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Abstract: In the field of signal processing, it is interesting to explore signal irregularities. Indeed,
entropy approaches are efficient to quantify the complexity of a time series; their ability to analyze and
provide information related to signal complexity justifies their growing interest. Unfortunately, many
entropies exist, each requiring setting parameter values, such as the data length N, the embedding
dimension m, the time lag τ, the tolerance r and the scale s for the entropy calculation. Our aim is to
determine a methodology to choose the suitable entropy and the suitable parameter values. Therefore,
this paper focuses on the effects of their variation. For illustration purposes, a brushless motor with a
three-phase inverter is investigated to discover unique faults, and then multiple permanent open-
circuit faults. Starting from the brushless inverter under healthy and faulty conditions, the various
possible switching faults are discussed. The occurrence of faults in an inverter leads to atypical
characteristics of phase currents, which can increase the complexity in the brushless response. Thus,
the performance of many entropies and multiscale entropies is discussed to evaluate the complexity
of the phase currents. Herein, we introduce a mathematical model to help select the appropriate
entropy functions with proper parameter values, for detecting open-circuit faults . Moreover, this
mathematical model enables to pick up many usual entropies and multiscale entropies (bubble, phase,
slope and conditional entropy) that can best detect faults, for up to four switches. Simulations are
then carried out to select the best entropy functions able to differentiate healthy from open-circuit
faulty conditions of the inverter.

Keywords: open-circuit; inverter; brushless motor; entropy; multiscale; fault detection

1. Introduction

One of the most powerful tools to assess the dynamical characteristics of time series
is entropy. Entropy used in several kinds of applications is able to account for vibrations
of rotary machines [1] (electric machines), to detect battery faults [2] (short-circuit and
open-circuit faults), to reveal important information about seismically actives zones [3]
(electroseismic time series), to measure financial risks [4] (economic sciences), to categorize
softwood species under uniform and gradual cross-sectional structures [5] (biology) and to
categorize benign and malignant tissues of different subjects [5] (biomedical).

Various entropy measures have been established over the past two decades. Pincus [6]
proposed the approximation entropy ApEn, which calculates the complexity of data and
measures the frequency of similar patterns of data in a time series. However, ApEn also
has some disadvantages: due to self-matching, the bias of ApEn is important for small time
series and depends on the entropy parameters. To avoid self-matching, Richman [6] defined
the sample entropy SampEn. Since the introduction of ApEn [6], other entropies have been
proposed, such as Kolmogorov entropy K2En, conditional entropy CondEn, dispersion
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entropy DispEn, cosine similarity entropy CoSiEn, bubble entropy BubbEn, fuzzy entropy
FuzzEn, increment entropy IncrEn, phase entropy PhasEn, slope entropy PhasEn, entropy
of entropy Eno f En, attention entropy AttEn and several other multiscale entropies.

Entropy is now widely applied to analyze signals in various fields having universal
applications. A combination of wavelet transformation and entropy is proposed and ap-
plied in power grid fault detection [7]. Wavelet transform is commonly used to extract
characteristic quantities, and to analyze transient signals, while entropy is ideal for the
measurement of uncertainty. The approximate entropy features of a multiwavelet trans-
form [8] combined with an artificial neural network recognizes transmission line faults.
The multi-level wavelet Shannon entropy was proposed to locate single-sensor fault [9].
Guan [10] developed a precise diagnosis method of structural faults of rotating machinery
based on a combination of empirical mode decomposition, SampEn and deep belief net-
work. Entropy measures [11] are used in machine fault diagnosis. In [12], the variational
mode decomposition energy entropy for each phase current cycle is calculated to accurately
diagnose the arc fault: the noise component is removed according to the permutation
entropy. [13] proposed to diagnose multi-circuit faults of three-phase motors. This method
only needs to collect phase currents to diagnose multi-circuit points accurately: it improves
the independence of diagnosis. Based on signal feature extraction, a combination of the
empirical mode decomposition entropy and index energy methods is adopted in [14] to
extract the Draft Tube’s dynamic feature information for a water turbine. Open-circuit
fault diagnosis of a multilevel inverter [15] uses the fast fault detection algorithm based on
two sample techniques and the fault localization algorithm using the entropy of wavelet
packets as a feature. The authors in [16] presented a fast feature extraction technique
including wavelet packet decomposition, an entropy of wavelet packets for fault detection
and classification of IGBT-based converters.

Open-circuit fault diagnosis methods can be divided into voltage-based methods
and current-based methods, according to different fault characteristics. Voltage-based
methods [17,18] can be implemented with external hardware or modeled. Recently, current-
type methods based on current waveform analysis have attracted much attention [19–21].

An effective open-circuit fault diagnosis using the phase current performance of a
brushless motor or inverters is shown in [22]. Other practical current-based diagnostic
algorithms are addressed in [19,23,24]: they identify the reference current errors and the
average absolute value of currents. Then, the average value of the current error and the
average absolute value of the motor phase current are used to realize the diagnostic variable.
A fast approach based on the amplitude of the d-q axis referential currents is proposed
by [21]. The development of intelligent algorithms, such as fuzzy logic [25], sliding mode
observer [26], neural networks [27], machine learning [28], an optimized support vector
machine method [29] and wavelet transform [30], which allows to detect and identify
faulty switches.

A mathematical model of healthy and faulty conditions is developed by [31]: it detects
an open-circuit in interleaved boost converters with the Filippov method. The stable range
of the load variation is extended using an original fault-tolerant strategy based on this
model. In [32], one or a maximum of two open-circuit faults are detected by entropy
functions. Seven entropies are investigated, but only sample and fuzzy entropies are able
to differentiate healthy from open-circuit faulty conditions of the AC-DC-AC converter
considered in [32].

We now propose a fault-detection method for a brushless motor with a three-phase
inverter. The occurrence of faults in an inverter leads to atypical characteristics of phase
currents, specific to the drive circuit. Usual and multiscale entropies are then used to
detect multiple open-circuit faults. In this paper, we broaden the spectrum of investigation
to 52 entropies, to evaluate their ability to differentiate healthy states from open-circuit
faulty conditions. This is why we herein introduce a mathematical model to select the
appropriate entropy functions with an appropriate parameter combination for open-circuit
faults detection. The entropy calculation has several parameters, such as data length N,
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embedding dimension m, time lag τ, tolerance r and scale s. However, the dependence of
the entropy effectiveness on the choice of parameters used for the phase currents analysis
has not yet been investigated for a brushless motor. Moreover, using this mathematical
model, we are able to pick up many usual entropies and multiscale entropies (bubble,
phase, slope and conditional entropy) that can better detect faults for up to four switches.
Our goal herein is to be able to select the appropriate entropy.

The paper is organized as follows. The usual entropies and multiscale entropies are
introduced in Section 2. Sections 3 and 4 present the brushless motor and the dataset we
used of output currents under healty state, with one, two, three and four open-circuit
faults. Then, Section 5 illustrates the evaluation of the different entropies under variation
of the data length, embedding dimension, time lag, tolerance and scale. We end with a
Conclusion in Section 7.

