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Abstract: With the aim of improving the energy utilization during the cooperative operation of
multiple trains, this paper proposes an optimal distributed cooperative cruise control strategy to
ensure safe and efficient tracking. A performance index function with distributed characteristics is
constructed by considering the state errors among trains and energy consumption. An LQR-based
optimal design technique is applied to cooperative cruise control to optimize the cooperative control
gain to find the optimal solution. Additionally, the scalar coupling gains are introduced to decouple
the design of the optimal cooperative control gain from the communication topology of trains. Thus,
the proposed strategy is robust for arbitrary directed communication topologies and can eventually
be used to achieve the distributed tracking optimization of multiple trains. The asymptotic stability of
the system is proved strictly by exploiting the Hurwitz and Lyapunov stability theorem. A numerical
simulation example is given to verify the feasibility and effectiveness of the proposed strategy.

Keywords: multiple trains; distributed cooperative control; LQR; energy saving

1. Introduction

As high-speed railway technology is continuously developing and the number of
trains is rapidly increasing, high-speed trains have gradually become an important part
of China’s railway transportation. Undoubtedly, the increasing number of trains enables
individuals to complete more transportation tasks together, which greatly improves the
transportation efficiency. However, the shortening of the distance among trains poses a
great threat to the operation safety. When the operating density increases, guaranteeing
the safety distance among trains become a technical problem [1,2]. Nowadays, a novel
train-centered communication-based train control (CBTC) system via train-to-train radio
communication is proposed as an evolution direction for future transportation [3]. The
train communicates directly with its neighboring trains through a wireless network to
achieve cooperative control for autonomous resource management and active interval
protection [4]. Therefore, a feasible multiple trains cruise control scheme is developed that
can effectively solve the operation interval problem.

The implementation of train-to-train radio communication technology in high-speed
railways has attracted numerous investigators to conduct in-depth research on cooperative
cruise control for multiple trains, and they have obtained fruitful achievements [5–9]. It is an
interesting research topic in which each train dynamically adjusts its speed and position by
communicating with neighboring trains. Ning et al. [5] proposed a cooperative model with
a back-fence communication topology, which was used to design a distributed cooperative
controller for high-speed trains under a moving block system. Li et al. [6] considered
the presence of unknown parameters in the system and proposed an adaptive distributed
cooperative control strategy to identify the unknown parameters. Lin et al. [7] addressed
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the problem of the cooperative tracking control of multiple trains with a distributed speed
and input constraints and put forward the model transformation and convex analysis
method, whereby all trains are guaranteed to run in a stable mode and track the required
speed. Gao et al. [8] addressed the problem of cooperative control for multiple high-speed
trains to achieve the required performance tracking; that is, to ensure that the speed and
position of high-speed trains are respectively limited within the specific speed limit and
allowable distance approved by the automatic train protection and moving authorities.
Wang et al. [9] improved the potential function in [6] and proposed a new cooperative
cruise control strategy, where interestingly, the safety distance between trains could be
dynamically adjusted according to the train speed.

However, the previous cooperative cruise control that only focuses on improving
the operation efficiency (running safety, speed tracking) is not realistic. The energy con-
sumption of the cooperative operation of multiple high-speed trains poses an increasing
threat to the ecological environment, which is not conducive to the long-term development
of railway transportation in the current context of the increasing energy shortage [10,11].
Thus, energy-saving optimization is another indispensable performance index that needs
to be considered in addition to the operation efficiency.

Some existing research reports have token energy-saving optimization as the key
objective for the control problem of multiple high-speed trains. Huang et al. [12] proposed
a comprehensive energy-saving operation optimization method for multiple trains between
multiple stations by considering regenerative braking. Chen et al. [13] aimed to minimize
the total energy consumption for multiple trains by optimizing and updating speed curves
and considering the regenerative braking power losses on the catenary. In order to minimize
the difference between traction energy consumption and regenerative energy consumption,
Su et al. [14] proposed a comprehensive train operation method by jointly optimizing the
train schedule and driving strategy. From the energy-saving perspective, these discussions
can effectively improve the energy efficiency, but they are not distributed cooperative
control methods. The state information of neighboring trains transmitted by the network
are ignored and useless. The minimum safe distance is also not preserved.

Therefore, it is crucial to design a cooperative cruise controller that can simultaneously
solve the operational safety, speed tracking and energy saving issues, which will be another
urgent and attractive problem and of important practical significance. Motivated by the
above analysis, this paper will design a distributed cooperative cruise controller for multiple
trains with energy-saving optimization. Moreover, LQR optimization is widely used in
the energy optimization of a single train operation [15,16], which could minimize the
performance index function by designing a control gain. Since the optimal control gain
of linear feedback can be obtained, it is easy to construct a closed-loop optimal control to
obtain the minimum possible energy consumption [17–20].

