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Abstract: For a magnetically suspended control moment gyro (MSCMG), the high‑speed rotor is ac‑
tively suspended by magnetic bearings of 5‑DOF, but the nonlinearity of the magnetic suspension
force is one of the main reasons for the poor accuracy of radial translation control of the magnetically
suspended rotor (MSR). To solve this problem, here, the characteristics of the magnetic suspension
force are analyzed, and the nonlinear dynamic model of MSR is established. A sliding mode control
(SMC) based on a neural network is presented, and the radial basis function (RBF) neural network is
adopted to approximate the nonlinear displacement stiffness and the current displacement stiffness
to weaken the chattering in SMC to improve the control accuracy of theMSR. The stability of the neu‑
ral network SMC for the MSR is analyzed based on Lyapunov functions, and the rules of updating
network weights are presented based on adaptive algorithms. Compared with these existing classic
control methods, the simulation and experimental tests performed on a single‑gimbal MSCMGwith
an angular momentum of 200 N.m.s indicated that this neural network SMC for MSR’s radial trans‑
lation can not only make its suspension more stable but can also make its position precision higher.

Keywords: magnetically suspended rotor (MSR); nonlinearity; neural network; slidingmodel control;
adaptive algorithms

1. Introduction
The magnetically suspended control moment gyro (MSCMG) can output large control

moments by changing the direction of the angular momentum of the high‑speed rotor [1–3].
This is one type of attitude control actuator used to modify the attitude of spacecraft with
merits of micro‑vibration, high precision, high reliability, longevity, and so on [4,5]. For
an MSCMG, it consists of one gyroscopic room to support the high‑speed rotor by mag‑
netic bearings and one servo system of the gimbal to support the rotor’s angular moment
around its orthogonal axis. Figure 1 illustrates the structure of MSCMG with one gimbal
(the single‑gimbal MSCMG) [6]. In the gyro room, the high‑speed rotor driven by the ro‑
tor’s motor (brushless DC motor) is stably suspended by axial magnetic bearings, as well
as radial ones. The axial magnetic bearings are used to control the rotor’s axial transla‑
tion, while the radial magnetic bearings are used to control the rotor’s radial translation
and the tilt around the radial axle. The rotor’s axial translation is measured by the axial
displacement sensors, while both the radial translation and the radial tilt of the rotor are
measured by radial displacement sensors; then, the magnetically suspended rotor (MSR)
can be actively suspended at 5‑DOF [7,8]. In the servo system of the gimbal mounted on
the pedestal, the gyroscopic room driven by the gimbal motor is supported by mechani‑
cal bearings and its angular velocity is measured by a resolver or a photoelectric encoder.
When the gyro room is rotated by the servo system of the gimbal, a large outputting control
moment is generated.
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Figure 1. Structure of MSCMG: (a) sectional view and (b) external view. 
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of the gimbal, and some unexpected and additional disturbing torques make the dynamic 
behavior of the high-speed MSR more complex, and the rotor’s suspension becomes more 
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Based on the PID control method, Wei et al. used angular velocity feedforward to enhance 
the suspension stability of the MSR [15]. Sun et al. and Wen et al. presented cross-feedback 
control methods to deal with the nutation mode of asymmetric rotors with gyroscopic 
effects [16,17], but these methods emphasized the stable control rather than the position 
accuracy of the MSR, especially when the rotor tilted at a large angle. Schuhmann et al. 
utilized a linear quadratic Gaussian control with an extended Kalman filter and a state 
feedback regulator to improve the position accuracy of the MSR[18], but since this method 
contains too many parameters and the related calculation is excessive, it is not convenient 
for engineering applications. By means of variable operating point linearization, Wei et al. 
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For theMSCMG, the suspension force of themagnetic bearings is a type of elastic sup‑
port with clearance, and it is intrinsically nonlinear. All these magnetic bearings used in
MSCMG are permanent magnet‑biased hybrid magnetic bearings, and they can be classi‑
fied into radial permanent magnet‑biased hybrid magnetic bearings and axial ones. There
are two radial permanent magnet‑biased hybrid magnetic bearings in MSCMG to control
the rotor’s radial translation and the tilting around radial axes, and there are also two axial
permanent magnet‑biased hybridmagnetic bearings to control the rotor’s axial translation.
In this paper, to simplify the expression of these magnetic bearings, we refer to the radial
permanent magnet‑biased hybrid magnetic bearings as radial magnetic bearings and to
the axial permanent magnet‑biased hybrid magnetic bearings as axial magnetic bearings.
When the high‑speed MSR drifts from its equilibrium position at a very small displace‑
ment or tilts at a very small angle, the gap of the magnetic bearings slightly changes. The
nonlinear change of the suspension stiffness of the magnetic bearings has little impact on
the magnetic suspension force, and this force can be regarded as a linear one [9]. How‑
ever, when the high‑speed MSR drifts from its equilibrium position at a relatively large
displacement or tilts at a relatively large angle, especially when the gyroscope room is ro‑
tated by the gimbal, the gap of the magnetic bearings significantly changes, which will
result in a nonlinear change of the magnetic suspension force, and the control of MSR’s
suspension with high precision becomes difficult [10,11]. On the other hand, the high‑
speedMSRwith a large angular momentum has a strong gyroscopic effect, and the rotor’s
radial tilting around the X‑axis or the Y‑axis strongly and dynamically couples with each
other [12,13]. When the gimbal rotates, themotion of theMSR couples with that of the gim‑
bal, and some unexpected and additional disturbing torques make the dynamic behavior
of the high‑speed MSR more complex, and the rotor’s suspension becomes more unsta‑
ble [14]. Then, the nonlinearity of the magnetic suspension force is one of the main factors
that make the radial translation of the magnetically suspended rotor (MSR) be controlled
with poor accuracy.