2. Entropy Methods

• Sample entropy SampEn and approximate entropy ApEn are the most commonly used
measures for analyzing time series. For a time series {xi}N

i=1 with a given embedding
dimension m, tolerance r and time lag τ, the embedding vector
xm

i = [xi, xi+τ , . . . , xi+(m−1)τ ] is constructed. The number of vectors xm
i and xm

j , close
to each other, in Chebyshev distance:

ChebDistm
i,j = maxk=1,m{|x

m
i [k]− xm

j [k]|} ≤ r (1)

is expressed by the number Pm
i (r). This number is used to calculate the local probabil-

ity of occurrence of similar patterns:

Bm
i (r) =

1
N −m + 1

Pm
i (r). (2)

The global probability of the occurrence of similar patterns is:

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r) (3)

with a tolerance r. For m + 1:

Bm+1(r) =
1

N −m

N−m

∑
i=1

Bm+1
i (r). (4)

The approximation entropy is:

ApEn(m, τ, r, N) = ln
Bm(r)

Bm+1(r)
. (5)

• Kolmogorov entropy [33]—K2En is defined as the probability of a trajectory crossing
a region of the phase space: suppose that there is an attractor in phase space and
that the trajectory {xi}N

i=1 is in the basin of attraction. K2En defines the probability
distribution of each trajectory, calculated from the state space, and computes the
limit of Shannon entropy. The state of the system is now measured at intervals of
time. The time series {xi}N

i=1 is divided into a finite partition α = {C1, C2, . . . , Ck},
according to Ck = [x(iτ), x((i + 1)τ), . . . , x((i + k− 1)τ)]. The Shannon Entropy of
such a partition is given by:

K(τ, k) = − ∑
C∈α

p(C) · log p(C). (6)
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K2En is then defined by:

K2En = − sup
α f inite partition

lim
N→∞

1
N

N−1

∑
n=0

(Kn+1(τ, k)− Kn(τ, k)). (7)

• Conditional entropy [34]—CondEn quantifies the variation of information necessary
to specify a new state in a one-dimensional incremented phase space. Small Shannon
entropy values are obtained when a pattern appears several times. CondEn uses
the normalization:

x(i) =
X(i)− av[X]

std[X]
, (8)

where av[X] is the series’ mean and std[X] is the standard deviation of the series.
From the normalized series, the vector xL(i) = [x(i), x(i− 1), . . . , x(i− L + 1)] of L
consecutive pattern is constructed in L dimensional phase space. With a variation in
the Shannon entropy of xL(i), the CondEn is obtained as:

CondEn(L) = −∑
L

pL · log pL + ∑
L−1

pL−1 · log pL−1. (9)

• Dispersion entropy [35,36]—DispEn focuses on the class sequence that maps the
elements of time series into positive integers. According to the mapping rule of
dispersion entropy, the same dispersion pattern results from multiple forms of sample
vectors. The time series {xi}N

i=1 is reduced with the standard distribution function to
normalized series ym

j = [yj, yj+τ , . . . , yj+(m−1)τ ]:

yi =
1

σ
√

2π

∫ xi

− inf
exp
−(s− µ)2

2σ2 ds (10)

where yi∈(0, 1). The phase space is restructured in c class number as zc
i = round(c ·

yi + 0.5) and zm,c
j = [zc

j , zc
j+τ , . . . , zc

j+(m−1)τ ]. Each zc
i corresponds to the dispersion

pattern υ. The frequency of υ can be deduced as:

p =
Number{j|j ≤ n− (m− 1)τ, υ}

n− (m− 1)τ
(11)

where Number{j|j ≤ n − (m − 1)τ, υ} is the number of dispersion patterns υ cor-
responding to zm,c

j . Dispersion entropy can be defined according to information
entropy theory:

DispEn(m, c, τ) = −
cm

∑
υ=1

p · log(p). (12)

• Cosine similarity entropy [37]—CoSiEn evaluates the angle between two embedding
vectors instead of the Chebyshev distance. The global probability of occurrence of
similar patterns using the local probability of occurrence of similar patterns is used to
estimate entropy. The angular distance for all pairwise embedding vectors is:

AngDistm
i,j =

1
π

cos−1

(
xm

i · xm
j

|xm
i | · |xm

j |

)
, i 6= j, (13)

where xm
i = [xi, xi+τ , . . . , xi+(m−1)τ ] is the embedding vector of {xi}N

i=1. When
AngDistm

i,j ≤ r, the number of similar patterns Pm
i (r) is obtained. The local and

global probabilities of occurrence are:

Bm
i (r) =

1
N −m− 1

Pm
i (r) and Bm(r) =

1
N −m

N−m

∑
i=1

Bm
i (r). (14)



Actuators 2023, 12, 228 5 of 31

Finally, cosine similarity entropy is defined by:

CoSiEn(m, τ, r, N) = −Bm(r) · log2Bm(r)− (1− Bm(r)) · log2(1− Bm(r)). (15)

• Bubble entropy [38,39]—BubbEn reduces the significance of the parameters employed
to obtain an estimated entropy. Based on permutation entropy, the BubbEn vectors are
ranked in the embedding space. The bubble sort algorithm is used for the ordering
procedure and counts the number of swaps performed for each vector. More coarse-
grained distributions are created and then compute the entropy of this distribution.
BubbEn reduces the dependence on input parameters (such as N and m) by counting
the number of sample swaps necessary to achieve the ordered subsequences instead
of counting order patterns. BubbEn embeds a given time series {xi}N

i=1 into an m
dimensional space, producing a series of vectors of size N − m + 1: X1, X2, . . . ,
XN , where Xi = (xi, xi+1, . . . , xi+m−1). The number of swaps required for sorting is
counted for each vector Xi. The probability pi of having i swaps is used to evaluate
Renyi entropy:

Bm
2 (x) = − log

m(m−1)
2

∑
i=0

p2
i . (16)

Increasing by one the embedding dimension m, the procedure is repeated to obtain a
new entropy value Bm+1

2 . Finally, BubbEntropy is obtained as for ApEntropy:

BubbEn(x, m, N) =
Bm+1

2 − Bm
2

log m+1
m−1

. (17)

• Fuzzy entropy [40,41]—FuzzEn employs the fuzzy membership functions as triangu-
lar, trapezoidal, bell-shaped, Z-shaped, Gaussian, constant-Gaussian and exponential
functions. FuzzEn has less dependence on N and uses the same step as in the SampEn
approach. Firstly, the zero-mean embedding vectors (centered using their own means)
are constructed qm

i = xm
i − µm

i , where:

xm
i = [xi, xi+τ , . . . , xi+(m−1)τ ] and µm

i =
1
m

m

∑
k=1

xm
i [k]. (18)

FuzzEn calculates the Sm
i (r, η) fuzzy similarity:

Sm
i (r, η) = e

(
ChebDistm

i,j

)η
/r (19)

obtained from a fuzzy membership function, where η is the order of the Gaussian
function. The Chebyshev distance is:

ChebDistm
i,j = maxk=1,m{q

m
i [k]− qm

j [k]}, i 6= j. (20)

As in the SampEn approach, the local and global probabilities of occurrence are
computed, obtaining a subsequent fuzzy entropy:

FuzzEn(m, τ, r, N) = ln
Bm(r)

Bm+1(r)
. (21)

• Increment entropy [42]: the IncrEn approach (similar to the permutation entropy)
encodes the time series in the form of symbol sequences. For a time series {xi}N

i=1, an
increment series v(i) = x(i + 1)− x(i), (1 ≤ i ≤ N) is constructed and then divided
into vectors of m length V(l) = [v(l), . . . , v(l + m− 1)], 1 ≤ l ≤ N−m. Each element
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in each vector is mapped to a word consisting of the sign sk = sgn(v(j)) and the size
qk, which is:

qk = min(q,
∣∣∣∣ v(i) · q
std(v(i))

∣∣∣∣. (22)

However, the sign indicates the direction of the volatility between the corresponding
neighboring elements in the original time series. The pattern vector w is a combination
of all corresponding sk and qk pairs. The relative frequency of each word wn is defined
as P(wn) = Q(wn)/(N −m), where Q(wn) is the total number of instances of the nth
word. Finally, IncrEn is defined as:

IncrEn = − 1
m− 1

(2q+1)m

∑
n=1

P(wn)logP(wn). (23)

• PhasEntropy [43] quantifies the distribution of the time series {xi} in a two-dimensional
phase space. First, the time-delayed time series Y[n] and X[n] are calculated as follows:

Y[n] = x[n + 2]− x[n + 1] (24)

X[n] = x[n + 1]− x[n] (25)

The second-order difference plot of x is constructed as a scatter plot of Y[n] against
X[n]. The slope angle of θ[n] of each point (X[n], Y[n]) is measured from the origin
(0, 0). The plot is split into k sectors serving as a coarse-graining parameter. For each
k, the sector slope angle Sθ [i] is the addition of the slope angle of points as follows:

Sθ [i] =
Ni

∑
j=1

θ[n] (26)

where i = 1, 2, . . . , k and Ni is the points number of the ith sector. The probability
distribution p(i) of the sector is:

p(i) =
Sθ

∑i
j=1 Sθ

(27)

The estimation of the Shannon entropy of the probability distribution p(i) leads to
PhasEn, computed as:

PhasEn = − 1
log(k)

k

∑
i=1

p(i) · logp(i). (28)

