has a comparatively fast execution speed, so the
visual control was switched to PBVS to pick the target following HVSC.

Figures 15–17 depict the harvesting trajectories in space for target tomatoes with
growth orientations ϕ = 30

◦
, 45

◦
, and 60

◦
. Initially, the surface of the rectangle frame is

parallel to the ground. For the growth pose ϕ = 30
◦

and 45
◦
, the orientation of the end

effector does not adjust very much while moving for picking. However, in the case of 60
◦

of growth pose, it is apparent that the orientation of the end effector must be varied to
pick the cherry tomato successfully. Moreover, based on numerous tests for each case, it is
demonstrated that the picking success rate is 100% for 30

◦
of growth pose and 94.5% for

45
◦

of growth pose, while the picking success rate for 60
◦

is the lowest with 89.2%. The
reason results from the large computational errors for a target cherry tomato with a large
angle for growth orientation.
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5. Conclusions

This paper concludes with the realization of a robotic manipulator for cherry tomato
harvesting. To perform smooth and accurate localization tasks, the fuzzy-based HVSC was
used to implement the point-to-point localization and picking tasks, in which the PBVS
was first performed for the coarse localization of the end effector, and the IBVS was then
executed to drive the end effector to the desired operation position. Finally, the robotic
manipulator was again switched to the PBVS to perform the cherry tomato picking using
our developed cutting and clipping integrated mechanism. The laboratory experiments
for different poses of artificial cherry tomatoes demonstrate the feasibility of the proposed
robotic manipulator and visual servo control for cherry tomato harvesting. The overall
results show that the developed robotic manipulator using fuzzy-based HVSC has an
average harvesting time of 9.40 s/per and an average harvesting success rate of 96.25% in
picking cherry tomatoes with random pose angles. The picking failures always result from
the noise on the measured depth values and the associated computational pose errors such
that the sleeve cannot successfully capture the target cherry tomatoes.

In the future, more investigations of factors such as the picking order, occlusion,
overlapping, and environmental lighting problems are to be conducted for practical field
applications. Further comparative analyses and comprehension of the proposed system in
real field tests will be thus evaluated.
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