In this paper, in order to combine the advantages of both LQR and the distributed
cooperative control, a cooperative control strategy based on a leader-following multiagent
system distributed-consensus algorithm is proposed, and a performance index is con-
structed by considering the relative state errors and energy consumption. An LQR-based
optimal design technique is introduced when designing the cooperative cruise control to
optimize the cooperative control gain in order to find the optimal solution and achieve
the minimum tracking error and energy consumption when it comes to the cooperative
operation of multiple trains. Additionally, it is worth noting that a scalar coupling gain is
also introduced to decouple the design of the optimal cooperative control gain from the
train communication topology, which weakens the impact of the communication topology.
Numerical examples illustrate the rationality of the proposed distributed optimization
approach. Compared with the existing studies, the major contributions of this report are
described as follows:

1. An optimal distributed cooperative cruise control strategy for multiple trains is pro-
posed, in which the LQR optimal design technology is exploited to optimize the
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cooperative control gains, such that the speed of all trains can rapidly converge to the
desired speed curve with an efficiently reduced energy consumption.

2. The proposed control strategy is robust for arbitrary directed communication topolo-
gies. A scalar coupling gain is introduced to decouple the design of the cooperative
control gain by using information on the topological structure characteristics as they
pertain to the system stability, and the optimality of the cooperative control can be
ensured by properly selecting the scalar coupling gain.

3. It is strictly proved that the multiple train system can eventually achieve asymptotic
stability with the proposed optimal distributed cooperative control.

The rest of this report is structured as follows. The longitudinal dynamics model and
the related communication topology principle of multiple high-speed trains are presented
in Section 2. In Section 3, an optimal distributed cooperative control strategy based on LQR
is designed for each high-speed train, and the stability of the system is proved. In Section 4,
two control strategies are simulated and compared to verify the feasibility of the proposed
method. In Section 5, we give a brief summary.

2. Problem Formulation

The present section mainly carries out two works. In the first work, a longitudinal
nonlinear dynamic model that can capture the main characteristics of train dynamics is
constructed. In the second work, we use graph theory to describe the communication
relationships between adjacent trains.

2.1. Dynamic Model of High-Speed Trains

The cruise control system of multiple trains that is investigated in this paper consists
of n trains with double integrator dynamics, and each train is strictly defined as a rigid
particle, which is plotted in Figure 1. In actual operation, the safe distance is far greater
than the length of the train, so it is quite regular to regard the train as a rigid particle
from the viewpoint of practical considerations [21]. In Figure 1, it can be observed that the
longitudinal force of high-speed trains mainly includes three types of forces, namely, the
traction force Bi in the direction of motion, the braking force Ri and the resistance force
Fi in the opposite direction of motion. The resistance force Fi is generally composed of
basic resistance and additional resistance. The basic resistance exists throughout the entire
operation of the train, while the additional resistance only exists on special routes such as
slopes, curves and tunnels.

The basic resistance is mainly composed of two parts, namely, mechanical resistance
and aerodynamic resistance. The mechanical resistance is composed of rolling friction,
which is generated by the train wheels running on the railway track; sliding friction, which
is caused by the wheels sliding on the railway track; impact and vibration resistance,
which is caused by the wheel–rail impact and vibration during rolling; and bearing friction
resistance, which is generated by the relative movement between the bearing and its
inner and outer rings during rolling. The aerodynamic resistance is the running resistance
generated by the relative movement between the train body and the air during the operation,
which includes pressure difference resistance and air friction resistance. When conducting
experimental calculations on these resistances, due to the influence of various factors such
as the train type and operating conditions, standard measurement values cannot often be
obtained. Therefore, it is frequently represented by the Davis equation [22] when designing
the train control system based on the train dynamics model. The additional gravitational
resistance and curvature resistance are considered. The total resistance is expressed as
follows:

Fi(t) = mi(b0 + b1vi(t) + b2v2
i (t)) + migsinθ + 0.004miD (1)

where mi denotes the mass of the train i. b0, b1, b2 denotes the resistance coefficients, which
can be obtained through wind tunnel experiments [23], and its value is impacted by many
factors, such as the train type, operating conditions, etc. The first two terms denote the
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rolling mechanical resistance and the third term is the air resistance. The gravitational and
curvature resistance forces experienced by the train are migsinθ and 0.004miD, respectively.

Based on the above force analysis for high-speed trains, by Newton’s second law of
motion, the nonlinear dynamics model of the trains can be described by the following
differential equation: {

ẋi(t) = vi(t)
mi v̇i(t) = ui(t)− Fi(t)

(2)

in which xi(t), vi(t) denotes the actual position and speed. It is important to note that
ui(t) refers to the braking force or tractive force of each train. The target of this work is to
obtain an optimal distributed cooperative control strategy ui(t), such that the positions
and speeds of each train could be governed by controlling their accelerations, to reduce
the unnecessary energy consumption caused by the train during traction or braking and to
guarantee an adequate level of efficiency and energy-saving with the train operation.

