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Abstract: Based on the grey wolf optimizer (GWO) and differential evolution (DE), a hybridization
algorithm (H-GWO) is proposed to avoid the local optimum, improve the diversity of the popula-
tion, and compromise the exploration and exploitation appropriately. The mutation and crossover
principles of the DE algorithm are introduced into the GWO algorithm, and the opposition-based op-
timization learning technology is combined to update the GWO population to increase the population
diversity. The algorithm is then benchmarked against nine typical test functions and compared with
other state-of-the-art meta-heuristic algorithms such as particle swarm optimization (PSO), GWO,
and DE. The results show that the proposed H-GWO algorithm can provide very competitive results.
On this basis, the forgetting factor recursive least squares (FFRLS) method and the proposed H-GWO
algorithm are combined to establish a parameter identification algorithm to identify parameters of the
helical hydraulic rotary actuator (HHRA) with nonlinearity and uncertainty questions. In addition,
the proposed method is verified by practical identification experiments. After comparison with the
least squares (LS), recursive least squares (RLS), FFRLS, PSO, and GWO results, it can be concluded
that the proposed method (H-GWO) has higher identification accuracy.

Keywords: parameter identification; grey wolf optimizer; helical hydraulic rotary actuators;
opposition-based optimization

1. Introduction

Hydraulic servo systems (HSSs) play a vital role in the industrial sector due to their
ability to generate high torque and force at high speeds. In different scenarios, hydraulic ac-
tuators can exhibit different forms [1], such as linear and rotary. Thereof, a helical hydraulic
rotary actuator (HHRA) is used to convert hydraulic power into rotary mechanical power.
With a set of helical gears and a cylinder, it converts a linear output into an oscillatory
or rotary output [2]. Therefore, HHRA has been widely applied in various engineering
equipment [3–5], including aircraft, tunnel boring machines, robotics, and agricultural,
construction, and mining machinery.

According to control theory [6], a better system control requires a more accurate model,
which is also a prerequisite for improving the robustness control of a complex system. As
a nonlinear element, HHRA considers the dead zone in the flow zone, the static friction
of the fluid, compressibility and leakage, and the complex flow pressure characteristics of
the control valve [7,8], exhibiting high nonlinearity and large uncertainty [9,10]. Therefore,
establishing an accurate hydraulic mathematical model faces great challenges.

Swarm intelligence (SI) algorithms have been prevalent the past few decades, including
genetic algorithm (GA) [11], particle swarm optimization (PSO) [12], differential evolution
(DE) [13], and evolutionary programming (EP) [14]. They can achieve relatively satisfactory
results for complex optimizations but tend to fall into a local optimum and stagnate,
especially for multi-objective value problems [15]. Differential evolution (DE), a popular
evolutionary algorithm inspired by Darwin’s evolution theory, has been widely studied to
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solve optimization and engineering applications in different fields since it was introduced
by Storn in 1997 [16]. The algorithm framework of basic DE includes four stages, namely,
initialization, mutation, crossover, and selection. Many scholars have proposed different
improvement strategies for the four stages [17–19]. For a faster convergence rate and better
robustness against premature convergence, a chaotically initialized DE (CIDE) algorithm
was proposed [17]. In [19], a ranking-based DE mutation operator was presented. The
parents in the mutation operators are randomly selected based on their current population
rankings. The famous No Free Lunch (NFL) theorem has proved that no one algorithm
is suitable for all optimizations [20]. Therefore, the algorithms have to be optimized
continuously, and some new algorithms are constantly proposed, such as ant colony
algorithm (ACA) [21], shark algorithm (SA) [22], artificial bee colony (ABC) [23], and
grey wolf algorithm (GWO) [24]. GWO, a meta-heuristics swarm intelligence method,
was proposed by Mirjalili [24], and it was inspired by prey activity of the grey wolf.
Compared with other meta-heuristic algorithms, GWO is advantaged due to a strong
convergence performance, few parameters, and easy implementation [25–28]. In [25],
evolutionary population dynamics (EPD) were used to improve the performance of the
GWO algorithm in terms of exploration, local optimum avoidance, exploitation, local
search, and convergence speed. In [28], a new well-organized solid oxide fuel cell (SOFC)
stack model identification method was proposed based on GWO. In recent years, it has
been extensively favored by researchers and widely tailored for various optimizations,
such as parameter optimization [29], image classification [30], and controller design [31].
However, the global search capability of GWO requires an appropriate trade-off between
exploration and exploitation. Targeting at this, many improved algorithms [32,33] such as
multi-algorithm fusion and fused neural network have been developed and achieved good
experimental results.