• Slope entropy [44]—SlopEn includes amplitude information in a symbolic represen-
tation of the input time series {xi}N

i=1. Thus, each subsequence of length m drawn
from {xi}N

i=1, can be transformed into another subsequence of length m− 1 with the
differences of xi − xi−1. In order to find the corresponding symbols, a threshold is
added to these differences. Then, SlopEn uses 0, 1 and 2 symbols with positive and
negative versions of the last two. Each symbol covers a range of slopes for the segment
joining two consecutive samples of the input data. The frequency of each pattern
found is mapped into a value using a Shannon entropy approach: it is applied with
the factor corresponding to the number of slope patterns found.
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• Entropy of entropy [45]—EnofEn: the time series {xi}N
i=1 is divided into consecutive

non-overlapping windows wτ
j of length τ: wτ

j =
{

x(j−1)τ+1, . . . , x(j−1)τ+τ

}
. The

probability pjk for the interval xi over wτ
j to occur in state k is:

pjk =
total number ofxioverwτ

j in statek

τ
. (29)

Shannon entropy is used now to characterize the system state inside each window.
Consequently:

yτ
j = ∑

k=1
pjk · logpjk. (30)

In the second step, the probability pl for the interval yj to occur in state l is:

pl =
total number of yτ

j in level l

N/τ
. (31)

Shannon entropy is used for the second time instead of the Sample entropy, to charac-
terize the degree of the state change.

Eno f En(τ) = −∑
l=1

pl · logpl . (32)

• Attention entropy [46]—AttEn; traditional entropy methods focus on the frequency
distribution of all the observations in a time-series, while attention entropy only uses
the key patterns. Instead of counting the frequency of all observations, it analyzes the
frequency distribution of the intervals between the key patterns in a time-series. The
last calculus is the Shannon entropy of intervals. The advantages of attention entropy
are that it does not need any parameter to tune, is robust to the time-series length and
requires only a linear time to compute.

• Multiscale entropy [5,47,48]—MSEn extends entropy to multiple time scales by cal-
culating the entropy values for each coarse-grained time series. The multiple time
scales are constructed from the original time series {x1, x2, . . . , xN} of length N by
averaging the data points within non-overlapping windows of increasing length. The
coarse-grained time series {y(s)} is:

y(s)
j =

1
τ

js

∑
i=(j−1)s+1

xi, 1 ≤ j ≤ [N/s]. (33)

MSEntropy is:

MSEn(m, r, s) = −ln
Am

s (r)
Bm

s (r)
(34)

where Am
s (r) and Bm

s (r) represent the probability that two sequences match for m + 1
points and m points, respectively, calculated from the coarse-grained time series at
the scale factor s. Multiscale entropy reduces the accuracy of entropy estimation and
is often undefined as the data length becomes shorter with an increase in scale s.
This is true in the case of SampEn, which is sensitive to parameters (data length N,
embedding dimension m, time lag τ, tolerance r) of short signals. To avoid this, many
variants of the traditional multiscale entropy method, such as composite multiscale
entropy [49,50] and refined multiscale entropy [51,52], are proposed. In the classical
multiscale entropy method, there is only one coarse-grained time series derived from
a non-overlapping coarse-grained procedure at scale s. However, s is the number of
coarse-grained time series in the composite multiscale entropy method. The sliding
windows of all coarse-grained procedures overlap. The mean of entropy values for all
coarse-grained time series is defined as the composite multiscale entropy value at the
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scale s to improve the multiscale entropy accuracy. At a scale factor s, the cMSEntropy
is defined as:

cMSEn(m, r, s) =
1
s

s

∑
k=1

(
−ln

nm+1
k,s

nm
k,s

)
, (35)

where nm
k,s is the total number of m-dimensional matched vector pairs and is calculated

from the kth coarse-grained time series at a scale factor s.
The refined multiscale entropy [51,52], based on the multiscale entropy approach,
applies different entropies as a function of time scale in order to perform a multiscale
irregularity assessment. rMSEn prevents the influence of the reduced variance on the
complexity evaluation and removes the fast temporal scales. Thus, an rMSEn method
improves the coarse-grained process.

3. System Description

Many industrial applications require precise regulation of the speed of the drive
motors. A brushless motor operates under various speed and load conditions and the
knowledge of some physical parameters (speed, torque, current) for proper speed regula-
tion is essential. Figure 1 shows a system implementation for brushless motor control as a
Permanent Magnet Synchronous Machine in Matlab/Simulink. A three-phase inverter is
used to feed the motor phases, thereby injecting currents in the coils to create the necessary
magnetic fields for three phases. The three-phase inverter is modeled as an universal bridge
in Matlab, with three arms and MOSFET/ Diode as power electronic devices (Ti and Bi,
i = a, b, c), controlled by pulse width modulation.

Figure 1. Power circuit structure of a brushless motor.

A simplified model of stator consists of three coils arranged in a, b and c directions. To
ensure the brushless motor movement, the a, b and c stator windings are powered according to
the rotor’s position. The rotor magnetic field position is detected by three Hall sensors (placed
every 120°) and provides the corresponding winding excitation through the commutation
logic circuit. Table 1 summarizes the main specifications of this brushless machine.

In permanent magnet synchronous motors, a physical phenomenon can appear: the
electromagnetic torque oscillations. These oscillations are named the Cogging effect and
are taken in consideration by [53,54]. The Cogging phenomenon is the interaction of
the magnetic field produced by the permanent magnet rotor with the stator teeth. This
interaction can be reduced by the physical modification of the rotor and stator internal
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structure. Another modality to reduce the phenomenon is the control technique introducing
this knowledge directly in the controller design, as in [53,54]. Cogging torque is a significant
problem for high-precision applications where position control is required. In order to
simplify the analysis, the previously mentioned Cogging phenomenon can be neglected.

The brushless motor design and the analysis of various control techniques are dis-
cussed in [55], where double closed loops (speed and current) are considered. The current
loop is used to improve the dynamic performance of the controlled system. Wu [56] used
only one speed control loop as [57]. Nga [58] assumed that the current control loop is ideal,
meaning that the transfer function of the closed current control loop is equal to 1. In the
cascaded control structure, the inner loops are designed to achieve fast response and outer
loop is designed to achieve optimum regulation and stability.

The inner loop also keeps the torque output below a safe limit. Moreover, the controller
should be developed in such a manner that it produces less torque ripple. Torque ripple is
developed from motor control through inefficient commutation strategies and internal gate
control schemes. Ideally, the torque ripple is constant due to the in-phase back electromotive
force and quasi-square wave stator current. In this paper, we consider the dynamics of the
current control loop much faster than that of the speed control loop in order to decouple
both dynamics. Satisfying this condition, the reference value of the inner loop, which
is the output of the outer controller can be considered nearly constant (a simple current
limit closed control loop). To achieve the regulation objective, we are interested by the
steady-state phase currents and not by their dynamic performances. This paper proposes a
simple control structure using only the speed control loop.

The outer loop helps to control the speed of the motor. The speed feedback comes
from the Hall sensor positions. The three-phase control technique for brushless motor uses
a proportional integral (PI) controller. The controller receives the error signal and generates
the control signal to regulate the speed response (referred to the target speed). The PI
controls the duty cycle of the PWM pulses to maintain the desired speed. The proportional
and integral gains of the controller are described in Table 1. The inner loop synchronizes the
inverter gate states of the brushless motor and stator winding excitation as in Table 2. With
this table, the commutation logic can easily control the commutation. The fault gate circuit
is implemented by gains destined to each MOSFET. The gain is zero for an open-circuit
fault, and one if not faulty.

Both single-switch and multi-switch open-circuit faults are classified and studied.

− One open-circuit fault may occur in the switch: Ta or Ba of the first phase a, Tb or Bb
of the second phase b, Tc or Bc of the phase c.

− Open-circuit phase fault can be detected in Ta and Ba, Tb and Bb or Tc and Bc.
− If two upper MOSs faults are detected, the two open-circuit faults can be Ta and Tb,

Ta and Tc or Tb and Tc. The two open-circuit faults, Ba and Bb, Ba and Bc or Bb and Bc,
are the symmetrical faults of the lower arms.