Figure 1. The diagram of n trains cooperative movement.

2.2. Communication Network Topology among Trains

Graph theory is typically used to explain the communication relationships between
agents in multiagent systems. In this section, some facts about graph theory used in this
paper are reviewed. For the running convoy containing n trains, each train is considered
as an agent, and the state information is transmitted through the communication between
the trains to reach a consensus. Let G = (V, E, A) be a directed graph, in which V = {Vi},
i = 1, 2, . . . , n is a set of trains that mean the number of trains and E = V × V is constituted
by a set of edges. If

(
Vi, Vj

)
∈ E|i, j ∈ (1, 2, . . . , n), then it means that these trains can

communicate with each other and there is an edge between them. A refers to the adjacency
matrix of the graph, denoted by A =

[
aij
]

n×n, which is usually used to describe the
communication connectivity between trains. If the ith train can communicate with the
jth train, then aij > 0, otherwise aij = 0. The in-degree matrix D = diag{d1, d2, . . . , dn}
represents the number of the trains that train i can receive information from, and the
Laplacian matrix is described as L = D − A. For a directed graph, L always has an
eigenvalue 0 if it contains a directed spanning tree.

3. The Cooperative Controller Design

This section describes the design of an optimal distributed cooperative control strategy
for multiple trains, which combines distributed consensus algorithms and LQR optimiza-
tion algorithms. Figure 2 depicts the fundamental framework of the proposed control
strategy. The controller for each train is composed of four parts, and the specific details are
elaborated in the following section. On this basis, a performance index function with dis-
tributed characteristics was established, which includes three types of performance indexes:
the relative speed error, relative distance error and energy consumption. Subsequently,
the LQR optimization algorithm was utilized to solve and obtain the optimal cooperative
control gains k1 and k2 to achieve the objective of energy-saving optimization. Finally, the
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concept of a consensus region is introduced, and the necessary and sufficient conditions of
scalar coupling gain c are derived.

Figure 2. Simplified control architecture of the proposed strategy.

3.1. The Basic Cooperative Control Strategy Design

Compared with the traditional CBTC system, the CBTC system framework based on
train-to-train communication is simplified, the number of trackside equipment is reduced,
and the most important action is to decrease the communication delay. Therefore, we
temporarily presumed that there was a communication delay in the tolerable range when
analyzing the system [24]. Then, we proposed a distributed cooperative control strategy
and gave the following definitions:

Definition 1. The control strategy designed for the system model in (1) has the following two features:

1. The rear trains receive information about the states of the preceding train at all times and
adjust their states in time until all trains are tracking the desired speed vr

2. The interval among the trains can be kept at a safe distance under all the transient responses,
and the trains can eventually converge to a fixed distance.

The proposed distributed cooperative control strategy ui(t) for each train is deter-
mined to contain the following four components:

ui(t) = uiα(t) + uiβ(t) + uiτ(t) + uiγ(t) (3)

where uiα(t) = mi ∑n
i=1 aij

(
xj(t)− xi(t) + (j − i)d

)
refers to a formation control term,

which is used to promote the alignment of the displacement state information. In uiα(t),
d is the desired distance among trains, which is always given as the minimum safe
distance of each line. uiβ(t) = mi ∑n

i=1 aij
(
vj(t)− vi(t)

)
represents the interaction of

speed state information between the trains. uiτ(t) = Fi(t) is used to overcome the
effects of basic resistance and gravitational and curvature resistance force. uiγ(t) =
−gimi[(vi(t)− vr) + ε(xi(t)− xr)] indicates that each train can quickly follow the curve
trajectory of the virtual leader train after a period of time, and all trains have a unified
desired speed vr and desired position xr, where ε is a positive constant to overcome the
defect of a large speed error at the initial time caused by the position error. gi is the pinning
gain matrix element, which provides a definition as follows:
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Definition 2. G = diag{gi}, i = 1, 2, · · · , n is used to identify whether the train i can receive the
information from the virtual leader train without a loss of generality; if so, then gi > 0, otherwise
gi = 0.

From the above, the distributed cooperative optimized control strategy for each train
in this paper has the following form:

ui(t) = mi
n
∑

i=1
aij
[
ck1
(
xj(t)− xi(t) + (j − i)d

)
+ ck2

(
vj(t)− vi(t)

)]
+ mi

(
b0 + b1vi(t) + b2v2

i (t)
)
+ migsinθ + 0.004miD

−gimi[ck1ε(xi(t)− xr) + ck2(vi(t)− vr)]

(4)

in which c is the scalar coupling gain. k1 and k2 are the cooperative control gains to be
determined by the designer, which are related to the control performance. In particular, the
function of the first item in Equation (4) is to achieve a distributed consensus among the
trains, and its requirement is that the communication topology needs to contain a directed
spanning tree.