Inspired by above discussion, it is found that the meta-heuristic algorithms, as a
new technique for system identification, provide satisfactory results. However, it is well
known that no meta-heuristic algorithm can optimally solve all kinds of optimizations [20].
Therefore, a newly developed meta-heuristic technique is proposed in this study to improve
the identification efficiency of HHRA model as much as possible. The main contributions
of this study are as follows:

• A hybridization optimization algorithm is provided to optimize the system of complex
nonlinear function.

• Using the hybridization optimization algorithm, an improved version of parameter
identification algorithm for HHRA is presented.

The next sections of this paper are briefly organized as follows. In Section 2, a HHRA is
explained in detail, and an identification mathematical model is provided. In Section 3, the
proposed hybridization optimization algorithm is explained, and the H-GWO algorithm
exhibits a superior performance demonstrated by the benchmark results. The method for
optimizing the parameter identification of the HHRA is defined and details for validation
of the experiment are provided. Finally, this study concludes in Section 5.

2. Helical Hydraulic Rotary Actuator
2.1. Problem Formulation

HHRA is referred to as a swing hydraulic cylinder. Figure 1 exhibits a diagram of the
swing hydraulic cylinder mechanism of HKS Company [34], and its output angle has the
range of [−90, 90] degrees. With HHRA, the rotary motion of the output shaft is achieved
by the linear motion of the piston based on the double helical structure. Hence, the linear
motion of the piston is converted into rotary motion by multiple counter-rotating high-helix
threads on the housing (001), piston (002), and shaft (003).
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Figure 1. Structural diagram of HHRA [34].

Due to technical patent protection, detailed technical parameters are not available, so
accurate mathematical models cannot be obtained. Based on this, the problem of how to
develop a system model using the system identification method will be addressed.

Figure 2 shows a schematic diagram of the valve-controlled HHRA, which mainly
includes an encoder, a hydraulic actuator driven by a three-way four-port servo valve,
and a controller. Labels A and B represent the inlet and outlet of the HHRA, respectively.
The oil pressure is transmitted through the joint; otherwise, the actuator shaft would
undergo rotational motion. Therefore, the linear motion of the piston is converted into
rotational motion.

Figure 2. Architecture of the valve-controlled HHRA.

2.2. Model Design

To obtain a dynamic model of the valve controlled HHRAs, four fundamental formulas
are required [35], namely flow continuity, load balance, output torque, and rotational
balance formulas.

(1) Flow continuity formula

Neglecting pressure loss and dynamics of the piping, the flow continuity formula for
HHRA is given by [10]

qL = AẎ + CtPL +
Vt

4βe
ṖL, (1)

where qL = q1+q2
2 refers to the load flow; q1 and q2 are the supply flow rates; Y = θ

2πζ ,

(ζ = S1+S2
S1S2

) is the piston displacement [2]; θ denotes the rotation angle; Si represents the
leads of the two-stage helical pair; A denotes the effective area of the hydraulic cylinder
piston; βe refers to the effective hydraulic fluid bulk modulus; Ct is the coefficient of internal
leakage; Vt refers to the total control volume of the hydraulic actuator; and PL = p1 − p2
shows the load pressure difference, where p1 and p2 are forward chamber pressure and
return chamber pressure, respectively.
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(2) Load balance formula

Dynamic characteristics of hydraulic power components are affected by load forces.
The dynamics of the driving cylinder can be obtained as follows:

APL = mŸ + BcẎ + F, (2)

where m refers to the mass of the load; Bc denotes the viscous friction coefficient; and
F represents the axial force.

(3) Rotational equilibrium formula

The load is assumed as a concentrated load, and then the torque balance equation can
be expressed as follows:

T = Jθ̈ + Bm θ̇ + Gθ + TL, (3)

where T = Fd
2ς refers to the torque generated or developed by actuator, d denotes the

reference diameter; and ς = 1
tan(β1−γ)

+ 1
tan(β2−γ)

, where γ is the friction angle; β1 and β2

are the pitch angles of the helical pair. In addition, Bm refers to the total viscous damping
coefficient; J represents the total inertia of actuator and load; TL denotes the arbitrary
load torque on shaft; and G refers to the torsional spring stiffness of the load, commonly
assuming G = 0.

(4) Flow equation of servo valve

In this study, it is assumed that the pump supply pressure ps is a constant and the
return pressure p0 is zero. The flow equation of servo valve can be expressed as follows [8]:

qL = kqxv

√
ps − sign(xv)pL, (4)

where xv = kx Ii denotes the linear relationship between the control signal Ii and the

position of the spool xv; kq = Cdω
√

1/
ρ denotes the flow gain, therein Cd represents the

flow coefficient; ω refers to the valve area gradient; ρ denotes the oil density; and sign(•)
refers to signum.