To stably control theMSR,manymethods have been researched in recent years. Based
on the PID control method, Wei et al. used angular velocity feedforward to enhance the
suspension stability of the MSR [15]. Sun et al. and Wen et al. presented cross‑feedback
control methods to deal with the nutation mode of asymmetric rotors with gyroscopic
effects [16,17], but these methods emphasized the stable control rather than the position
accuracy of the MSR, especially when the rotor tilted at a large angle. Schuhmann et al.
utilized a linear quadratic Gaussian control with an extended Kalman filter and a state
feedback regulator to improve the position accuracy of theMSR [18], but since this method
contains too many parameters and the related calculation is excessive, it is not convenient
for engineering applications. By means of variable operating point linearization, Wei et al.
established a series of corresponding magnetic force models according to the rotor’s differ‑
ent positions [19], but the performance of this controlmethod is determined by factors such
as the model accuracy and the rotor’s imbalance. An adaptive controller based on current
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stiffness estimation was presented by Ghazavi et al. to stably control the MSR [20], but the
influence of the nonlinear changes of the displacement stiffness on the rotor’s position has
not yet been considered.

With the development of control theory, somemodern control methods such as fuzzy
control, neural network control, and so on have been used to deal with these nonlinear
problems in control systems. Defoy et al. used a fuzzy controller to control the magnetic
bearing‑rotor system in a turbine generator to improve its stability and robustness [21], but
this control method cannot ensure the rotor suspended bymagnetic bearings have high po‑
sition precision. Chu et al. designed a neural network adaptive estimator to estimate the
nonlinear changes of magnetic suspension stiffness to improve its steady‑state accuracy
and can control the axial translation of MSR [22], but it is difficult for this control method
to controlMSR’s radial translation and tilting. Chen et al. used BP neural network to adjust
the parameters of the PID controller online for a 5‑DOFmagnetic bearing‑rotor system [23],
Yang et al. used feedforward neural networks to approximate the nonlinear parameters’
changing of magnetic bearing, and Sun et al. used neural networks to establish the inter‑
nal model models of magnetic bearing [24], Wai et al. designed an adaptive fuzzy neural
network controller to control the magnetic suspension for transmission systems [25], and
Lin et al. utilized the dual integral sliding mode control (SMC) systems to regulate and
stabilize the strong nonlinear magnetically suspended rotor to improve its robustness [26].
These methods mentioned above focus on how to suspend a rotor stably, but they are not
able to ensureMSR has high position accuracy. Because the neural networkmethod can be
used to approximate nonlinear functions due to its ability to approximate nonlinear func‑
tions [27–30] and SMC can be used as a special nonlinear controller for its good robustness
to parameter changes [31–33], it is a goodway to use SMC combinedwith neural networks
to control the nonlinear system in MSCMG.

With respect to the nonlinearity of magnetic suspension force in MSCMG, one of the
best ways to improve the control accuracy of MSR is to improve the control accuracy of
MSR’s radial translation. Based on this prototype of MSCMG, as shown in Figure 1, this
paper emphasizes the control method of radial translation forMSRwith high precision. To
deal with the problem that the position accuracy of the rotor in MSCMG is affected by the
nonlinear change of suspension force stiffness and themoving‑gimbal effect, the nonlinear
dynamic model of MSR is established, and the property of the magnetic suspension force
is analyzed. The SMC method combined with a neural network is proposed to suspend
MSRmore stable and improve the control accuracy of the rotor’s position to output control
moment with high precision for spacecraft. Simulations and experimental tests have been
performed based on a single gimbal MSCMGwith 200 N.m.s angular momentum to verify
the validity and effect of this proposed control method.

2. Modelling of MSR
For the MSR in MSCMG, there are two 2‑DOF radial magnetic bearings to control the

rotor’s radial translation and tilting around radial axes, and another two 1‑DOF axial mag‑
netic bearings to control the rotor’s axial translation, then the rotor suspended bymagnetic
bearings is controlled five‑freedom actively. Tomodel the rotor’s dynamics, the forces and
moments acting on MSR and the definition of the related coordinate system in MSCMG
are shown in Figure 2.
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where m is the mass of the rotor, Jr and Jz are the inertia moments of the rotor around X-
,Y-, and Z-axis, respectively. 

For a radial magnetic bearing with nominal clearance hm0 and bias current I0, when 
the rotor drifts with displacement x, the magnetic suspension force F along the drifting 
direction with control current i is 

F = µ0N2AMB[(I0 + i)2/(hm0-x)2-(I0-i)2/(hm0 + x)2]/4 (2)

where µ0 is the permeability of air, N is the number of winding turns in the magnetic 
bearing, and AMB is the cross-sectional area of the gap between the magnetic bearings’ 
stator and rotor. 

Based on the structural parameters of MSCMG as listed in Table 1, the relationship 
among magnetic suspension force, displacement, and control current is illustrated in Fig-
ure 3, where xam is the displacement of the rotor drifting from the equilibrium position. It 
can be clearly seen that F is nonlinear intrinsically. If MSR is at the equilibrium position 
ideally (that is, xam = 0 µm), the change of magnetic suspension force is linear. However, 

Figure 2. Forces and moments acting on MSR.

The origin of this coordinate for the magnetic bearing‑rotor system, which is also the
geometric center of the rotor, is denoted by O, three axles are denoted by X‑axis, Y‑axis,
and Z‑axis, and the distance between the center of radial magnetic bearing at the A‑end or
B‑end and O is denoted by lm, respectively. These forces generated by magnetic bearings
acting on the rotor along radial direction are denoted by fX and fY; that is, these forces along
radial direction generated by radialmagnetic bearing atA‑end are denoted by fA‑x and fA‑y,
and that generated by radial magnetic bearing at B‑end is denoted by f B‑x and f B‑y, and the
axial forces generated by axialmagnetic bearings acting on rotor along the axial direction is
denoted by fZ, respectively. Similarly, these moments formed bymagnetic bearings acting
on the rotor around the radial direction are denoted pX and pY, respectively. The rotor’s
rotary speed around Z‑axis is denoted by Ω. If the rotor’s motion occurs, the translational
displacements of the rotor in X and Y directions are denoted by x and y, and the rotor’s
titling angle around X‑axis or Y‑axis is denoted by α or β, respectively.