− The cases of two open-circuit faults on the upper and lower arms are Ta and Bb, Ta
and Bc, Tb and Ba, Tb and Bc, Tc and Ba and Tc and Bb.

− The brushless motor is still running even in three fault cases: Ta, Ba, Tb; Ta, Ba, Bb; Ta,
Ba, Tc; Ta, Ba, Bc; Tb, Bb, Ta; Tb, Bb, Ba; Tb, Bb, Tc; Tb, Bb, Bc; Tc, Bc, Ta; Tc, Bc, Ba; Tc, Bc,
Tb; Tc, Bc, Bb; Ta, Bb, Tc ; Ta, Bb, Bc; Ta, Tb, Bc; Ba, Bb, Tc; Ba, Tb, Bc; Ba, Tb, Tc.

− If the upper and lower arms are affected by multiple open-circuits, the open-circuit
faults can be: Ta, Ba, Tb, Bc; Ta, Ba, Bb, Tc; Ta, Tb, Bb, Bc; Ba, Tb, Bb, Tc; Ta, Bb, Tc, Bc; Ba,
Tb, Tc, Bc.

With no loss of generality, this work focuses on the open-circuit fault on the first switch
Ta of the first phase a. Two open switch faults are also considered: on the second switch Ba
of the first phase and on the first switch Tb of the second phase; then, two open-circuit faults
on the first phases Ta, Ba, followed by the case Tb, Tc. The cases of multiple open-circuits
are: Ba, Bb, Tc, then Ba, Tb, Bb and finally Ba, Tb, Bb, Tc.
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Table 1. Mean specifications of the brushless machine.

Specification Parameter Value

Brushless motor

Stator phase resistance 2.8 Ω
Stator phase inductance 8.5 · 10−3 H

Flux linkage 0.175
Inertia 0.8−3 kg/m2

Viscous damping 0.001 Nms
Pole pairs 4

Rotor flux position 90◦

Speed controller

Proportional 0.015
Integral 16

Min output −500
Max output 500

Table 2. Truth table of Hall effect sensors and gate state of the brushless motor.

Hall 1 Hall 2 Hall 3 Ta Ba Tb Bb Tc Bc

1 0 1 1 0 0 0 0 1
0 0 1 0 1 0 0 1 0
0 1 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 1
1 1 0 0 1 1 0 0 0
1 0 0 1 0 0 1 0 0

4. Datasets

Each inverter phase has two arms, i.e., the upper arm and the lower arm, whose
currents are denoted as ia, ib and ic. The three-phase currents of the brushless motor are
recorded as a one-dimensional time series.

Let us observe the current of phase a under normal operating conditions (i.e., without
any fault on the switches Ta, Ba, Tb, Bb, Tc or Bc of the inverter). Figure 2a shows this
time-series data, sampled with sampling time T = 5 µs and composed of N = 6000 samples.
The currents of phase b and c are similar to phase a’s current. Under healthy conditions,
Table 3 (first line) shows the zero average of the phase currents.

Then, an open-circuit fault occurs in phase a on the Ta switch. The output currents of
phases a, b and c corresponding to an open-circuit fault are shown in Figures 2b and 3a,b.
When an open-circuit fault occurs in phase a, the positive phase current gets distorted and
that phase average current becomes negative; it is positive for the two others. The DC side
of phase a output current can be observed in Table 3 (line 2). The current amplitude of
phases b and c change; their means change too. Similarly, when an open-circuit fault occurs
in phase a on switch Ba, the negative phase current gets distorted and the average current
of that phase becomes positive when it is negative for the two others.

Considering a phase fault in switches Ta and Ba, the phase current waveforms are
illustrated in Figures 4a,b and 5a. Consequently to these faults, the mean of the phase
current ia has a very low amplitude. The currents of the other phases recover the alternating
waveforms. Line 8 of Table 3 presents the current means.

For instance, when two upper open-circuit faults simultaneously occur in Ta and Tb,
the currents in the upper half-bridges are only able to flow in Tc. Figures 5b and 6a,b show
the abnormal distortions of the currents of phases a, b and c, which differ from normal
operating conditions. During this process, the open-circuit faults degrade the system’s
performances, but do not cause a shutdown.
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Figure 2. (a) Current ia during a no−fault case; (b) Current ia during open−circuit faults on Ta.
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Figure 3. (a) Current ib during open−circuit faults on Ta; (b) Current ic during open−circuit faults
on Ta.
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Figure 4. (a) Current ia during open−circuit faults on Ta and Ba; (b) Current ib during open−circuit
faults on Ta and Ba.
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Table 3. Current means of phases a, b and c with no−fault, one open−circuit fault, two open−circuit
faults, three open−circuit faults and four open−circuit faults on the switches for a couple = 3 Nm
and a reference speed = 3000 tr/min.

No. Open-Circuit Fault ia Current Mean ib Current Mean ic Current Mean xyzw

1. No fault 0.00033 −0.00001 −0.00034

2. Ta −1.4164 0.2167 1.1994 abac
3. Tb 1.2017 −1.4161 0.2144 abbc
4. Tc 0.2885 1.1260 −1.4145 acbc
5. Ba 1.4158 −0.2652 −1.1506 abac
6. Bb −1.1234 1.2713 −0.1479 abbc
7. Bc −0.2702 −1.1422 1.4125 acbc

8. Ta, Ba 0.0006 0.2708 −0.2714 abac
9. Tb, Bb -0.2761 0.0007 0.2754 abbc

10. Tc, Bc −0.173 0.1757 −0.0027 acbc

11. Ta, Tb -0.8987 -1.6516 2.5503 acbc
12. Tb, Tc 2.465 −0.8106 −1.6545 abac
13. Ta, Tc −1.6474 2.5753 −0.9278 abbc
14. Ba, Bb 0.9219 1.6456 −2.5675 acbc
15. Bb, Bc −2.4387 0.9258 1.5129 abac
16. Ba, Bc 1.6466 −2.5087 0.8621 abbc

17. Ta, Bb −1.7775 1.3916 0.3858 acbc
18. Ta, Bc −1.3516 −0.4263 1.7779 abbc
19. Tb, Ba 1.9577 −1.5853 −0.3724 acbc
20. Tb, Bc 0.5589 −1.8893 1.3304 abac
21. Tc, Ba 1.5627 0.5331 −2.0958 abbc
22. Tc, Bb −0.6330 2.0175 −1.3846 abac

23. Ta, Ba, Tb 0.0004 −2.6371 2.6367 acbc
24. Ta, Ba, Bb 0.0044 2.9920 −2.9964 acbc
25. Ta, Ba, Tc 0.0025 2.4690 −2.4715 abbc
26. Ta, Ba, Bc −0.0032 −2.8272 2.8304 abbc
27. Tb, Bb, Ta −2.9702 0.0025 2.9678 acbc
28. Tb, Bb, Ba 2.3538 0.0007 −2.3546 acbc
29. Tb, Bb, Tc 2.9561 −0.0022 −2.9538 abac
30. Tb, Bb, Bc −2.3683 −0.0019 2.3702 abac
31. Tc, Bc, Ta −2.5577 2.5564 0.0014 abbc
32. Tc, Bc, Ba 2.2754 −2.2745 −0.0009 abbc
33. Tc, Bc, Tb 2.6707 −2.6692 −0.0015 abac
34. Tc, Bc, Bb −2.9748 2.9760 −0.0012 abac

35. Ta, Bb, Tc −1.6465 2.4144 −0.7679 abac
36. Ta, Bb, Bc −2.5268 0.9357 1.5911 abac
37. Ta, Tb, Bc −0.7666 −1.6462 2.4128 abac
38. Ba, Bb, Tc 0.9229 1.6451 −2.5680 abac
39. Ba, Tb, Bc 1.6455 −2.5318 0.8864 abac
40. Ba, Tb, Tc 2.3986 −0.7597 −1.6389 abac

41. Ta, Ba, Tb, Bc 0.0016 −2.6055 2.6038 abac
42. Ta, Ba, Bb, Tc 0.0041 3.0170 −3.0211 abac
43. Ta, Tb, Bb, Bc −2.8549 0.0023 2.8526 abac
44. Ba, Tb, Bb, Tc 2.6972 −0.0011 −2.6961 abac
45. Ta, Bb, Tc, Bc −2.4336 2.4316 0.002 abac
46. Ba, Tb, Tc, Bc 2.3253 −2.3255 0.0001 abac
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Figure 5. (a) Current ic during open−circuit faults on Ta and Ba; (b) Current ia during open−circuit
faults on Ta and Tb.
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Figure 6. (a) Current ib during open−circuit faults on Ta and Tb; (b) Current ic during open−circuit
faults on Ta and Tb.