The flow equation for the servo valve in the forward/reverse direction is the same [36].
After full differential linearization is performed on the above equation and the incremental
symbol is removed, the pressure-flow curve equation can be obtained as follows:

qL = kxaxv − kpa pL (5)

where kxa and kpa refer to the flow gain and flow pressure coefficient of the servo valve,
respectively. Laplace transforms Equations (1)–(3) and (5) to get the fundamental equation
of the HHRA, as follows:

QL = AsY + CtPL +
Vt

4βe
sPL (6)

APL = ms2Y + BcsY + F (7)

T = Js2θ + Bmsθ + TL (8)

QL = kxaXv − kpaPL (9)

(5) Transfer function equation

According to Equations (6)−(9), the transfer function equation can be expressed as
follows after the intermediate variables are eliminated:

θ =
AkxaXv

as3 + bs2 + cs
− ϑTL

as3 + bs2 + cs
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where a = Vt
4βe

( m
2πζ + 2ς

d J), a = Vt
4βe

(
Bc

2πζ + 2ςBm
d

)
+ (Ct + kpa)

(
m

2πζ + 2ς
d J
)

, c = (Ct +

kpa)
(

Bc
2πζ + 2ςBm

d

)
+ A2

2πζ , ϑ =
[

Vtς
2βed s +

(
Ct + kpa

) 2ς
d

]
.

Without consideration of the external interference, the transfer function between
the rotation angle and the control input current can be expressed as follows (refer to the
Appendix A for the detailed derivation process):

G(s) =
θ

Ii
=

kv

as3 + bs2 + cs
, (10)

where kv = Akxkxa.

2.3. Identification Model

Discretization of the transfer function is necessary for a system identification. A
general system can be described by the follow differential equation:

A(z−1)y(k) = z−mB(z−1)u(k) + η(k) (11)

where A(z−1) = 1 + a1z−1 + . . . + anaz−na; B(z−1) = b0 + b1z−1 + . . . + bnbz−nb; u(k) and
y(k) refer to the input and output, respectively; m ≥ 1 denotes the delay time; and η(k)
represents the disturbance. The discrete equation can be obtained based on Equation (11)
using Tustin’s method:

G = θ
u = kv

a( 2
T

z−1
z+1 )

3
+b( 2

T
z−1
z+1 )

2
+( 2

T
z−1
z+1 )

= kv(z+1)3

8
T3 a(z−1)3+ 4

T2 b(z−1)2(z+1)+ 2
T (z−1)(z−1)2

= kv(z3+3z2+3z+1)
ζ1z3+ζ2z2+ζ3z+ζ4

=
kv(1+3z−1+3z−2+z−3)
ζ1+ζ2z−1+ζ3z−2+ζ4z−3

(12)

According to the above equation, the differential equation of the system can be ex-
pressed as follows:

θ(k) = −
n

∑
i=1

aiθ(k− i) +
n

∑
i=1

biu(k− i), (n = 3), (13)

where ai and bi are parameters to be identified; θ(k) denotes the observed value of the kth
system output; θ(k− i) refers to the actual value of the k− ith system output; and u(k− i)
represents the expected given value (i.e., system input) of the (k− i)th system.

3. Methodology
3.1. Preliminary

Definition 1. Let P(x1, x2, . . . , xn) be a point in a dimensional space with (x1, x2, . . . , xn) ∈ <,

xi ∈ [ai, bi], ∀i ∈ {1, 2, . . . n}. The opposite point
^

P(^x1, ^x2, . . . , ^xn) is defined as follows:
^x i = ai + bi − xi, (i = 1, . . . , n).

Based on the above definitions, opposition scheme for learning can be formulated
as follows.

Definition 2. Opposition-based optimization (OBO) learning: f (x) is assumed as a fitness func-

tion to measure the candidate optimality. According to Definition 1, f (x) and
^

f (x) can be obtained

in every iteration; f (x) >
^

f (x) means point P can be replaced with
^

P.



Actuators 2023, 12, 220 6 of 19

3.2. GWO Algorithm

The GWO algorithm is inspired by the social leadership and hunting behavior of grey
wolves in nature. The fittest solution is considered as alpha (α). Consequently, the second
and third best solutions are named as beta (β) and delta (δ), respectively. The rest of the
candidate solutions are assumed to be omega (ω). The wolf hunting involves three main
steps: hunting siege, hunting, and attacking prey.

(1) Hunting siege

To simulate the hunting behavior of the grey wolves, the encircling operation can be
represented as

D =
∣∣C · Xp(t)− X(t)

∣∣ (14)

X(t + 1) = Xp(t)− A · D (15)

where t indicates the current iteration; X(t + 1) refers to the next location of the wolf; Xp(t)
and X(t) denote the prey position and the position vector of a grey wolf at the current iteration
t; D denotes the distance between the target prey and the grey wolves; and A and C represent
the convergence coefficients, which can be calculated with the following equations:

A = 2 a · r1 − a and C = 2 · r2, (16)

where r1 and r2 represent two random vectors in [0, 1], components of the vectors
a(t) = 2 − (2t)/MaxIter decrease linearly from [2, 0], and MaxIter denotes the maxi-
mum number of iterations.