3.2. States Transformation and Coordinate Transformation

When each high-speed train is tracking the desired speed, its real-time speed is
ṽ1(t) = ṽ2(t) = · · · = ṽn(t) = vr and its real-time position is x̃1(t) = x̃2(t) = · · · =
x̃n(t) = xr =

∫ tΘ
tI

vrdt, in which tI denotes the initial time and tΘ represent the end time.
In order to obtain the error dynamics model of the multiple trains system, we defined
x̂i(t) = xi(t)− xr, v̂i(t) = vi(t)− vr as the position error and speed error, respectively. Com-
bining (1) and (4), the error dynamics model of the high-speed train can then be derived:

dx̂i(t)
dt = v̂i(t)

dv̂i(t)
dt =

n
∑

i=1
aij
[
ck1
(
x̂j(t)− x̂i(t) + (j − i)d

)
+ ck2

(
v̂j(t)− v̂i(t)

)]
− gi[ck1εx̂i(t) + ck2v̂i(t)]

(5)

It is obviously observed from model (5) that the existence of the safety distance d is
not conducive to the subsequent transformation of the model into a standard linear system
model. Therefore, the formation tracking problem is transformed into a basic consensus
problem by introducing coordinate transformation (6) [25]. Let

x̂1(t) = ê1(t)
x̂i(t) = êi(t)− (i − 1)d
x̂j(t) = êj(t)− (j − 1)d

(6)

Under (6), we can obtain that

x̂j(t)− x̂i(t) = êj(t)− êi(t)− (j − 1)d + (i − 1)d (7)

Based on (6) and (7), the error dynamics model (5) could be rewritten as{
dêi(t)

dt = êi(t)
dv̂i(t)

dt = ûi(t), i = 1, · · · , n
(8)

where

ûi(t) = c
n

∑
j=1

aij
[
k1
(
êj(t)− êi(t)

)
+ k2

(
v̂j(t)− v̂i(t)

)]
− cgi[k1 ε(êi(t)− (i − 1)d) + k2 v̂i(t)].
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The error dynamics Equation (8) could be formulated as a fundamental linear compact
state-space model:

dÊi(t)
dt

= AÊi(t) + Bûi(t) (9)

where the state matrix A =

[
0 1
0 0

]
, the input matrix B =

[
0
1

]
, and Êi(t) =

[
êi(t)
v̂i(t)

]
;

i = 1, · · · , n denotes the error states of the multiple trains system and ûi(t) indicates the
error of the control input.

3.3. The Optimal Cooperative Control Design

Although the cooperative control gains given freely based on the control performance
can optimize the control performance, the analysis process does not give a clear perfor-
mance index to measure the operation performance and energy consumption, and it is
difficult to consider the optimization problem by integrating the energy consumption and
operation performance [5–9]. To meet the requirements of safe tracking and energy saving
during the cooperative operation of high-speed trains, it is an effective method to design a
cooperative control strategy by adopting optimal control ideas under the constraints of a
performance index function.

Based on state errors among neighboring trains and energy consumption, the following
performance index function is constructed for each train [26]:

Jei(t) = Ke

(
n
∑

j=1
aij
(
êj(t)− êi(t)

)
− εgi(êi(t)− (i − 1)d)

)T

×
(

n
∑

j=1
aij
(
êj(t)− êi(t)

)
− εgi(êi(t)− (i − 1)d)

)

Jvi(t) = Kv

(
n
∑

j=1
aij
(
v̂j(t)− v̂i(t)

)
− gi v̂i(t)

)T

×
(

n
∑

j=1
aij
(
v̂j(t)− v̂i(t)

)
− gi v̂i(t)

)
Jui(t) = Kuû2

i (t)
J =

∫ ∞
0 (Jei(t) + Jvi(t) + Jui(t))dt

(10)

where Ke > 0, Kv > 0 and Ku > 0 are adjustable weighting parameters. The first two
terms represent the relative state error between the trains, which improves the operation
efficiency by minimizing the error. The third term referring the control input represents the
energy consumption for the operation, which is minimized to achieve an energy-saving
optimization.

Since this paper focuses on the multiple trains cooperative operation optimization
problem, and considering that the global optimal solution can be easily obtained by us-
ing the global performance index, the performance index function including all trains is
obtained on the basis of (10), and its global form is given as follows:

J =
∫ ∞

0
ÊT(t)

([
(L + εG)2 0n×n

0n×n (L + G)2

]
Q

)
Ê(t)dt +

∫ ∞

0
ûT(t)Rû(t)dt (11)

where Q =

[
Ke 0n×n

0n×n Kv

]
, Ke =

 Ke 0 0
...

. . .
...

0 0 Ke


n×n

, Kv =

 Kv 0 0
...