Based on Newton’s second law, the Euler dynamical equation, and the principle of
rotor dynamics, the dynamic model of the magnetic bearing‑rotor system is established as

m
..
x = fX = fA−x + fB−x

m
..
y = fY = fA−y + fB−y

m
..
z = fZ

Jr
..
α + JzΩ

.
β = pX = 2lm( fB−y − fA−y)

Jr
..
β − JzΩ

.
α = pY = 2lm( fA−x − fB−x)

(1)

where m is the mass of the rotor, Jr and Jz are the inertia moments of the rotor around X‑,
Y‑, and Z‑axis, respectively.

For a radial magnetic bearing with nominal clearance hm0 and bias current I0, when
the rotor drifts with displacement x, the magnetic suspension force F along the drifting
direction with control current i is

F = µ0N2AMB[(I0 + i)2/(hm0‑x)2‑(I0‑i)2/(hm0 + x)2]/4 (2)

where µ0 is the permeability of air, N is the number of winding turns in the magnetic
bearing, and AMB is the cross‑sectional area of the gap between the magnetic bearings’
stator and rotor.

Basedon the structural parameters ofMSCMGas listed inTable 1, the relationship among
magnetic suspension force, displacement, and control current is illustrated in Figure 3, where
xam is the displacement of the rotor drifting from the equilibrium position. It can be clearly
seen that F is nonlinear intrinsically. If MSR is at the equilibrium position ideally (that is,
xam = 0 µm), the change of magnetic suspension force is linear. However, in the work pro‑
cess ofMSCMG, the high‑speeding rotor does not be suspended at the equilibriumposition
stably; it does move near the equilibrium position reciprocally. When the displacement of
MSR is small (x ≤ 30 µm), the magnetic suspension force can be regarded as linear. When
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the rotor drifts from the equilibriumposition greatly and the rotor’s displacement becomes
larger (x > 30 µm), the magnetic suspension force changes nonlinearly, and obviously, the
farther the rotor drifts from the equilibrium position, the higher the nonlinearity of the
magnetic force.

Table 1. Structural parameters of MSCMG.

Symbol Definition Value

m Rotor mass 16.7 kg
Jr Equator moment of inertia 0.08286 kgm2

Jz Polar moment of inertia 0.1302 kgm2

µ0 Permeability of air 4π × 10−7 H/m
Ω Rotary speed of rotor 0―15,000 rpm

A Cross‑sectional area of the air gap between the Magnetic
bearings’ stator and rotor 1494 mm2

N Number of winding turns in magnetic bearing 150
hm0 Nominal clearance of radial magnetic bearing 0.3 mm
I0 Bias current of radial magnetic bearing 1.3 A
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With respect to the magnetic suspension force F as expressed in (2), we can rewrite it
by Taylor expansion and ignoring these terms higher than 5 order.

F = µ0N2 AI0 · i/h2
m0

− µ0N2 AI2
0 · x/h3

m0
+ 3µ0N2 AI0 · ix2/h4

m0
− 2µ0N2 AI2

0 · x3/h5
m0

− µ0N2 A · i2x/h3
m0

+ on (3)

In practice, themagnetic suspension force ofmagnetic bearing is generally expressed as
a form of displacement stiffnessmultiplying displacement plus current stiffnessmultiplying
control current. Set ki = µ0N2 AI0/h2

m0
, kh = −µ0N2 AI2

0 /h3
m0
, ki h2 = 3µ0N2 AI0/h4

m0
,

kh3 = −2µ0N2 AI2
0 /h5

m0
, ki2h = −µ0N2 A/h3

m0
, Equation (3) can also be rewritten as

F = ki · i + kh · x + ki h2 · ix2 + kh3 · x3 + ki2 h · i2x + on (4)

It can be seen that themodel ofmagnetic suspension force includes not only first‑order
linear terms but also higher‑order nonlinear ones. For the convenience of explanation, the
nonlinear model of (4) is taken as

F = ki′ · i + kh′ · x = (ki + ∆ki)i + (kh + ∆kh)x (5)
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where ki′ = ki + ki h2 · x2 = ki + ∆ki is named as current stiffness, and ∆ki = ki h2 · x2 is the
nonlinear term contained in it. Similarly, kh′ = kh + kh3 · x2 + ki2h · i2 = kh + ∆kh is named
displacement stiffness with nonlinear component ∆kh=kh3 · x2 + ki2 h · i2.

For MSR with four radial control channels in MSCMG, the control current, current
stiffness, and the rotor’s displacement and displacement stiffness in XA, XB, YA, and YB
channels are tested, respectively, and the fitted relationship curves between the current
and current stiffness are shown in Figure 4a when the rotor is located at the center of mag‑
netic bearings. Similarly, the fitted relationship curves between the displacement and dis‑
placement stiffness are shown in Figure 4b when the control current of the rotor is zero. It
can be seen that both current stiffness and displacement are nonlinear parameters.
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Figure 4. (a) Relationship between current and current stiffness. (b) Relationship between displace‑
ment and displacement stiffness.

Set the displacement of MSR drifting from its equilibrium position is within 30 µm
as in case 1 and between 30 µm and 60 µm as in case 2; the change ranges of current stiff‑
ness and displacement stiffness for MSR in MSCMG are listed in Table 2. It is found that
when the rotor drifts a small displacement, the stiffness coefficient changes less and can be
regarded as linear ones, while when the rotor drifts at a large displacement, the stiffness
coefficient changes significantly, neither the current stiffness nor the displacement stiffness
can be regarded as linear one. Additionally, affected by processing error and other factors,
the rotor’s center does not coincide with that of the magnetic bearing completely, the rotor
drifts, and the nonlinearity of the magnetic suspension force increases significantly; it is
necessary to take these nonlinearities of magnetic bearings into consideration to control
MSR stably with high precision.