(2) Hunting

To mathematically model the hunting behavior of grey wolves, the other wolves ω are
obliged to follow the position of the three best solutions α, β, and δ. The hunting behavior
can be expressed as follows:

Dα = |C1 · Xα(t)− X(t)|, Dβ =
∣∣C2 · Xβ(t)− X(t)

∣∣, Dδ = |C3 · Xδ(t)− X(t)| (17)

X1 = Xα(t)− A1 · Dα, X2 = Xβ(t)− A2 · Dβ, X3 = Xδ(t)− A3 · Dδ (18)

Positions of the individual grey wolf are updated using following equation:

X(t + 1) =
X1(t) + X2(t) + X3(t)

3
. (19)

(3) Attacking

In this step, exploration and exploitation are guaranteed by the adaptive values of a
and A; a is a distance control parameter, which decides the distance approaching the prey;
A balances the exploration and exploitation capabilities of the GWO algorithm. Exploration
is promoted when |A| > 1, whereas there is emphasis on exploitation when |A| < 1. When
C > 1, a repeated attack will be carried out, and a return C < 1 attack will be stopped.

3.3. Modified Differential Evolution

The classical DE algorithm consists of three basic steps: mutation, crossover, and selection.

(1) Mutation

In this study, based on a mutation operator DE/best/1 [37] of classical DE, the improved
mutant individual will be updated as follows:

Vi,j(t) = λ Xgbest
α (t) + F(Xr1(t)− Xr2(t)), (20)
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where λ ∈ (0, 1] refers to the scaling factor, which is a fixed constant that is used to add
diversity to the search; F ∈ [0.4, 1] denotes the differential weight or scaling factor, larger
values for F result in higher diversity in generation population and lower values result in
faster convergence, and Xgbest

α (t) represents the global best wolf with a minimum during
the iteration. In addition, r1 and r2 are two randomly chosen indices (r1 6= r2 6= α) in the
range [1, NP], and NP denotes the population size.

(2) Crossover

A modified crossover operation is introduced after the mutation to enhance the poten-
tial diversity of the population. The binomial crossover is represented as follows:

ui,j(t) =
{

vi,j(t), if rj ≤ Cr or j = R
xi,j(t), if rj > Cr and j 6= R

, (21)

where Cr denotes the crossover rate in the range [0, 1], and rj ∈ [0, 1] refers to a uni-
formly distributed random number; R ∈ 1, . . . , NP denotes a randomly chosen index. The
following equation can be selected to check and process the boundary condition.

ui,j(t) = a + γ(b− a), if (ui,j(t) < a)or(ui,j(t) > b), (22)

where a and b are the pre-specified lower and upper limit, respectively; and γ denotes a
uniform random number in the range [0, 1].

(3) Selection

A one-to-one greedy selection between a parent and its corresponding offspring
can judge whether the target or the trial vector survives to the next generation. The
minimization can be stated as follows:

Xi(t + 1) =
{

Ui(t), if f (Ui(t)) ≤ f (Xi(t))
Xi(t), if f (Ui(t)) > f (Xi(t))

, (23)

where f (•) denotes the fitness function; Ui(t) and Xi(t) denote the trial vector and the
current target vector, respectively.

3.4. GWO with DE Hybrid Algorithm

The GWO algorithm has been verified to show high superiority in many fields, but
it inevitably faces some deficiency such as local optimum, slow calculation speed, and
low accuracy. Herein, based on the previous sections about GWO and DE, a novel hybrid
approach, H-GWO, is proposed to enhance the search performance.

(1) Initialization scheme

Initial value of the population can govern the quality of the final solution and the con-
vergence speed of the SI algorithm [38]. In this direction, a hybrid population initialization
scheme is designed by combining OBO and chaotic maps.

A randomly distributed population P(n) (n refers to the population size) is obtained
based on the tent chaotic maps. Then, chaotic sequences in (0, 1) will be generated in the
following form:

xk+1 =

{
xk
/

ϕ, if 0 < xk < ϕ
(1− xk)

/
(1− ϕ), if ϕ < xk < 1

(24)

where ϕ ∈ rand(0, 1); xk represents the value of the kth mapping function. A randomly
distributed population P(n) can be obtain by

P(n) = Pmin + xk(Pmax − Pmin), (25)
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where Pmax and Pmin denote the maximum and minimum limits, respectively. Opposite
population OP(n) is calculated by the following equation:

OP(n) = Pmax + Pmin − P(n). (26)

Here, the final initial population is determined by selecting the best n individual
solutions evaluated from the combined population set of

HOP(n) = {p(n)|p(n) ⊂ {P(n)⊗OP(n)}, (27)

where ⊗ represents the optimal selection operation, and the detailed steps are described
as follows: First, the parent population is sorted after duplicate data are removed in a
non-descending order. Then, based on the fitness function, the parental population of grey
wolves is sorted from smallest to largest, and the first n individual positions in the grey
wolf parent population are found and determined as the initial population position.