. . .
...

0 0 Kv


n×n

and

R =

 Ku 0 0
...

. . .
...

0 0 Ku


n×n

.
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When finding an optimal control input error û(t), the performance index function can
be minimized, which means that the performance index reaches the optimal level when the
system is stable:

û(t) = −(KC ⊗ In)×
[

L + εG 0n×n
0n×n L + G

]
Ê(t) (12)

where K = [k1, k2] is the optimal cooperative control gain matrix to be designed. C=
[

c 0
0 c

]
is the scalar coupling gain matrix. Ê(t) = [ê, v̂]T is the global error states with elements
ê = [e1, · · · , en] and v̂ = [v1, · · · , vn].

Then, the global error dynamics of the closed-loop system is given as

dÊ(t)
dt

= ĀÊ(t) (13)

where Ā = In ⊗ A − (BKC ⊗ In)

[
L + εG 0n×n
0n×n L + G

]
.

3.4. Stability of the System

The criterion for the asymptotic stability of the system and the necessary and sufficient
condition to obtain a scalar coupling gain to satisfy the unbounded consensus region are
given below.

Lemma 1 ([19]). Let λi = (ηi + jξi) and ρi denote the eigenvalues of L and G, where ηi > 0,
ρi > 0 and ξi are the real and imaginary parts of the eigenvalues, respectively. Only when
the matrixes

A − BKC
[

λi + ερi 0n×n
0n×n λi + ρi

]
(14)

are Hurwitz, the closed-loop system (12) can guarantee asymptotic stability.

From Lemma 1, it can be determined that the arbitrary cooperative control gains k1 and
k2 may not achieve consensus under the specified communication topology. In Theorem
1, the method of obtaining the optimal cooperative control gains is given to ensure the
stability of any directed graph including the spanning tree by using the optimal design
based on LQR and selecting the coupling gain c correctly. Before that, we introduce the
concept of the consensus region as shown below.

Lemma 2 ([19]). The consensus region reflects the robustness of the consensus. The larger the
scope of a system’s consensus region, the easier it is to converge. An unbounded consensus region is
more convenient for the design of a cooperative control strategy than a bounded consensus region, so
it is necessary to find an unbounded consensus region for a cooperative control strategy based on the
consensus algorithm. Define the consensus region S: if

s =
[

c(λ + ερ) 0
0 c(λ + ρ)

]
=

[
η + jξ + ερ 0

0 η + ρ + jξ

]
∈ S (15)

the A − BKs demonstrates asymptotic stability.

Theorem 1. Assuming that both Q̄ and R̄ are symmetric positive definite matrices, that is, Q̄ = Q̄T

and R̄ = R̄T , then the cooperative control gain K is obtained as follows:

K = R̄−1BT P (16)

in which P is the solution of the Riccati equation, which is the symmetric matrix, namely P = PT

AT P + PA + Q̄ − PBR̄−1BT P = 0 (17)
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where Q̄ =

[
(λi + ερi)

2Kp 0
0 (λi + ρi)

2Kv

]
, R̄ = Ku

For the distributed cooperative control strategy (4), if the optimal cooperative control gain
is selected according to Equation (16), then the consensus region is unbounded and there is a
conservative consensus region that satisfies

S =

[
η + ερ + jξ 0

0 η + ρ + jξ

]
|(η + ερ), (η + ρ) ∈ [1/2, ∞) , ξ ∈ (−∞, ∞) (18)

The global error dynamics (14) are asymptotically stable if the scalar coupling gain c satisfies
the following conditions:

c ≥ max
{

1
2(sec ondi∈nRe(λi) + ε ∗ maxi∈n(ρi))

,
1

2(sec ondi∈nRe(λi) + maxi∈n(ρi))

}
(19)

Proof. Using Equations (16) and (17), perform the following mathematical transformations
by substituting Equation (14) into the Lyapunov equation:(

A − BR̄−1BT P
[

c 0
0 c

][
ηi + jξi + ερi 0

0 ηi + jξi + ρi

])H

P

+P
(

A − BR̄−1BT P
[

c 0
0 c

][
ηi + jξi + ερi 0

0 ηi + jξi + ρi

])
Since the matrix Ā is a complex matrix, it is known from matrix theory that each element
needs to be conjugated before transposing it; thus, we can obtain that:(

A − BR̄−1BT P

[
c 0
0 c

][
ηi − jξi + ερi 0

0 ηi − jξi + ρi

])T

P

+P

(
A − BR̄−1BT P

[
c 0
0 c

][
ηi + jξi + ερi 0

0 ηi + jξi + ρi

])

= AT P −
[

ηi − jξi + ερi 0
0 ηi − jξi + ρi

][
c 0
0 c

]
PT BR̄−1BT P

+PA − PBR̄−1BT P

[
c 0
0 c

][
ηi + jξi + ερi 0

0 ηi + jξi + ρi

]