Table 2. Change ranges of current stiffness and displacement stiffness for MSR in MSCMG.

Symbol Definition Case 1 Case 2

xmax (µm) Maximum displacement 30 60
ki′ (N/A) Change range of current stiffness [609.85, 612.85] [609.85, 621.85]

∆ki′ (N/A) Variation of current stiffness [0, 3] [0, 12]
kh′ (N/µm) Change range of displacement stiffness [−2.654, −14.461] [−2.654, −41.09]

∆kh′ (N/µm) Variation of displacement stiffness [0, 11.807] [0, 38.436]
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Considering the uncertainty of disturbance fd, whichmay be caused by odd harmonic
vibration, unmodeled dynamics of MSR, and so on, the equations of radial translation of
MSR in (1) becomes{

m
..
x = fX = (ki x + ∆ki x)ix + (kh x + ∆kh x)x + fd x

m
..
y = fY = (ki y + ∆ki y)iy + (kh y + ∆kh y)y + fd y

(6)

where fd x and fd y present the components of disturbance fd in the X or Y direction, ix
and iy present the control current in X or Y channels of magnetic bearings, respectively.

Because the form of the dynamic equation in the Y channel is exactly similar to that
in the X channel, the dynamic equation in the X channel is taken as an example to analyze
the control properties of MSR.

m
..
x = ki x′ · ix + kh x

′ · x + fd x = (ki x + ∆ki x)ix + (kh x + ∆kh x)x + fd x (7)

Set x1 = x, x2 =
.
x, u = ix, Equation (7) can be expressed as a second‑order nonlinear

uncertain system 
.
x1 = x2.
x2 = f (x) + g(x)u + d(t)
y = x1

(8)

where f (x) = (kh x+∆kh x) · x/m, g(x) = (ki x + ∆ki x)/m, d(t) = fd x/m, the disturbance
d(t) has upper bound D and |d(t)| ≤ D.

Based on this previous analysis, it is found that whenMSR drifts from its equilibrium
position at a large displacement, the nonlinear variation of the stiffness coefficient is sig‑
nificant, and the accuracy of MSR’s position will decrease; then, it is necessary to design a
nonlinear controlmethod to improve the position accuracy ofMSR to improve the accuracy
of CMG’s outputting control moment.

3. Design of Neural Networks SMC
3.1. Radial Basis Function (RBF) Neural Network

As one of the nonlinear control methods, SMC can constantly adjust the structure
of the control system according to the changes of state variables, such as errors and their
derivatives, to make the system move near the predetermined state trajectory with small
amplitude and high frequency (this movement is named sliding mode). SMC has advan‑
tages such as fast response speed, insensitivity to parameter perturbation and external
interference, and so on, and can improve the robustness of the system. For the nonlinear
system of MSR, there does exist the uncertain influence of stiffness coefficient. To improve
the robustness of the system and eliminate the influence of chattering, it is a good way
to adopt the exponential reaching law in SMC to regard the nonlinear change of the dis‑
placement stiffness and the uncertain disturbance as uncertain disturbance acting on this
system. The adaptive algorithm used to estimate the current stiffness coefficient can adapt
to the dynamic changes of the control object and disturbance by modifying its own char‑
acteristics to improve the compensation accuracy of the control law for suspension force.
The neural network is one kind of algorithmic mathematical model that can process infor‑
mation in a distributed and parallel manner. By imitating the neural network system of
animals and adjusting the connection relationships between various neural nodes, it can
efficiently and intelligently process information. For a nonlinear system, there are not only
high‑order terms whose accurate models are difficult to be established but also some un‑
certain disturbances such as unmodeled dynamics and others, then the neural networks
can be used to approximate these nonlinear uncertain models.

Radial basis function (RBF) is one kind of real‑valued function, and its value depends
only on the distance from its origin point or center, that is Φ(x, c) = Φ(∥x − c∥), which
means that any function satisfying this characteristic belongs to RBF. RBF neural network
has fast data processing speed, strong self‑learning ability, and goodmapping ability to con‑
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tinuous nonlinear systems. The structure of the RBF neural network, as shown in Figure 5,
consists of an input layer, a hidden layer, and an output layer. The data information to
be processed enters the neural network from the input layer; each operation unit hn in the
hidden layer is composed of RBFs, and there is a corresponding weight wn between each
neuron and output function individually. In the output layer, the linear operation with
the weighting function is finished, and the result y is output.
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The algorithm of the neural network based on RBF is

hj = exp
(
−∥xt − cj∥2/

(
2b2

j

))
, j = 1, 2, . . . , n (9)

where xt is input variables, bj is the width of the Gaussian function, and it is generally
a suitable positive scalar, n is the number of nodes in the hidden layer. cj is the central
vector of each neuron’s Gaussian function, and its value should cover the change range of
input variables. The closer cj is to the input value, the more sensitive the function is to the
changes in input.

If wj is the connection weight of each layer, then the output function y of the network
containing weight function is

y(t) =
n

∑
j=1

wjhj(t) (10)

The selection of the connection weight and Gaussian function of the neural network
has an important impact on the control effect of the system. The approximation effect of
the neural network is related to the parameters such as the connection weight wj, cj, and
bj in Gaussian function and other design parameters.