(2) Population diversification strategy

The opposition-based differential evolution (ODE) is introduced to enhance the po-
tential diversity of the population. The mutation, crossover, and selection under the DE
algorithm involve the update of the new wolf position. The H-GWO algorithm can be
described by the following steps, and its flowchart is presented in Figure 3.

Figure 3. Flowchart of H-GWO.

Step 1. Initializing parameters and values of a, A, and C as well as the crossover rate CR,
scaling factor F, and maximum number of iterations MaxIter;

Step 2. Initializing a population HOP(n) of n agents position randomly according to
Equation (27);

Step 3. Calculating the fitness f for all individuals;
Step 4. Updating Xa(t), Xβ(t), and Xδ(t);
Step 5. Updating a, A, and C from Equation (16);
Step 6. Calculating the position X(t + 1) of the current wolf according to Equation (19);
Step 7. Calculating the mutant individual Vi(t) according to Equation (20), and crossover

operation is based on Equation (21);
Step 8. Checking and processing the boundary condition according to Equation (22);
Step 9. Updating position of the current agent Xi(t + 1) according to Equation (23);
Step 10. Returning the Step 3 at stopping criteria t < MaxIter, or otherwise going to next step;
Step 11. Returning the best fitness f (Xbest) and the best solution Xbest.
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3.5. Verification and Discussion of H-GWO Algorithm

In this section, nine classic and popular benchmark functions are employed to test its
performance [24]. They can be divided into three groups: unimodal benchmark functions
(Figure 4), multimodal benchmark functions (Figure 5), and fixed-dimensional multimodal
benchmark functions (Figure 6), as listed in Table 1. In the Table 2, Dim indicates dimension
of the function, Range is the boundary of the function’s search space, and fmin represents
the optimal value.

The H-GWO algorithm is compared with PSO, GWO, and DE algorithms to illustrate
its better performance. For ease of understanding, the parameter configurations of the
above four methods are described as follows. Additionally, the same population size
NP = 30 and the same maximum number G = 100 of iterations are set for all algorithms.

(1) PSO:

Maximum speed Vmax = 6, inertia weight ω = 0.8, and acceleration coefficient
c1 = c2 = 2.

(2) GWO:

Parameters amin = 0, amax = 2.

(3) DE:

Scaling factor F = 0.5 crossover probability Cr = 0.5(1 + rand).

(4) H-GWO:

Scaling factor F = 0.5, crossover probability Cr = 0.5(1 + rand), and λ = 0.25.

(a) (b) (c)

Figure 4. Two−dimensional versions of unimodal benchmark functions: (a) f1(x); (b) f2(x); (c) f3(x).

(a) (b) (c)

Figure 5. Two−dimensional versions of multimodal benchmark functions: (a) f4(x); (b) f5(x); (c) f6(x).
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(a) (b) (c)

Figure 6. Two−dimensional version of fixed-dimension multimodal benchmark functions: (a) f7(x);
(b) f8(x); (c) f9(x).

The all algorithm is run 30 times on each benchmark function. Experimental results
consist of statistical parameters such as mean and standard deviation (St.dev), as listed
in Table 2.

Table 1. Nine benchmark test functions [24].

Function Dim Range fmin

Unimodal benchmark functions
f1(x) = ∑n

i=1 x2
i 30 [−100, 100] 0

f2(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2] 30 [−30, 30] 0

f3(x) = ∑n
i=1 ix4

i + rand[0, 1) 30 [−1.28, 1.28] 0
Multimodal benchmark functions
f4(x) = ∑n

i=1
[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

f5(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e 30 [−30, 30] 0

f6(x) = 1
40000 ∑n

i=1 x2
i −∏n

i=1 cos( xi√
i
) + 1 30 [−600, 600] 0

Fixed-dimension Multimodal benchmark functions
f7(x) = 4x2

1 − 2.1x4
1 +

1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f8(x) = ∑n
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]
4 [−5, 5] 0.0003

f9(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]·
[30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)] 2 [−2, 2] 3

Table 2. Experimental results (average, standard) of benchmark functions.