If two open-circuit faults occur in Ta and Bb, the phase a current remains positive and
the phase b current remains negative, as shown in Figure 7a,b . The other phase current (ic)
is also affected with unbalance during these fault conditions, as shown in Figure 8a.

Considering three faults in Ta, Ba, Tb, the phase a current is near zero and the phase b
current during the positive cycle is eliminated as shown in Figures 8b and 9a. Consequently,
the phase c current only remains during the positive cycles, as shown in Figure 9b.

Similarly, the effects of Ba, Tb and Bc faults on the phase currents are easy to find out.
When the lower switch Ba is faulty, the current ia flows only Ta, having a positive mean
(Figure 10a). With Tb fault, the positive cycle of phase current ib vanishes, as shown in
Figure 10b. Figure 11a shows ic: when the open-circuit fault of Bc occurs, current ic has a
positive waveform.

In the case of multiple open-circuit faults in several switches (Ba, Tb, Bb, Tc), phase
current waveforms are seriously affected as shown in Figures 11b and 12a,b: phase b current
is near zero according to phase fault, while phase a current and phase c current have a
positive mean and a negative mean, respectively.
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Figure 7. (a) Current ia during open−circuit faults on Ta and Bb; (b) Current ib during open−circuit
faults on Ta and Bb.
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Figure 8. (a) Current ic during open−circuit faults on Ta and Bb; (b) Current ia during open−circuit
faults on Ta, Ba and Tb.

The faults are divided into eight categories: no fault, 6 single-switch faults, 3 double-
switch faults in the same bridge arm, 3 two upper-switch faults and 3 two lower-switch
faults, 6 double faults from crossed half-bridges, 12 triple-switch faults with phase failure,
6 triple-switch faults in different bridge arms and, finally, 6 multiple faults with phase
failure. For a typical three-phase inverter, there are 45 possible open-circuit faults, as shown
in Table 3. For these cases, the mean of the phase currents are calculated and shown in
Table 3.
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Figure 9. (a) Current ib during open−circuit faults on Ta, Ba and Tb; (b) Current ic during
open−circuit faults on Ta, Ba and Tb.
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Figure 10. (a) Current ia during open−circuit faults on Ba, Tb and Bc; (b) Current ib during
open−circuit faults on Ba, Tb and Bc.
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Figure 11. (a) Current ic during open−circuit faults on Ba, Tb and Bc; (b) Current ia during
open−circuit faults on Ba, Tb, Bb and Tc.
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Figure 12. (a) Current ib during open−circuit faults on Ba, Tb, Bb and Tc; (b) Current ic during
open−circuit faults on Ba, Tb, Bb and Tc.

For the first fault case (Ta), the signs of the phase currents (ia, ib and ic) are negative,
positive and positive. Positive, negative and negative values are found, respectively, on
lines 15 (Bb and Bc faults), 17 (Ta and Bc faults) and 36 (Ta, Bb and Bc faults). If a phase is
faulty, for example phase b, the line 9 of Table 3 presents a negative, zero and positive mean
values. However, negative, zero and positive mean values can also be on the other fault
cases: line 27 (Tb, Bb and Ta faults), line 30 (Tb, Bb and Bc faults) and line 43 (Ta, Tb, Bb and
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Bc faults). For the last example with negative, negative and positive mean current values,
there are four fault cases: line 7 (Bc fault), line 11 (Ta and Tb faults), line 18 (Ta and Bc faults)
and line 37 (Ta, Tb and Bc faults).

5. Selection of Entropy Functions

In this part, entropy is employed to characterize the complexity of signals in the open-
circuit case, such as the healthy and faulty waveforms, as in Figures 2a–12b. Phase currents
are directly used as information. A fault is detected, based on the average current. When
the fault occurs in the inverter, the current waveforms vary. MSEn, cMSEn and rMSEn
algorithms can use SampEn, K2En, CondEn, DispEn, CoSiEn, BubbEn, ApEn, FuzzEn,
IncrEn, PhasEn, SlopEn and EnofEn approaches or AttEn, giving 52 entropy functions to
evaluate the signals complexity. For the ease of comparison, the entropy of phases a, b and c
when one open-circuit fault occurs on Ta, is divided by the entropy of phase a under healthy
conditions. Similarly, the entropy of phases a, b and c when multiple open-circuit faults
occur on Ti and Bi i = a, b, c, is divided by the entropy of phase a under healthy conditions.

5.1. One Open-Circuit Fault on Ta on the Phase a

This study investigates the efficiency of different entropies with several parameters,
such as data length N = 6000 samples, embedding dimension m = 2, time delay τ = 1,
tolerance r = 0.2 and scale s = 3. The entropies of the 6000 samples are shown in Figure 13.
The BubbEn entropy of phase a samples (represented in red), where the open-circuit
fault occurs, has larger value than the entropy of phases b and c (represented in black).
Incontestably, they are clearly separated. Even the entropy of phase a is lower than the
entropy of phases b and c for SampEn, K2En, DispEn, ApEn, SlopEn and AttEn. The
separation of the three phases a, b and c is shown in Figure 13: phases b and c have an
entropy very close to each other, and different from that of phase a. Each of these entropies
is able to detect the faulty phase. Figure 13 represents the larger difference between the
entropy of phase a; the entropy of phases b and c is given by BubbEn.
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Figure 13. Entropy evaluation using SampEn (mean of four sample entropies), K2En (mean of
four Kolmokov entropies), DispEn (mean of four dispersion entropies), rMSBubbEn, ApEn, SlopEn
(mean of four slope entropies) and rMSAttEn for one open−circuit fault on Ta: phase a entropy with
an open−circuit fault in red and phases b and c entropies in black.

Many values represented in Figure 13 are an average of two, three or four entropies.
Relevant values of SampEn, MSSampEn, cMSSampEn and rMSSampEn are averaged to
give a mean entropy of phases a, b and c. In the same way, for slope entropy, the same
entropy value is obtained with SlopEn, MSSlopEn, cMSSlopEn and rMSSlopEn functions.
With dispersion entropy also, for DispEn, MSDispEn, cMSDispEn and rMSDispEn, the
same value is obtained. K2En, MSK2En, cMSK2En and rMSK2En give similar entropy val-
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ues. For bubble entropy, a pertinent value is obtained only with rMSBubbEn: unfortunately,
BubbEn, MSBubbEn and cMSBubbEn do not distinguish the open-circuit fault on phase a
from phases b and c. Figure 13 presents the approximation entropy using only ApEn. The
other values of MSApEn, cMSApEn and rMSApEn do not distinguish the open-circuit
fault on phase a. A relevant value of attention entropy is obtained with rMSAttEn. For
the other entropies, such as CondEn, CoSiEn, FuzzEn, IncrEn, PhasEn and EnofEn, the
distance between faulty phase a and phases b or c is nearly zero: the open-circuit fault is
not detected.

The optimal entropy should be searched from all possible combinations, according to
the following rules:

max
(

52
distance

j=1

∣∣∣entropyphase−a − entropyphase−b

∣∣∣) (36)

and

max
(

52
distance

j=1

∣∣∣entropyphase−a − entropyphase−c

∣∣∣). (37)

The objective is to maximise the distance between the phase a entropy, where the
open-circuit fault occurs and the entropy of phases b and c. For a typical brushless motor,
52 possible open-circuit faults can be diagnosed using Equations (36) and (37) according to
the principle shown in Table 4. Normally, the entropy is able to detect the faulty phase: it is
denoted with ‘3’. Otherwise, if the open-circuit fault is not detected (the distance between
faulty phase a and phases b or c is nearly zero), it is pointed out by ‘8’. The neutral mark ‘-’
is employed if the distance between phase a and phases b or c is not zero but not enough to
detect the open-circuit fault. However, the distance is only an approximate measure on the
characteristic plot.