3.2. Design of Neural Networks SMC
The magnetic suspension force has multivariable nonlinear characteristics; it is diffi‑

cult to control theMSR through linear controlmethodswith high‑precision positions. SMC
provides an effective controlmethod for nonlinear systemswith uncertainties, and the neu‑
ral network algorithm has a strong approximation ability to nonlinear functions. Then, the
neural networks combined with SMC can effectively deal with the chattering problem and
improve the position accuracy of MSR. With respect to the model of magnetic suspension
force F = ki′ · i + kh′ · hm, φ = [ f (x) + d(t)]/g(x) is used to present the total uncertainty,
including displacement stiffness and interference, and ρ = 1/g(x) is used to present the
reciprocal of current stiffness; Equation (8) can be rewritten as

.
x1 = x2
ρ

.
x2 = u + φ

y = x1

(11)

where ρ satisfies the condition that ρ ∈ Ω{0 < ρmin ≤ ρ ≤ ρmax}, and φ satisfies the con‑
dition that |φ| ≤ D.
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In the neural network SMC, as shown in Figure 6, x is the rotor’s actual position, xr
is the rotor’s reference position, d is the disturbance, e is the rotor’s position error, and i
is the control current. In this neural network SMC, the neural network is used to approx‑
imate the nonlinear function in the control law, the adaptive algorithm is used to adjust
the weights in the neural network, and the control current i is outputted from this sliding
mode controller to control MSR with the high‑precision position.
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Set the position error e = xr − x as the controller input; the sliding surface can be
designed as

s =
.
e + ce =

.
xr −

.
x + ce =

.
xr − x2 + ce (12)

where c > 0.
Then the following equation can be obtained

.
s =

..
e + c

.
e =

..
xr −

..
x + c

.
e =

..
xr − f − gu − d(t) + c

.
e (13)

where f and g are nonlinear functions related to displacement stiffness or current stiffness,
respectively, both f and g can be approximated by RBF neural network.{

f = WThf(x) + εf
g = VThg(x) + εg

(14)

Where xt is the input of this neural network SMC and xt =
[
e

.
e
]T, J is the jth node

in the hidden layer and, here, j = 5, h =
[
hj
]T is the output of the radial basis function,W

and V are ideal weights of neural networks SMC, εf and εg are the approximation errors
and |εf| ≤ εMf、

∣∣εg∣∣ ≤ εMg.
Because f and g are the ideal output of the RBF neural network, the actual f and g out‑

putted from RBF neural network are replaced by the estimated and highly approximated
f̂ and ĝ, respectively. f̂ = ŴTh f (x) = ŴT ·

[
exp

(
−∥xt − cj∥2/

(
2b2

j

))]
ĝ = V̂Thg(x)= V̂T ·

[
exp

(
−∥xt − cj∥2/

(
2b2

j

))] (15)

where Ŵ is the actual weight for f̂ , and V̂ is the actual weight for ĝ, respectively.
The control law can be derived from (13)

u =
( ..

xr + c
.
e − f̂ + ηsgn(s)

)
/ĝ (16)

where approaching rate η ≥ D, and D is the upper bound of interference.
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3.3. Weight Update and System Stability Analysis
Keeping the control system of MSR stable is fundamental to controlling MSR with a

high‑precision position, and the stability of the neural network SMC algorithm is closely
related to the weight adjustment process of the nonlinear function in the control law. An‑
alyzed the stability of the MSR system by Lyapunov functions, the rules of updating the
network weights can be obtained based on adaptive algorithms.

Substituted (12) into (13), it is obtained
.
s =

..
e + c

.
e =

..
xr −

..
x + c

.
e =

..
xr − f − gu − d(t) + c

.
e

=
..
xr − f − ĝu + (ĝ − g)u − d(t) + c

.
e =

..
xr − f − ĝ 1

ĝ

( ..
xr + c

.
e − f̂ + ηsgn(s)

)
+ (ĝ − g)u − d(t) + c

.
e

=
(

f̂ − f
)
+ (ĝ − g)u − d(t)− ηsgn(s) = f̃ + g̃u − d(t)− ηsgn(s)

= W̃Thf(x)− εf +
(

ṼThg(x)− εg
)

u − d(t)− ηsgn(s)

(17)

where W̃ = Ŵ −W, Ṽ = V̂ − V, f̃ = f̂ − f = W̃Thf(x)− εf, g̃d = ĝd − gd = ṼThg(x)− εg.
Define the Lyapunov function of the closed‑loop system as

L = s2/2 + W̃TW̃/(2γ1) + ṼTṼ/(2γ2) (18)

where adaptive learning rates γ1 > 0 and γ2 > 0.
Taking the derivative of L and substituting (18) into it, we can obtain

.
L = s

.
s+ W̃T

.
W̃/γ1 + ṼT

.
Ṽ/γ2 = W̃T

(
shf(x)−

.
Ŵ/γ1

)
+ ṼT

(
shg(x)u −

.
V̂/γ2

)
+ s

(
−εf − ηsgn(s)− εgu − d(t)

)
(19)

Using adaptive algorithms to update network weights
.

Ŵ = −γ1shf(x)
.

V̂ = −γ2shg(x)u
(20)

Substituted (20) into (19), it is obtained
.
L = s

(
−εf − ηsgn(s)− εgu − d(t)

)
=

(
−εf − εgu − d(t)

)
s − η|s| (21)

Because these approximation errors εf and εg can be limited sufficiently small,
if η ≥ |εf + εfu + d(t)|, then

.
L ≤ 0. If there does exist η0 satisfying η0 > 0 and

η ≥ η0 + |εMf|+
∣∣εMgu

∣∣+ D, then
.
L ≤ −η0|s| ≤ 0. Because L ≥ 0, so s, W̃ and Ṽ are

bounded. For an actual rotor system, both the rotor displacement and its derivatives are
continuously bounded; the rotor position error and its derivative are also bounded and
converge to zero when the time approaches infinity according to the LaSalle invariance
principle, namely t → ∞ , s → 0 , then e → 0 ,

.
e → 0 . In addition, according to these ex‑

pressions of the control law u of SMC, neural network output f̂ and ĝ, adaptive law
.

Ŵ

and
.