Function
PSO GWO DE H-GWO

Average St. dev Average St. dev Average St. dev Average St. dev

f1(x) 5.107963 2.045059 8.74× 10−4 0.002765 1.3874 4.0215 3.72 × 10−9 2.03 × 10−8

f2(x) 68.341611 39.848151 27.960574 0.00391 28.940232 0.02895 25.901103 0.671705
f3(x) 8.714045 6.275347 0.003067 0.003762 0.030475 0.039981 9.29 × 10−4 0.001465
f4(x) 1.84× 102 38.039407 31.421778 1.544107 35.973785 81.892454 17.961906 0.513119
f5(x) 3.080351 0.351753 0.004442 0.014036 8.20× 10−6 1.06 × 10−5 2.38 × 10−6 1.30× 10−5

f6(x) 18.80006 5.574793 0.006625 0.020953 1.51 × 10−8 5.08 × 10−8 2.64× 10−8 1.45× 10−7

f7(x) −1.031628 5.72× 10−7 −1.031628 3.92× 10−8 −1.028604 0.003393 −1.031628 5.52 × 10−8

f8(x) 0.001655 0.003372 5.53× 10−4 1.60× 10−4 0.002952 0.001598 3.92 × 10−4 1.39 × 10−4

f9(x) 3.00001 1.08× 10−5 3.000219 2.21× 10−4 6.944784 4.913727 3.000008 9.57 × 10−6
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(1) Discussion on exploitation and exploration

Table 2 shows the Average and St.dev results for the benchmark functions. According
to the results of f1 ∼ f3 in Table 2, the H-GWO algorithm can provide very competitive
results. The unimodal benchmark function is very suitable for testing the utilization of the
algorithm. These results confirm the superior performance of the H-GWO algorithm in
exploiting the optimality. Compared with the unimodal benchmark function, the multi-
modal benchmark function is subjected to many local optima, so it is suitable for testing
the benchmark exploration performance. In addition, Table 2 reveals that the H-GWO
algorithm can achieve competitive results on multimodal benchmark functions. There-
fore, the proposed H-GWO algorithm outperforms the GWO, PSO, and DE algorithms
on most of the multimodal benchmark functions, demonstrating its advantages in terms
of exploration.

(2) Local minima avoidance

The multimodal benchmark function shows multiple local minima, so it can be used
to test the local minima avoidance. Again, Table 2 suggests that the proposed algorithm
exhibits superior convergence performance on the multi-modal benchmark function, re-
flecting its good performance on local minimum avoidance simultaneously.

In summary, the experimental results validate the performance of the proposed al-
gorithm in computing various benchmark functions compared to other meta-heuristic
algorithms. Next, the proposed algorithm is further adopted for parameter identification in
engineering applications.

4. Application of H-GWO Algorithm for Parameter Identification

In this section, the H-GWO algorithm proposed in this study is for parameter identifi-
cation of the HHRA, that is, to identify unknown parameters from known system inputs
and outputs. For this purpose, a hybrid identification algorithm combining FFRLS and
H-GWO algorithms is proposed.

4.1. Parameter Identification Strategy

In this section, the estimated expansion function is designed based on the FFRLS as
the initial search range. The algorithmic strategy of forgetting factor recursive least squares
(FFRLS) is to revise the parameter estimates based on new data while gradually forgetting
or attenuating the influence of older data. The iterative update equation of the FFRLS
algorithm can be expressed as follows:

θ̂(k) = θ̂(k− 1) + K(k)[y(k)− ϕT(k)θ̂(k− 1)]
P(k) = 1

ξ [I − K(k)ϕT(k)]P(k− 1)

K(k) = P(k−1)ϕ(k)
ξ+ϕT(k)P(k−1)ϕ(k)

, (28)

where P(0) = αI and θ(0) = ε are initial values, α� 1 represents a real positive constant,
and ε � 1 refers to a sufficiently small positive real vector; ξ denotes a forgetting factor,
and the time-varying forgetting factor is ξ(k) = ξ0ξ(k− 1) + (1− ξ0), ξ0 = 0.99, ξ0 = 0.95.
With the above FFRLS estimation, the identification result shows a low accuracy. Here, the
initial search range expansion function is introduced as follows by referring to the above
parameter results as interim parameter estimation:{

θmin = θ̂ − ζ
∣∣θ̂∣∣

θmax = θ̂ + ζ
∣∣θ̂∣∣ (29)

In the above equation, ζ ∈ [0, 1] refers to the expansion space gain coefficient. As
for the H-GWO algorithm, the estimated expansion function is undertaken as the initial
search space.
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In short, Figure 7 illustrates the improved identification algorithm that combines the
FFRLS and H-GWO algorithms.

Figure 7. Flowchart of parameter identification using H-GWO.

4.2. Accuracy Index

There are three commonly used criteria with definitions as follows:

Definition 3. Integral of the time weighted absolute error (ITAE) integrates the absolute error
multiplied by the time over time, which is defined as follows:

JITAE =
∫ ∞

0
t|e(t)|dt (30)

Herein, the ITAE index is chosen as the fitness function.

Definition 4. Mean squared error (MSE) represents the mean of the squared measurement errors
of an estimator, which is expressed as follows. The smaller the value, the higher the degree of
approximation.