= AT P −
[

ηi + ερi 0
0 ηi + ρi

][
c 0
0 c

]
PT BR̄−1BT P

+PA − PBR̄−1BT P

[
c 0
0 c

][
ηi + ερi 0

0 ηi + ρi

]

= AT P + PT BR̄−1BT P + PA − PBR̄−1BT P −
[

ηi + ερi 0
0 ηi + ρi

][
c 0
0 c

]
PT BR̄−1BT P

−PBR̄−1BT P

[
c 0
0 c

][
ηi + ερi 0

0 ηi + ρi

]

= −Q̄ +

([
1
2 − (ηi + ερi)c 0

0 1
2 − (ηi + ρi)c

])
KT R̄K

+KT RK

([
1
2 − (ηi + ερi)c 0

0 1
2 − (ηi + ρi)c

])

Since P > 0, Q̄ > 0, if
[ 1

2 − (ηi + ερi)c 0
0 1

2 − (ηi + ρi)c

]
≤ 0 holds, that is, Equation (19)

satisfies the condition, Ā can achieve gradual stability. Similarly, replace
[

c 0
0 c

]
[

ηi − jξi + ερi 0
0 ηi − jξi + ρi

]
with s in the above transformations, and Equation (18)

meets the requirements, which means that the proof is completed.
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Remark 1. In this paper, we only consider the cooperative cruise operation for multiple trains on a
high-speed railway mainline. In other words, our work excludes the communication topology changes
caused by the following operational conditions: (1) There are other trains merging into the railway
mainline. (2) There are trains exiting from the railway mainline. Therefore, the communication
topology between trains given in this paper is always a fixed directed graph with a spanning tree.
Thus, the matrices L + G and L + εG always have positive real parts for the eigenvalues.

Remark 2. Consider the impact of some irregular events that may exist in reality (e.g., extreme
weather, complex terrain, etc.) on the communication topology. The introduction of scalar coupling
gain c can decouple the design of optimal cooperative control gain K from the communication
topology of trains, which means that the change in the communication topology will not have any
negative effect on multiple trains’ cooperative control. Therefore, the proposed distributed cooperative
strategy is robust for any communication topology.

Remark 3. It is worth noting that the lower bound of the scalar coupling gain (19) is related to the
second smallest eigenvalue of the Laplacian matrix and the largest eigenvalue of the pinning matrix,
because both of them are directly linked to the states’ convergence speed. By properly selecting the
scalar coupling gain, (ηi + ερi)c and (ηi + ρi)c can be used to solve the multiple trains’ tracking
control problem, and it is meanwhile not necessary to recalculate C for different Q̄ and R̄, which
thus reduces the computational complexity.

Remark 4. The weight matrix Q̄ contains the eigenvalues λi + ερi and λi + ρi of global information
L + εG and L + G, which are related to the maximal eigenvalues λn + ερn and λn + ρn, which
means the distributed optimization cannot be achieved. To avoid using the global information
λn + ερn and λn + ρn, we can use their upper bound λ̂n + ερ̂n and λ̂n + ρ̂n in (16), which can be
obtained in terms of the maximal node degree dmax by using the Gershgorin Disk Theorem, i.e.,

λn + ερn ≤ λ̂n + ερ̂n = 2 max
i∈n

{di} = 2dmax

λn + ρn ≤ λ̂n + ρ̂n = 2 max
i∈n

{di} = 2dmax

4. Simulation Results

In this section, the effectiveness of the proposed control strategy is evaluated through
numerical simulations. First, the necessary preliminary work for the simulation is intro-
duced, including some basic parameters of the trains that are required. Secondly, for the
trains with an initial speed of zero, the basic distributed cooperative control strategy, the
control strategy proposed in the literature [7] and the optimal distributed cooperative
control strategy in this paper are simulated, and the control performance and energy
consumption of the trains under these three control strategies are compared. Finally, the
optimal distributed cooperative control strategy is simulated and analyzed for the trains
with a nonzero initial speed, and the consensus capability of this control strategy is verified.

4.1. The Simulation Parameters Setup

There were five trains with an equal weight running sequentially on a straight high-
speed railway with weights of mi = 500 t. The resistance coefficient b0 = 1.16 N/kg,
b1 = 0.00534 Ns/mkg and b2 = 0.000182 Ns2/m2kg were obtained from [27]. For the
desired safe distance among adjacent trains, we chose a fixed distance of d = 5 km. The
simulation time was [0, 2000] s, and the positive constant ε = 10−6. The pinning gain matrix
G = diag{1, 0, 0, 0, 0}. The adjacency matrix corresponding to the directed communication
topology between trains was as follows:
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A =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


In terms to the method of Remark 4, we used twice the maximal node degree dmax = 1

to evaluate the upper bound of the maximal eigenvalue as λ̂n + ερ̂n = 2 and λ̂n + ρ̂n = 2.
We chose Ke =

3
(λ̂n+ερ̂n)

2 , Kv = 3
(λ̂n+ρ̂n)

2 and Ku = 8.