V̂, all of them are bounded. The control variables in MSR are all bounded, so the rotor
control system is gradually stable. Figure 7 is the control block diagram of a radial control
channel with neural network SMC for MSR.
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4. Simulation and Experimental Research
In this experimental setup with MSCMG, as shown in Figure 8, the radial magnetic

bearing for MSCMG is a permanent magnet‑biased hybrid magnetic bearing, and the X
and Y directions are separately controlled by these coils in magnetic bearings.
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To approximate the discrete model y(k) = u(k)3 + y(k−1)2/[1 + y(k−1)3], the structure of
the neural network has a 2‑5‑1 form, that is to say, there are two input signals, five neurons in a
hidden layer, and one outputting. The optimized parametersb and c for theGaussian function

are b =
[
1.5 1.5 1.5 1.5 1.5

]T and c =
[

−1.5 −0.5 0 0.5 1.5
−1.5 −0.5 0 0.5 1.5

]
accord‑

ing to the design rules of the Gaussian function. The parameters kp, ki, and kd for general
PID control are optimized and tunned by nonlinear least squares function lsqnonlin() and
least square indicator J =

∫
e2dt in MATLAB software. The initialization parameters and

optimization results are listed in Table 3, and the control parameters of neural network
SMC are listed in Table 4, where W0 and V0 are the initial weight values for weights W
and V .

Table 3. Initial parameters and optimization results of general PID method.

Parameter Initial Value Optimized Value

kp 20 24.3814
ki 15 19.9986
kd 8 5.1787

Table 4. Control parameters of the proposed method.

Parameter Value

c 10
η 3

γ1 10
γ2 1.0
ci [−1.0 −0.5 0 0.5 1.0]
bi 5.0
W0 [0.1 0.1 0.1 0.1 0.1] T
V0 [0.1 0.1 0.1 0.1 0.1] T

4.1. Radial Translation Control of MSR without Gimbal Moving
According to the structural parameters of MSCMG as listed in Table 1, the inputting

displacement of MSR, which is a sinusoidal signal and set as 0.1 sin (1.5 t) (mm), and the
simulation results are shown in Figure 9 when the simulation time is 20 s, where the solid
line presents the given position of MSR, the rotor’s position controlled by general PID is
presented by the dotted line, that controlled by adaptive SMC is represented by the dot‑
ted line, and that controlled by neural network SMC is represented by the dotted line,
respectively. Figure 9a,b illustrate the rotor’s positions and the related positional errors
controlled by three control methods, respectively. It can be seen that the neural network
SMC converges rapidly when t = 0.3 s, and the steady‑state error is only 0.0001 mm; Com‑
pared to neural network SMC, the general PID has a shorter response time, but from the
locally enlarged image, it can be seen that the control effect of general PID on sinusoidal
input is not ideal, the position error is about 0.003 mm. When t = 0.3 s, the position error of
MSR controlled by neural network SMC decreases to 10% of that controlled by the adap‑
tive SMC. Figure 9c shows the time‑varying curves of control signals for three methods. It
can be seen that the neural network SMC not only can reduce the control current but also
can improve the rotor position accuracy; furthermore, the neural network SMC can not
only prevent overcurrent damaging the control circuit but also reduce the consumption
of control power. The current fluctuation in the first two seconds implies the adjustment
process of the controller, and the subsequent smoothing control current curves indicate
the output of the control system is stable. This comparison verifies that the control effect
of neural network SMC is better than that of general PID control and adaptive SMC when
the input signal is sinusoidal for MSCMG without the gimbal moving.
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Figure 9. Radial translation of MSR when the inputting is sinusoidal without gimbal moving.
(a) Rotor’s displacement. (b) Rotor’s position error. (c) Control current.

In the control law of SMC, there are two nonlinear functions f (x) and g(x) need to
be approximated by a neural network algorithm. This algorithm can adjust the weight
value online according to the position error of MSR and continuously improve the approx‑
imation accuracy of the nonlinear function to adjust the control current in real‑time; then,
the position accuracy of MSR is improved accordingly. Figure 10a is the adjustment pro‑
cess of weight valueW in the neural network to approximate the nonlinear function f (x),
Figure 10b is the adjustment process of weight V in the neural network to approximate
the nonlinear function g(x). It can be seen that there is a period of rapid adjustment after
the weight value is initialized, and the nonlinear functionweight value adjustment process
is gradually consistent with the trend of the input signal within 1 s, which indicates that
the algorithm has the ability to quickly adjust and accurately track the input. The weight
adjustment range of these two nonlinear functions changes regularly in different intervals.
The fact that the change ranges of these two functions differ with the change of input re‑
flects that the values of both displacement stiffness and current stiffness are different.
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Set the step signal input into the rotor’s translation direction as 0.1 arctan(20 t), and
simulation results of the control position forMSR are shown in Figure 11, where the simula‑
tion time is 20 s, the given position of the rotor is presented by the solid line, the position of
the rotor controlled by general PID is presented by the dotted line, that controlled by adap‑
tive SMC is presented by the dotted line, and that controlled by neural network SMC is pre‑
sented by the dotted line, respectively. Figure 11a illustrates the control effect of the three
methods on rotor position, and Figure 11b illustrates the error comparisons for these three
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methods. It can be seen that the neural network SMC can adjust rapidly at the initial time
and will reach the steady state after t = 0.2 s, the steady‑state error is only 10 × 10−5 mm,
its control accuracy is better than that of adaptive SMC, and its steady‑state error is only
about 5% of that of general PID. For the general PID, there exists a high‑frequency oscilla‑
tion in the rotor’s displacement and a fluctuation in the control process with a relatively
large amplitude, and the related error is up to 0.001 mm.
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Figure 11c shows the control signals’ changing curves of three methods with time. It
can be seen from these figures that the control signal of the adaptive SMC rises sharply
at time t = 0, what is the response of the control system to the step signal from 0 to 0.1,
and the rising amplitude is greater than the peak value controlled by neural network SMC.
Subsequently, the control system quickly adjusted, and the trend of the control signal was
roughly the same as that of the input signal. After the system reached a steady state, the
control signal of general PID still had small fluctuations, while the control signal of the neu‑
ral network SMC approached zero after the system reached a steady state. This indicates
that neural network SMC can adjust the control signal in real‑time based on the changes of
input; it can reduce the control power consumption and effectively improve the position
accuracy of MSR.