JMSE =
1
n

n

∑
i=1

(θi − θ̂i), (31)

where θi and θ̂i represent the actual and predicted value, respectively; and n is the total length of the
data.

Definition 5. The variance accounted for (VAF) refers to the percentage of a variance ratio, which
is often adopted to verify the model correctness. VAF between and for the ith component is defined
as follows:

JVAF =

(
1− var(θi − θ̂i)

var(θi)

)
× 100%, (32)

where var(•) is the variance.

4.3. Results and Analysis

In this section, the parameter identification and experimental results will be presented
for a hydraulic system.

A. Experiment setup

The platform consists of a HHRA (HKS), a servo valve (HY110), a rotary encoder
(SSI), servo amplifier, and industrial personal computer (IPC). The sampling time is 250 Hz
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(4 ms), and the duration is taken as 20 s. The experimental platform is shown in Figure 8.
CodeSys software is adopted in the development environment.

Figure 8. Physical prototype workbench.

The experimental process is as follows: First, an irregular continuous step control
signal (current value) is sent as the input to the servo system through an IPC. Then, the
feedback value of the HHRA is collected as the output signal through an encoder. Therein,
the 4th-order inverse M sequence is selected as the excitation signal in this study,

xi = xi−3 ⊕ xi−4

The input and output collected in the experiment are displayed in Figure 9. Thereof,
the top sub-picture is the input signal, and the bottom sub-picture is the corresponding
system output.

Figure 9. Input and output.

B. Experimental Results

Herein, the proposed method is compared with LS, RLS, FFRLS, PSO, and GWO. To
facilitate understanding, the expressions of the above methods are presented as follows.

(1) LS method:

Zm = Hmθ + Vm
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θ̂ = (HT
m Hm)

−1HT
mZm

where Hm denotes the data vector; Zm refers to the system output; and Vm represents the
random noise.

(2) RLS method

θ̂(k) = θ̂(k− 1) + K(k)[y(k)− ϕT(k)θ̂(k− 1)]
P(k) = [I − K(k)ϕT(k)]P(k− 1)
K(k) = P(k−1)ϕ(k)

1+ϕT(k)P(k−1)ϕ(k)

where P(0) = αI, θ̂0 = ε, α = 105, and ε = 1× 10−6.

(3) FFRLS method

θ̂(k) = θ̂(k− 1) + K(k)[y(k)− ϕT(k)θ̂(k− 1)]
P(k) = 1

ξ [I − K(k)ϕT(k)]P(k− 1)

K(k) = P(k−1)ϕ(k)
ξ+ϕT(k)P(k−1)ϕ(k)

where P(0) = αI, θ̂0 = ε, α = 105, ε = 1e−6, ξ(k) = ξ0ξ(k− 1) + (1− ξ0), ξ0 = 0.99, and
ξ0 = 0.95.

(4) PSO method {
vt+1

i = ωvt
i + c1r1(pbestt

i − θt
i ) + c2r2(gbestt

i − θt
i )

θt+1
i = θt

i + vt+1
i

where ω = ωmax − ((ωmax − ωmin)/N)i, ωmax = 0.9, ωmin = 0.1, c1 = c2 = 2, θmax = 5,
θmin = −5, G = 200, and NP = 100.

(5) GWO method

The GWO method is presented in Equations (14)–(19), where MaxIter = 200;
NP = 100; Initial search range [−5, 5]; and amin = 0, amax = 2.

(6) FFRLS and H-GWO hybrid method

The method described in Section 4 is applied here, where population size NP = 100; and
maximum iterations G = 200. Scaling factor F = 0.5; crossover probability Cr = 0.5(1 + rand);
and λ = 0.25. Other parameters are the same as in (3).

The parameters MSE, VAF, and number of iterations (NOI) are employed to better
present the superior performance of the proposed method. Figures 10–15 represent the iden-
tification result of LS, RLS, FFRLS, PSO, GWO, and the proposed algorithm, respectively.
The figures suggest that identification accuracy of the proposed algorithm is significantly
higher than that of other algorithms.

Figure 10. Comparison of identification results using LS.
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Figure 11. Comparison of identification results using RLS.

Figure 12. Comparison of identification results using FFRLS.

Figure 13. Comparison of identification results using PSO.

Figure 14. Comparison of identification results using GWO.
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Figure 15. Comparison of identification results using the proposed method.

From Figures 10–12, it can be seen that the identification results based on least squares
has very similar results. However, from the VAF results in Table 3, it can be seen that FFRLS
has improved accuracy relative to RLS, but the overall accuracy is still not good enough,
especially with the MSE results having larger values. The reason for this may be due to
the insufficient amount of data in the experiment, but increasing the amount of data will
undoubtedly increase the computational time.

Table 3. Comparison of MSE, VAF, and NOI indexes.