4.2. Zero Initial Speed

In this section, the initial positions and speeds are given in Table 1, and the speed
trajectory of the virtual leader train operating in the following time periods, which are
composed of two acceleration phases, three cruising phases and one deceleration phase, is
also given. The prescribed trajectory is given in Figure 3.
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Figure 3. The speed trajectory of virtual leader train. It is clearly observed from Figure 3 that [0, 100] s
and [1200, 1400] s are acceleration phases. [100, 600] s, [800, 1200] s and [1400, 1800] s are cruising
phases which operate at 60 m/s, 50 m/s and 70 m/s, respectively. [600, 800] s is deceleration phase.

Table 1. The initial speeds and positions of each high-speed train.

i 1 2 3 4 5

xi(t0) 57 km 49 km 42 km 34 km 23 km
vi(t0) 0 m/s 0 m/s 0 m/s 0 m/s 0 m/s

4.2.1. Simulation Test for the Basic Cooperative Control Strategy

Under the action of the basic distributed cooperative strategy, the speed tracking curve
and distance evolution curve of each train is shown in Figures 4 and 5, respectively. It is
clearly observed from Figure 4 that due to the role of uiβ(t) in the control strategy, the speed
of all the trains eventually could achieve a consensus in each operation phase, but the states’
curves trajectory fluctuated for a long time before converging to the desired speed. During
the acceleration phase in [0, 100] s, the desired speed received by each train kept getting
larger, and meanwhile the amount of information that needed to be processed by each train
became larger as the state information was transmitted sequentially, which led to a large
speed error, so the speed curve trajectory oscillated in the time period of [0, 23] s. Obviously,
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the unnecessary energy consumption was caused by the redundant traction and braking
of each train. Moreover, please note that the amplitude of the speed curve trajectory in
Figure 4 within [15, 23] s was too small to be observed easily. All the trains completed
the first acceleration within [0, 100] s until 120 s to reach the desired speed 60 m/s, and
they ran stably within [120, 600] s. At 600 s, the desired speed decreased to 50 m/s, and all
trains gradually completed the deceleration within [600, 800] s until the desired speed was
tracked to 50 m/s at 813 s and ran stably at this speed within [813, 1400] s. At 1400 s, the
desired speed increased to 70 m/s, and all trains completed acceleration within [1200, 1400]
s until the desired speed 70 m/s was tracked at 1419s, and they kept operating within
[1419, 2000] s. In the multiple trains’ distributed cooperative cruise control system, only the
first train always communicates with the virtual leader train, and each of the rear trains
only receives information from the train ahead. Therefore, the distributed cooperative
cruise control can only be realized when the state information of the virtual lead train is
transmitted to all trains. This also means that if the desired speed changes, the previously
maintained consensus will also be broken, and a new consensus will need to be reached by
retransmitting the information.
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Figure 4. The speed tracking curve trajectory by applying basic distributed cooperative control strategy.
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Figure 5. The tracking distance evolution curve between trains by applying basic distributed cooper-
ative control strategy.
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Based on the basic distributed control strategy, the distance evolution curve be-
tween the trains is shown in Figure 5. Owing to the cooperative term uiα, the distance
between the trains is calculated in real time according to the cooperative control algo-
rithm and converges to the desired safe distance di(t) = xi(t)− xi+1(t) = 5 km. From
Figure 5, it is observed that the oscillation of the distance evolution curve before con-
vergence is due to the large initial state error, which is more serious within [0, 23] s and
[100, 120] s. In addition, with the decrease and increase in the desired speed of [600, 800] s
and [1200, 1400] s, respectively, the lead and lag of the rear train speed changes will also
lead to the corresponding decrease or increase in the distance among the trains.

The simulation results showed that the basic cooperative control strategy can effec-
tively avoid collisions among trains while achieving speed tracking. However, its large
state error makes the trains’ tracking performance poor, and the amplitude of the speed
tracking error shows frequent oscillation. This phenomenon will reduce the driving comfort
and increase the energy consumption of the trains.