Table 4. Several entropies’ fault-detection capability with one open-circuit fault, two open-circuit
faults, three open-circuit faults and four open-circuit switches faults for a couple = 3 Nm and a
reference speed = 3000 tr/min.

Entropies Ta BaTb TaBa TbTc BaBbTc BaTbBb BaTbBbTc

SampEn 3 8 3 3 8 8 8

MSSampEn 3 8 3 8 8 8 8

cMSSampEn 3 8 3 8 8 8 8

rMSSampEn 3 3 3 8 8 8 8

K2En 3 8 3 3 8 8 8

MSK2En 3 8 3 3 8 8 8

cMSK2En 3 8 3 3 8 8 8

rMSK2En 3 8 3 3 8 8 8

CondEn - 8 - 3 - 8 3

MSCondEn 8 8 - 8 - 8 3

cMSCondEn 8 8 - 8 - 8 3

rMSCondEn 8 8 - 8 - 8 -

DispEn 3 8 - 3 8 8 8

MSDispEn 3 8 - 3 8 8 8

cMSDispEn 3 8 - 3 8 8 8

rMSDispEn 3 8 - 3 8 8 8

CoSiEn - 3 8 8 8 8 8

MSCoSiEn - - 8 8 8 8 8

cMSCoSiEn - 3 8 8 8 8 8

rMSCoSiEn - 3 8 8 8 8 8

BubbEn 8 8 - 8 3 8 8

MSBubbEn 8 8 - 8 3 8 8

cMSBubbEn 8 8 - 8 3 8 8

rMSBubbEn 3 - 3 3 - 8 8
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Table 4. Cont.

Entropies Ta BaTb TaBa TbTc BaBbTc BaTbBb BaTbBbTc

ApEn 3 8 - - 8 8 8

MSApEn 8 8 3 8 8 8 8

cMSApEn 8 8 3 8 8 8 8

rMSApEn 8 8 3 8 8 8 8

FuzzEn - 3 3 8 8 8 8

MSFuzzEn 8 3 3 8 8 8 8

cMSFuzzEn 8 3 3 8 8 8 8

rMSFuzzEn 8 3 3 8 8 8 8

IncrEn 8 8 8 8 3 3 3

MSIncrEn 8 8 8 8 3 3 3

cMSIncrEn 8 8 8 8 3 3 3

rMSIncrEn - 8 8 8 - 8 -

PhasEn 8 - 8 - 8 3 8

MSPhasEn 8 - 8 - 8 3 8

cMSPhasEn 8 - 8 - 8 3 8

rMSPhasEn 8 - 8 - 8 8 8

SlopEn 3 3 3 8 8 8 8

MSSlopEn 3 3 3 8 8 8 8

cMSSlopEn 3 3 3 8 8 8 8

rMSSlopEn 3 3 3 8 8 8 8

EnofEn - 3 8 8 8 8 8

MSEnEn - 3 8 8 8 8 8

cMSEnEn - 3 8 8 8 8 8

rMSEn 8 3 8 8 8 8 8

AttEn 8 8 8 8 8 8 8

MSAttEn 8 8 8 8 8 8 8

cMSAttEn 8 8 8 8 8 8 8

rMSAttEn 3 - 8 - 8 8 8

5.2. Two Open-Circuit Faults on Ba—Phase a and on Tb—Phase b

The embedding dimension m, data length N, time delay τ and the choice of tolerance r
remain unchanged. Figure 14 shows the performance of several entropies with two open-
circuit faults: on Ba—phase a and on Tb—phase b. The entropies of faulty phases a and b
are in red, the entropy of phase c is in black.
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Figure 14. rMSSampEn, CosiEn, FuzzEn, EnofEn, ApEn, rMSSlopEn and rMSAttEn for one
open−circuit fault on Ba and Tb: entropy of faulty phases a and b in red and phase c in black.
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The optimal entropy should be searched from all possible combinations, according to
the following rules:

max
(

52
distance

j=1

∣∣∣entropyphase−a − entropyphase−c

∣∣∣) (38)

and

max
(

52
distance

j=1

∣∣∣entropyphase−b − entropyphase−c

∣∣∣). (39)

The objective is to maximise the distance between the entropy of phase a and this
of phase c, as distance between the entropy of phase b and phase c. Relevant results
are obtained with rMSSampEn, CoSiEn, FuzzEn, EnofEn and rMSAttEn. For following
explanations, SlopEn and rMSBubbEn are also represented even if they do not distinguish
as well the open-circuits on phases a and b.

5.3. Two Open-Circuit Faults on Ta and on Ba—Phase a

The entropy parameters are unchanged. We investigate a phase fault: on Ta and on
Ba—phase a. Figure 15 shows the investigation of different entropies: the phase a entropy
with open-circuit is in red, the entropies of phases b and c are in black. The largest distance
between phase a entropy and those of phases b and c are obtained with SampEn, ApEn
and rMSBubbEn. The entropies are selected using Equations (36) and (37). The values of
SampEn, ApEn are for the particular form of the phase current ia. As shown in Figure 4a,
this current has a regular shape with a very small amplitude.
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Figure 15. SampEn, K2En, ApEn, FuzzEn and SlopEn for two open−circuit faults on Ta and Ba:
phase a entropy with open−circuit fault in red and phases b and c entropies in black.

5.4. Two Open-Circuit Faults on Tb—Phase b and on Tc—Phase c

The two open-circuit faults considered in this subsection are on Tb—phase b and on
Tc—phase c. Figure 16 shows the different entropies: the entropy of phase a is in black,
phases b and c entropies are in red. The biggest distance between the phase a entropy and
those of phases b and c is obtained with rMSBubbEn. The entropies are selected using
Equations (36) and (37). For the following explanations, SlopEn is also represented even if
it does not distinguish as well the open-circuits on phases b and c compared with phase a.
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Figure 16. SampEn, K2En, CondEn, DispEn, rMSBubbEn and SlopEn for two open−circuit faults on
Tb and Tc: phase a entropy in black and phases b and c entropies with open−circuits in red.

5.5. Three Open-Circuit Faults on Ba—Phase a, Tb—Phase b and on Tc—Phase c

Three open-circuit faults occur on Ba—phase a, on Tb—phase b and Tc—phase c.
Figure 17 shows the entropies of phases a, b and c with open-circuit faults, in red. The
optimal entropy should be searched from all possible combinations, according to the
following rules:

min
(

52
distance

j=1

∣∣∣entropyphase−a − entropyphase−c

∣∣∣) (40)

and

min
(

52
distance

j=1

∣∣∣entropyphase−b − entropyphase−c

∣∣∣). (41)
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Figure 17. BubbEn and IncrEn with three open−circuit faults on Ba, Tb and Tc: phase a, b and c
entropies in red.

According to Equations (40) and (41), Figure 17 presents BubbEn and IncrEn. The
entropies of phases a, b and c are very closed.
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5.6. Three Open-Circuit Faults on Ba—Phase a, Tb and Bb—Phase b

Three open-circuit faults occur on Ba—phase a, on Tb and Bb—phase b. As we can see
in Figure 18, the entropies of phases a and b with open-circuit faults is represented in red,
and the entropy of phase c is in black. The optimal entropy should be searched from all
possible combinations, according to Equations (38) and (39). This time, only PhasEn is able
to detect the phases where the open-circuit faults occur. For example, this is not the case
with SlopEn. Phase a entropy is too close to phase c entropy.
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Figure 18. PhasEn and SlopEn for three open−circuit faults on Ba, Tb and Bb: phases a and b entropies
with open−circuit faults in red and entropy of phase c in black.

5.7. Four Open-Circuit Faults on Ba—Phase a, Tb and Bb—Phase b and Tc—Phase c

Four open-circuit faults occur on Ba—phase a, on Tb and Bb—phase b and Tc—phase c.
Figure 19 shows the entropies of phases a, b and c with open-circuit faults, in red according
to Equations (40) and (41). Once again, IncrEn presents very good results.
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Figure 19. CondEn, IncrEn and PhaseEn for four open−circuit faults on Ba, Tb, Bb and Tc: entropies
of phase a, b and c with open−circuit faults in red.