Figure 12 shows the weight adjustment process of the neural network algorithm to
approach the nonlinear function when the step signal is input. Figure 12a illustrates the
adjustment of t weight w to approximate the nonlinear function f (x), and (b) illustrates the
adjustment of the weight v to approximate the nonlinear function g(x). It can be seen from
Figure 12 that when the input signal occurs a step jumping, the adjustment of the weights
oscillates accordingly, there is a slow adjustment process after t = 0.5 s, and the adjustment
of the weights tends to be stable when t = 3 s. This process indicates the relationship be‑
tween the weight adjustment and the input signal function. Since the input signal is an
arctangent function, its step response process is not an abrupt one and gradually tends to
a final value of 0.1 after a sharp rise. Therefore, the weight adjustment process of the non‑
linear function not only indirectly reflects the change of the input signal but also indicates
that the control system can adjust the control law online based on the input signal to make
the control current respond to changes in input in time to ensure the position accuracy
of MSR.
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In order to verify the effectiveness of the neural network SMC to improve the rotor
position accuracywhen the gimbal ofMSCMG is not rotated, the rotor’s speed is 1200 rpm;
these experimental tests of the rotor’s radial translation in one channel controlled by gen‑
eral PID, adaptive SMC, and neural network SMC, which are performed according to sim‑
ulation conditions. The tested position curves in one channel for three control methods
are shown in Figure 13, respectively. From Figure 13a, it can be seen that the average
translational displacement of the rotor controlled by general PID is 10 µm. As shown in
Figure 13b, the adaptive SMC does not significantly improve the rotor position accuracy
yet. For the neural network SMC, the average rotor translation displacement, as shown in
Figure 13c, is up to 5 µm, and the position accuracy is improved by 50% compared to that
of general PID. It is clear that the neural network SMC can effectively improve the rotor’s
position accuracy of radial translation when the gimbal of MSCMG is static.
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Figure 13. Position curves of rotor’s radial translation controlled by differentmethods in one channel.
(a) General PID. (b) Adaptive SMC. (c) Neural network SMC.

4.2. Radial Translation Control of MSR with Gimbal Moving
To output the control moment, the gimbal of MSCMG must be rotated. Generally,

the maximum rotary speed of the gimbal for MSCMG is ± 15◦/s; namely, the maximum
angular velocity of the gimbal is ±1.6328 rad/s. To simulate the impact of gimbal rotation
and other uncertain disturbances on the suspension stability and position accuracy of the
rotor with a rotary speed of 15,000 rpm, both the tilting forces and interference force are
introduced to simulate odd harmonic disturbances and uncertain ones that exist during
actual operation. The interference is set as d(t) = 0.2 sin(1.6328 t) + 0.1 sin(1570 t) + 0.05
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sin(4710 t) + random(σ2 = 0.1) (N), where 0.2 sin(1.6328 t) is the tilting force generated by
the gimbal moving and will make the rotor tilting around its radial axes, 0.1 sin(1570 t) is
the fundamental frequency unbalance vibration, 0.05 sin(4710 t) is the triple frequency one,
and random(σ2 = 0.1) is a random interference acting on MSR, respectively.

When the input signal is a sinusoidal one, the position of MSR controlled by neural
network SMC and PID plus cross‑feedback control method is shown in Figure 14, where
the solid line represents the given position, the dotted line represents the rotor position
controlled by the neural network SMC, and the dotted line represents the rotor position
controlled by PID plus cross‑feedback control. Figure 14a illustrates the rotor position con‑
trolled by PID plus cross‑feedback control; Figure 14b illustrates that controlled by neu‑
ral network SMC. It can be seen that the position accuracy of MSR controlled by neural
network SMC is up to 99.98% while that controlled by PID plus cross‑feedback control is
95%; it is clear that the neural network SMC has a better control effect on improving the
position accuracy of MSR when MSR is affected by gimbal rotation and other uncertain
disturbances. From Figure 14c, it can be seen that when the influence of gimbal rotation
and other uncertain disturbances act on MSR, the position error controlled by neural net‑
work SMC is only 0.5% of that controlled by PID plus cross‑feedback control, the neural
network SMC can effectively suppress external interference and improve the robustness of
MSR. The control currents generated by neural network SMC and PID plus cross‑feedback
control are illustrated in Figure 14d, where the dashed line represents the changes of con‑
trol current in X channels, and the solid one represents that in Y channels, respectively.
We can find out that the fluctuation of control current generated by neural network SMC
is significantly smaller than that generated by PID plus cross‑feedback method, so the neu‑
ral network SMC can suppress this kind of disturbance well. It also can be seen that the
change period of the control current is roughly the same as that of the input signal; the
control system can respond to the changes in the input signal in time to ensure the control
signal controls the magnetic bearing immediately, then the position accuracy of MSR can
be improved accordingly.