Criterion MSE VAF (%) NOI

LS 95.31 61.52 –
RLS 89.98 65.73 –

FFRLS 77.47 91.28 –
PSO 13.94 93.21 142

GWO 40.68 71.24 175
Proposed 12.73 96.18 118

Table 3 shows the MSE, VAF, and NOI indexes of the three identification methods for
comparison. The proposed algorithm exhibits a higher identification accuracy according to
the data listed in Table 3 and Definitions 3 and 4. In addition, the proposed algorithm shows
fewer NOI. In Figure 16, the convergence of the fitness function is presented, demonstrating
that the proposed method achieves faster convergence without premature convergence.

Figure 16. Comparison of convergence.
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Remark 1. From the results in Figure 13 and Table 3, it can be seen that the PSO algorithm also
has a high identification accuracy, but the identification result has an impact at the peak, which is
inconsistent with the actual system. The algorithm proposed in this paper combines the advantages
of FFRLS and H-GWO to achieve higher accuracy. In particular, as the amount of data increases,
the accuracy is further improved, as shown in Figure 15.

5. Conclusions

The H-GWO algorithm combining GWO and DE is presented in this study. In ad-
dition, the OBO learning technology is fused to update the GWO population, increasing
the diversity of the population, avoiding the local optimum, and making an appropriate
compromise between exploration and exploitation. A parameter identification algorithm
combining FFRLS and the proposed H-GWO algorithm is designed for parameter iden-
tification of HHRA. In addition, its validity and accuracy are proved by simulation and
experimental results. System identification is of great significance in control engineering
and system analysis. It provides a theoretical basis for system understanding, system
analysis, controller design, system optimization, etc. Through system identification, the
behavior characteristics of the system can be deeply understood, and then the system can
be better analyzed, controlled, and optimized. Practical control problems for which the
identification model is used will be considered in the future.

Author Contributions: Conceptualization, Y.Z., Y.L. (Yixiang Liu) and R.S. (Ruyue Sun); methodol-
ogy, Y.Z. and R.S. (Ruyue Sun); software, Y.Z.; validation, Y.Z., R.S. (Ruyue Sun) and Y.L. (Yixiang Liu);
investigation, Y.W. and Y.L. (Yixiang Liu); resources, Y.Z. and Y.L. (Yixiang Liu); data curation,Y.Z. and
R.S. (Ruyue Sun); writing—original draft preparation, Y.Z. and R.S. (Ruyue Sun); writing—review
and editing, Y.Z. and R.S. (Ruyue Sun); visualization, Y.W. and Y.L. (Yixiang Liu); supervision, Y.L.
(Yibin Li) and R.S. (Rui Song); project administration, R.S. (Rui Song); funding acquisition, R.S.
(Rui Song). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2022YFC2604004), the Key Research and Development Program of Hebei Province under
Grant 20311803D, and the Natural Science Foundation of China under Grant U20A20201.

Data Availability Statement: The datasets of the current study are available from the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

According to Equations (6) and (9), we can obtain

AsY + CtPL +
Vt

4βe
sPL = kxaXv − kpaPL (A1)

The load pressure difference PL can be obtained:

PL =
kxaXv − As θ

2πζ

Ct +
Vt

4βe
s + kpa

(A2)

According to Equation (3), we can obtain

APL = ms2 θ

2πζ
+ Bcs

θ

2πζ
+

2Tς

d
(A3)

Substitute Equation (8) into Equation (A3):

ApL = ms2 θ

2πζ
+ Bcs

θ

2πζ
+

2ς(Js2θ + Bmsθ + TL)

d
(A4)
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Substitute Equation (A2) into Equation (A4):

A
kxaXv−As θ

2πζ

Ct+
Vt

4βe s+kpa
= ms2 θ

2πζ + Bcs θ
2πζ + 2ς(Js2θ+Bmsθ+TL)

d

By further rearranging the above expression, we can get

A
(

kxaXv − As θ
2πζ

)
=
(

Ct +
Vt

4βe
s + kpa

)(
ms2 θ

2πζ + Bcs θ
2πζ + 2ςJs2θ

d + 2ςBmsθ
d + 2ςTL

d

)
= Vt

4βe

(
m

2πζ + 2ςJ
d

)
s3θ + Vt

4βe

(
Bc

2πζ + 2ςBm
d

)
s2θ + Vt

4βe

2ςTL
d s +

(
Ct + kpa

)( m
2πζ + 2ςJ

d

)
s2θ

+
(
Ct + kpa

)( Bc
2πζ + 2ςBm

d

)
sθ +

(
Ct + kpa

) 2ςTL
d

Finally, we can obtain

θ =
AkxaXv −

[
Vt

4βe

2ς
d s +

(
Ct + kpa

) 2ς
d

]
TL

as3 + bs2 + cs
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