6. Optimization of Parameters L, m, r, τ and s

The parameters, data length N, embedding dimension m, time lag τ and tolerance
r, are discussed in the next subsections. The calculated values of entropy depend on the
parameters as embedded dimension m and tolerance r. The scale s may also affect the
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performance of our fault detection method. Finding an optimum set is a major challenge.
The parameter optimization is carried out by the maximization of the distance:

max
(

52
distance

j=1

∣∣∣entropy(L, m, r, τ, s)phase−x − entropy(L, m, r, τ, s)phase−y

∣∣∣) (42)

and

max
(

52
distance

j=1

∣∣∣entropy(L, m, r, τ, s)phase−z − entropy(L, m, r, τ, s)phase−w

∣∣∣). (43)

in the cases of single or two open-circuit faults and three open-circuit faults (two faults on
the same phase). For three and four open-circuit faults on the three phases, the parameter
optimization is carried out by the minimization of the distance:

min
(

52
distance

j=1

∣∣∣entropy(L, m, r, τ, s)phase−x − entropy(L, m, r, τ, s)phase−y

∣∣∣) (44)

and

min
(

52
distance

j=1

∣∣∣entropy(L, m, r, τ, s)phase−z − entropy(L, m, r, τ, s)phase−w

∣∣∣). (45)

All x, y, z and w cases are presented in Table 3. There are five main parameters
for the entropy methods, including length L, embedding dimension m, threshold r, time
delay τ and scale s. The optimal combination of L, m, r, τ and s should be searched.
In order to check the incidence of the parameters variation on the entropy, we present
DispEn rMSBubbEn and rMSAttnEn with one open-circuit on Ta (Figure 13). The values
of CoSiEn and Eno f En are evaluated if two open-circuits occur on Ba and Tb (Figure 14).
rMSSampEn K2En, MSApEn, FuzzEn and SlopEn are studied considering the phase fault
as in Figure 15. Then, we examine CondEn with two other open-circuit faults: Tb and Tc,
as in Figure 14. If there are three open-circuit faults on Ba, Tb and Tc, IncrEn is evaluated
(Figure 17). The last entropy, PhasEn, is considered with three open-circuit fauts Ba, Tb and
Bb, as in Figure 18.

6.1. Varied Data Length (L)

Figure 20 show the analysis for the data length L. The parameter we used are: m = 2,
τ = 1, r = 0.2 and s = 2.

When changing from 1000 samples to 6000 samples, the data lengths are: L1 = 1000 points;
then, the length increases up to L2 = 2000 samples, approximately two periods of the signal,
followed by L3 = 3000 points; L4 = 4000 represents four signal periods; then, 5000 points are
saved of L5 data; and, finally, L6 = 6000 samples, i.e., six signal periods, as in Figures 2b–12b.

rMSSampEn, K2En, CondEn, DispEn, CoSiEn, rMSBubbEn, MSApEn, FuzzEn,
PhasEn, SlopEn, EnofEn and rMSAttEn are performed with a specifier open-circuit fault.
Then, the distance between the healthy phase (represented by a red curve) and the open-
circuit phases (represented by a black curve) is maximal, except for one case: the distance
between the three red curves is minimal for IncrEn, performed with three open-circuit
faults Ba, Tb and Tc.

Figure 20a shows rMSSampEn as function of the data length. In Figure 20a, rMSSampEn,
increases for L1–L2 in the sample range (1000, 2000), decreases for [L2-L3] in the sample
range (2000, 3000) and is followed by an increase in the range L3–L4 in the sample range
(3000, 4000). Then, it slowly decreases to a constant value for L6. K2En rMSBubbEn are
unchanged as L increases, keeping a constant entropy value as in Figure 20b,f. In Figure 20c,
CondEn increases, decreases and increases slowly, keeping a constant distance between the
entropies curves. DispEn of the healthy phase gradually decreases when the data length
increases, as shown in Figure 20d. For DispEn, it is appropriate to choose L1 because the
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entropy values are length independent. To ensure a large difference between phases a and
b entropies and phase c entropy (Figure 20e), it is appropriate to choose L6 for CoSiEn.
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Figure 20. Entropies computed with (a) rMSSampEn, (b) K2En, (c) CondEn, (d) DispEn, (e) CoSiEn,
(f) rMSBubbEn, (g) MSApEn, (h) FuzzEn, (i) IncrEn, (j) PhasEn, (k) SlopEn, (l) EnofEn and (m)
rMSAttEn for the data length L: healthy phase represented by a black curve and the open−circuit
phase represented by a red curve.
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In Figure 20g, MSApEn increases slowly for [L1–L6] in the sample range (1000, 6000).
With regards to the entropy shape, a large length of data ensures a maximum distance
between the healthy and faulty phases. Figure 20h,k show FuzzEn and SlopEn. After an
insignificant variation, the entropies are nearly constant when L is in the range [L5, L6].
A suitable value of data length is L3 for IncrEn: the distance between the three entropies
is minimal. A maximal distance between the healthy phase (red curve) and the open-
circuit phases (black curve) of PhasEn is for L6, as in Figure 20j. The results of EnofEn and
rMSAttEn are shown in Figure 20l,m. Even if these entropies vary (increase or decrease),
the distance between the healthy and faulty phases is constant. It seems better to choose L5
as the data length.

6.2. Varied Embedding Dimension (m)

Let us change m from 2 to 8 to study the effect of m on these approaches (rMSSampEn,
K2En, CondEn, DispEn, CoSiEn, rMSBubbEn, MSApEn, FuzzEn, IncrEn and SlopEn) as
in Figures 21a–j. The functions PhasEn, EnofEn and AttEn do not have an embedding
dimension m.

Results of SampEn, rMSBubbEn and ApEn are shown in Figure 21a,f,g. These en-
tropies decrease faster, ensuring a large difference between phase a entropy and phases b
and c entropies for m = 2. K2En, CondEn, FuzzEn and CoSiEn are constant when m is in
the range [2, 8], as in Figure 21b,c,e,h. In Figure 21d, DispEn gradually decreases when the
embedding dimension m increases, keeping a constant difference between the entropy of
phase a and the entropies of phases b and c, as in Figure 21d.

Figure 21i shows the entropies IncrEn of phases a, b and c (in red), which are very close
to each other. m = 2 is chosen in order to minimise the distance between these entropies. For
the last entropy, SlopEn (Figure 21j): the entropies of the healthy phases b and c decrease
when m increases; the entropy of the open-circuit phase a increases when m increases. It is
appropriate to choose m = 2 for SlopEn.

6.3. Varied Time Lag (τ)

Here, we deepen the influence of another indicator, such as time lag τ on some
entropies. Time lag τ varies from 1 to 7. We already illustrated the influence of data length
L and embedding dimension m on the entropy; let us now examine the performance of
rMSSampEn, K2En, CondEn, DispEn, CoSiEn, rMSBubbEn, MSApEn, FuzzEn, IncrEn,
PhasEn, SlopEn and EnofEn with the variation of time lag τ. The function AttnEn does
not require a time lag τ. The data length L, embedding dimension m, scale s and tolerance
r were fixed at N = 6000, m = 2, s = 2 and r = 0.2 in the following analysis.

Figure 22a,f,g, show the impact of different values of τ on rMSSampEn, rMSBubbEn
and rMSApEn: a steep decrease of these entropies of phase a and a nearly constant value
for phases b and c can be observed when τ increases. The major difference between the
curves is for a smaller τ = 1. We find that the difference between the CondEn, DispEn,
CoSiEn, PhasEn and EnofEn of healthy phase and open-circuit phase is nearly constant,
suggesting correlation, as plotted in Figure 22c–e,j,l.

In Figure 22b the shape of rMSK2En in function of τ, decreases at the beginning of the
interval τ = [1, 2], followed by a slow increase for τ = [2, 4], ending with an abrupt increase
of open-circuit phase entropy. Figure suggests that τ = 7 suits well for the calculation of
rMSK2En. FuzzEn entropy of phases a and b is shown in Figure 22h: only larger time-lag
entropies have a relevant significance. For τ equals to 1, FuzzEn is 1.1, and exceeds 1.7 for
τ = 7.
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Figure 21. Entropies computed with (a) rMSSampEn, (b) K2En, (c) CondEn, (d) DispEn, (e) CoSiEn,
(f) rMSBubbEn, (g) rMSApEn, (h) FuzzEn, (i) IncrEn and (j) SlopEn for the embedding dimension
m: healthy phase represented by a black curve and the open−circuit phase represented by a red
curve.