When the gimbal rotates andMSR is affected by uncertain disturbances, the difficulty
of controlling the radial translation of MSR will increase significantly, and the weight ad‑
justment process to approximate the nonlinear function in the control law can indirectly
reflect the ability of MSR to maintain high robustness and high position accuracy. Be‑
cause the control method of radial translation in the X channel is the same as that in the Y
channels, and the weight adjustment processes for weights w and v are identical, the ad‑
justment processes of weightsw and v in the neural network algorithm to approximate the
nonlinear function in X channel with sinusoidal input is shown in Figure 15. Figure 15a
illustrates the adjustment process of weight w to approximate nonlinear functions f n(x),
and Figure 15b illustrates that of weight v to approximate nonlinear functions gd(x). It
can be seen that when the tilting torque and interference are introduced, the trend of the
adjustment process for weight w is roughly the same as that for weight v. In the partially
enlarged drawing, we can find out that there does exist some high‑frequency oscillation in
the weight adjustment process. We also find out that these high‑frequency oscillations in‑
dicate the influence of odd multiple‑frequency interference on the control system, and the
online adjustment process of weights w and v can respond to high‑frequency interference
by approximating nonlinear functions in neural network SMC.
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When the input signal is a step one, the rotor’s positions controlled by neural network
SMCandPIDplus cross‑feedbackmethod are shown in Figure 16, where the given position
of MSR is represented by a solid line, the rotor’s position controlled by neural network
SMC is represented by the dotted line, and that controlled by PID plus cross‑feedback
control is represented by the dotted line, respectively. Figure 16a illustrates the rotor’s
displacement controlled byPIDplus cross‑feedbackmethod, and Figure 16b illustrates that
controlled by neural network SMC. It can be seen that the position error of MSR controlled
by neural network SMC is only 7 × 10−5 mm, which is only 1% of the that controlled
by PID plus cross‑feedback method; it is clear that this presented neural network SMC
has a better control effect on improving the position accuracy of MSR when the gimbal
is rotated and other uncertain disturbances acting on it. The comparison of the rotor’s
position error controlled by neural network SMC and PID plus cross‑feedback method is
shown in Figure 16c, it can be found from the partially enlarged drawing in it that the
rotor’s position error controlled by neural network SMC can quickly converge after a step
occurs in the input signal, and the neural network SMC method also has a better effect on
suppressing abrupt disturbance.
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Figure 16d illustrates the control currents controlled by neural network SMC and PID
plus cross‑feedback method; the control signal in the X channel is represented by the dot‑
ted line, and that in the Y channel is represented by the solid line, respectively. It can be
seen that these two control signals both have an obvious adjustment when the inputting
signal steps and the adjustment time of the control current for each step of inputting sig‑
nal is about 0.3 s, which indicates that the response of the control system is fast. Both the
frequency and amplitude of the control signal’s oscillation controlled by neural network
SMC are slightly larger when the step signal occurs, so the neural network SMC can con‑
trol MSR’s position with higher precision when the gimbal of MSCMG rotates, and other
uncertain disturbances act on MSR.

When the rotor is affected by abrupt disturbance, the displacement stiffness and cur‑
rent one of MSR will have obvious nonlinear changes, and the nonlinear function in the
control law of neural network SMC will change accordingly. Regarded the step change
process of the input signal as the process of applying interference torque suddenly, the
adjustment process of weights in the neural network algorithm to approximate the nonlin‑
ear function in X channel is shown in Figure 17, where the adjustment process for weight
w to approximate nonlinear functions f n(x) illustrated in Figure 17a, and weight v to ap‑
proximate nonlinear functions gd(x) illustrated in Figure 17b, respectively. It can be seen
that when the tilting torque and other uncertain disturbances are introduced, the weight
adjustment process will oscillate with large amplitude and high frequency if the input sig‑
nal steps, but it can converge quickly within 0.3 s; this is a timely adjustment made by the
control algorithm according to rotor’s position error. All these simulation results prove
that the neural network not only has the ability to approximate the nonlinear functions
with high precision but also can update its weights online rapidly.
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Figure 17. Adjustments of weights when the inputting is step one with gimbal moving. (a) Weight
w (b) Weight v.

In order to verify the position accuracy of MSR when the gimbal of MSCMG rotates
and other uncertain disturbances act on MSR, the experimental test of MSR’s displace‑
ments controlled by different control methods was performed when the rotary speed of
MSR is 1000 rpm, the gimbal of MSCMG is accelerated from rest at t = 5 s, and its aver‑
age angular velocity is 1.6328 rad/s, Figure 18 illustrate the tested displacements of MSR
in X channel controlled by general PID, adaptive SMC, and neural network SMC, respec‑
tively. It can be seen that the average displacement of MSR controlled by general PID
is 20 µm and that controlled by adaptive SMC is 16 µm, which is improved by 20% of
that controlled by general PID. Furthermore, the average displacement of MSR controlled
by neural network SMR is only 10 µm, which is improved by 50% compared to that con‑
trolled by general PID. At time t = 10 s, the MSR becomes stable, and it is closer to its own
equilibrium position. These experimental results show that the neural network SMC can
effectively improve the position accuracy ofMSRwhen the gimbal ofMSCMG rotates, and
other uncertain disturbances act onMSR. Simulation and experimental results indicate that
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the neural network SMC can effectively improve the position accuracy of MSR inMSCMG.
On the other hand, with respect to the displacement curves of MSR, we do find out some
obvious high‑frequency oscillations in the experimental test and simulation, and the posi‑
tion error in the experimental test is larger. The reason for this phenomenon may be that
there exists some uncertain interference, sensor noise, and other factors still acting onMSR
in actual systems.
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Figure 18. Displacement of MSR in X channel with gimbal moving. (a) General PID. (b) Adaptive
SMC. (c) Neural network SMC.

5. Conclusions
With respect to the nonlinearity of magnetic suspension force for MSR, the influence

of nonlinear changes in displacement stiffness and current one on the magnetic force are
analyzed, a second‑order nonlinear uncertain system model for MSR is established, and a
neural network SMC is designed to control rotor’s radial translation with high‑precision.
When the gimbal of MSCMG does not rotate, the tested average rotor translation displace‑
ment controlled by neural network SMC is up to 5 µm, and the position accuracy is im‑
proved by 50% compared to that of general PID, so the presented neural network SMC
can effectively improve the position accuracy ofMSR and has the ability to suppress distur‑
bance; When the gimbal of MSCMG rotates, and the rotor is disturbed by uncertain distur‑
bances, the tested average displacement of MSR controlled by neural network SMR is only
10 µm, which is improved by 50% compared to that controlled by PID plus cross‑feedback
method, so the presented neural network SMC can not only suppress these disturbances
caused by the moving of gimbal and other uncertain factors but also improve the position
accuracy of MSR. These results of simulation and experiments demonstrate that this pre‑
sented neural network SMC can effectively improve the control accuracy of MSR’s radial
translation for MSCMG to output control moment with high precision for spacecraft.
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