Figure 22i shows the entropies IncrEn of phases a, b and c, which are very close to each
other. τ = 1 is chosen in order to minimize the distance between these entropies. SlopEn
presents a peak for τ = 3: the difference between FuzzEn of phase a and of phase b is then
maximal. However, as the time-lag increases, the difference between black and red curves
become smaller. Only a lower time-lag (τ = 3) entropy has a relevant significance, as in
Figure 22k.
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Figure 22. Entropies computed with (a) rMSSampEn, (b) rMSK2En, (c) CondEn, (d) DispEn, (e)
CoSiEn, (f) rMSBubbEn, (g) rMSApEn, (h) FuzzEn, (i) IncrEn, (j) PhasEn, (k) SlopEn and (l) EnofEn
for the time lag τ: healthy phase represented by a black curve and the open−circuit phase represented
by a red curve.

6.4. Varied Tolerance (r)

The analysis of the tolerance r, changing from 0.2 to 0.7, was only performed on
rMSSampEn, rMSK2En, CoSiEn, rMSApEn and FuzzEn. The data length, time lag and
embedding dimension are N = 6000, τ = 2, s = 2 and m = 2.

Figure 23a,c present the impact of several r values on, respectively, rMSSampEn and
rMSApEn. The increase of r results in a monotone increase of rMSSampEn and rMSApEn
of faulty phase a (Figure 23a) except for the constant values for r = [0.4, 0.5]. rMSSampEn
and rMSApEn both of phase b, with no-fault, are nearly constant. The largest difference
between the two curves is for a large r. The figures suggest that r = 0.7 is suitable for the
calculation of rMSSampEn and rMSApEn values. Figure 23b shows rMSK2En: the entropy
of the healthy phases b and c increases when the embedding dimension m increases; the
entropy of the open-circuit phase a decreases when the embedding dimension m increases.
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It is appropriate to choose r = 0.2 for rMSK2En. For the last entropy, the difference between
phases a and bFuzzEn is nearly constant, as plotted in Figure 23d. The entropy FuzzEn is
valid for any value of r.
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Figure 23. Entropies computed with (a) rMSSampEn, (b) rMSK2En, (c) rMSApEn and (d) FuzzEn
for the tolerance r: healthy phase represented by a black curve and the open−circuit phase represented
by a red curve.

6.5. Varied Scale (s)

Figure 24a–l illustrate the performance of all entropies: rMSSampEn, K2En, CondEn,
DispEn, CoSiEn, rMSBubbEn, rMSApEn, FuzzEn, IncrEn, PhasEn, SlopEn, EnofEn and
rMSAttEn. To investigate the effects of scale s on these entropies, we used: L = 6000 points,
m = 2, τ = 1 and r = 0.2.

Figure 24a shows rMSSampEn as a functions of scale. The entropy of the open-circuit
phase a decreases for s = [1, 2], is nearly constant in the range s = [3, 7], followed by an
increase in the range of s = [7, 9], ending with a decrease for s = [9, 10]. In the meantime,
the entropy of the healthy phase is nearly constant for all ranges of s. The scale s = 2 is
appropriate. As for rMSSampEn, rMSK2En is nearly constant for a healthy case. After a
very slow variation, rMSK2En of the open-circuit phase a increases in the range s = [5, 9],
decreasing at the end for the last scale. To ensure a large difference between phase a entropy
and phases b and c entropies, it is appropriate to choose s = 9 for rMSK2En, as in Figure 24b.

In Figure 24c–e,h,j, CondEn, DispEn, CoSiEn, FuzzEn and PhasEn are represented.
The differences between the healty phase entropy and the open-circuit phase entropyare
nearly constant over the range s = [2, 10].

Results of rMSBubbEn are shown in Figure 24f. The entropy of phase a decreases
gradually with an increase of s. Meanwhile, entropy of phase b undergoes slight variations.
The first scale s = 2 gives the largest distance between the entropies of phases a and b. The
same result is obtained for rMSApEn, as in Figure 24g. At the end of the s interval, the
two curves merge and the open-circuit fault on phase a cannot be detected any more. Only
a lower scale (s = 2) entropy has relevant significance, as in Figure 24g. Scale s = 4 or 5
gives the smallest distance between the faulty phases a, b and c for IncrEn, as shown in
Figure 24i.
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Figure 24. Entropies computed with (a) rMSSampEn, (b) rMSK2En, (c) MSCondEn, (d) MSDispEn,
(e) cMSCoSiEn, (f) rMSBubbEn, (g) rMSApEn, (h) MSFuzzEn, (i) MSIncrEn, (j) MSPhasEn,
(k) cMSSlopEn, (l) MSEnofEn and (m) rMSAttEn for the scale s: healthy phase represented by
a black curve and the open−circuit phase represented by a red curve.

cMSSlopEn entropy of phases a and b is shown in Figure 24k: only lower scale
entropies show a relevant significance. For s = 2, cMSSlopEn is 1, exceeding 2.4 for
s = 4. Furthermore, the scale analysis reveals additional entropy information not previously
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observed at scale s = 2. cMSSlopEn clearly presents two peaks for s = 4 and 6: the difference
between phase a and phase b cMSSlopEn is maximal for s = 4. However, the difference
between the black and red curves becomes smaller as the scale increases.

The results of MSEnofEn are shown in Figure 24l. Even if these entropies vary (increase
or decrease), the distance between the healty and faulty phases is constant. It seems better
to choose the scale s = 2.

Figure 24m shows that rMSAttEn with repeated up and down, where phase a entropy
and phases b and c entropies are interlaced. As long as the two curves (phase a entropy
and other phases entropy) merge, the phase a open-circuit fault cannot be detected. Only
lower scale (s = 2) and middle scale (s = 5, 6 or 7) entropies have relevant significance.

6.6. New Setting of Parameters

Parameters are now set to: N = 2000, m = 2, τ = 1, r = 0.7, s = 2 for rMSSampEn;
N = 2000, m = 2, τ = 7, r = 0.2, s = 9 for K2En; N = 2000, m = 2, τ = 1, s = 2 for CondEn;
N = 5000, m = 8, τ = 7, s = 9 for DispEn; N = 5000, m = 2, τ = 1, r = 0.2, s = 10 for CoSiEn;
N = 2000, m = 2, τ = 1, s = 2 for rMSBubbEn; N = 6000, m = 2, τ = 1, r = 0.7, s = 2 for
rMSApEn; N = 2000, m = 2, τ = 7, r = 0.2, s = 2 for FuzzEn; N = 3000, m = 2, τ = 1, s = 2
for IncrEn; N = 2000, τ = 1 and s = 2 for PhasEn; N = 2000, m = 2, τ = 3, s = 4 for SlopEn;
N = 5000, τ = 1 and s = 4 for Eno f En; N = 3000 and s = 6 for rMSAttnEn. These new settings
of parameters are able to increase the distance between faulty and non-faulty phases or
to decrease this distance in the IncrEn case. Some entropy functions will be applied to
distinguish the healthy state and an open-circuit faulty state and to fault classification,
considering the new setting parameters.

7. Conclusions

In this paper, we provide a systematic overview of many known entropy measures,
highlighting their applicability to inverter fault detection. Several usual entropies (sample
entropy, Kolmogorov entropy, dispersion entropy, cosine entropy, bubble entropy, approxi-
mation entropy, fuzzy entropy, incremental entropy, phase entropy, slope entropy, entropy
of entropy, attention entropy) and multiscale entropies (and also refined multiscale entropy,
composite multiscale entropy) are proposed to quantify the complexity of the brushless
motor currents. Their roles in fault detection are summarized into the entropy distance
between a healthy phase and an open-circuit faulty phase. Moreover, this paper reveals the
great ability of some entropies to distinguish between a healthy and an open-circuit faulty
phase. Finally, the simulation results show that these entropies are able to detect and locate
the arms of the bridge with one, two, three or even four open-circuit faults.
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