4.2.2. Simulation Test for the Control Strategy in Reference [7]

The speed tracking curve and distance convergence curve are shown in Figures 6 and 7
under the action of the cooperative controller proposed in Reference [7]. It can be observed
from Figure 6 that all the trains had a good convergence performance during the cruise
phase. At [100, 600] s, the trains reached a consensus in 5 s, and similarly, at [800, 1400] s
and [1600, 2000] s, the trains could converge in 2 s. However, the trains could not accurately
track the desired speed curve in the acceleration and deceleration phases. In the acceleration
phase within [0, 100] s and [1200, 1400] s, the convergence speed was less than the desired
speed, and in the deceleration phase within [600, 800] s, the train speed was greater than
the desired speed. Meanwhile, because the control strategy proposed in [7] requires that
each train can receive the speed information of the virtual leader train, when all trains
achieve a consensus for the first time in about 30 s, the distance between the adjacent trains
will always be stable at d = 5 km and will not change because of the change in the desired
speed. The results showed that the high-speed train could converge to the cooperative state
by using the control strategy in reference [7], but the tracking accuracy was not high, and
it could not accurately track the expected speed when the speed changed. Secondly, the
train’s running state also oscillated frequently before the first convergence, which caused
the train to consume more energy.
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Figure 6. The speed tracking curve under the action of the proposed cooperative controller based on
reference [7].
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Figure 7. The tracking distance evolution curve between trains under the action of the proposed
cooperative controller based on reference [7].

4.2.3. Simulation Test for the Optimal Distributed Cooperative Control Strategy

Regarding the simulation result proposed in Figures 4–7, we observed that although
each train could achieve a speed consensus while keeping a safe distance among the
trains, the curves’ convergence process fluctuated greatly, which causes the multiple trains’
cruise control system to have the disadvantages of having a large overshoot, more energy
consumption and poor running comfort. To improve these drawbacks, we applied the
LQR design technique to decrease the state errors by choosing the appropriate weight
matrices Q̄ and R̄ so that each train state tracking curve converges smoothly and quickly
and meanwhile obtains the appropriate cooperative control gain to improve the operation
efficiency and achieve energy-saving optimization. For the optimal cooperative control

gain, we used K = [0.61241.2648] provided by Equation (16) with Q̄ =

[
3 0
0 3

]
and R̄ = 8

and chose the scalar coupling gain as c = 1.5 ≥ 0.5 as per Equation (19). By applying them
to the distributed cooperative control strategy (4), the new speed tracking curves and the
distance evolution curves were obtained and are shown in Figures 8 and 9, respectively.
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Figure 8. The speed tracking curve trajectory by applying optimal distributed cooperative
control strategy.
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By comparing Figure 8 with Figure 4, the speed evolution curve of the train in Figure 4
showed an obvious oscillation when the speed changed, while Figure 6 was relatively
flat. The speed curves of all the trains in Figure 8 converged to the desired acceleration
curve trajectory at about 10 s in [0, 100] s, and it also only took about 12 s to track the
desired speed of 60 m/s after the acceleration was completing, which was 13 s and 8 s
faster than the curve convergence speed in Figure 4. This means that the speed tracking
curves of the optimal distributed cooperative control strategy had less fluctuation and a
faster convergence time than the basic distributed cooperative control strategy, which could
track the virtual leader train curve trajectory faster. Comparing Figure 8 with Figure 6, the
speed curves of all the trains in Figure 8 converged to the desired acceleration curve faster
than that of the trains shown in Figure 6 within [0, 100] s, and the the virtual leader train
curve trajectory could be tracked accurately in each acceleration and deceleration phase.
Although the convergence time in the cruise stage was slower than that in Figure 6, the time
spent was within a suitable tolerable range. From Figures 5 and 9, it can be known that the
distance curve changed with the speed curve. When the trains track the desired speed, the
safety distance between the trains will achieve a consensus. Because the LQR optimization
technique is adopted to reduce the state errors, the distance curve trajectories in Figure 9
are very smooth, and the convergence speed is fast. It only takes about 112 s, 211 s and
216 s to maintain the desired safe distance among the trains in [0, 600] s, [600, 1200] s and
[1200, 2000] s, while in Figure 5, 120 s, 213 s and 219 s are required, respectively.
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Figure 9. The tracking distance evolution curve between trains by applying optimal distributed
cooperative control strategy.

The simulation results showed that the time can be shortened to achieve cooperative
control and consume less energy at each operation phase based on the proposed optimal
distributed cooperative control strategy.

4.3. Simulation Test for Performance Indexes Comparison under These Three Control Strategies

In this paper, two performance indexes (energy consumption and convergence time)
were selected to compare these three different control strategies. The energy consumption
curves are shown in Figure 10, and the energy consumption of our proposed strategy
was apparently lower than the basic cooperative control strategy. Since the convergence
performance of all the trains were nearly similar with each phase, the acceleration phase
[0, 100] s and cruising phase [100, 600] s were selected for the comparison of the convergence
times. The specific comparison results are shown in Table 2. The convergence times of
the three different control strategies in the first acceleration phase were 23 s, 30 s and
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10 s respectively. The first time that the three different control strategies converged to the
desired speed was 120 s, 105 s and 112 s in the cruising phase, respectively.

Aiming at the energy consumption problem of the train tracking operation, the basic
cooperative control strategy and the control strategy proposed in reference [7] oscillates
strongly during the acceleration phase and when it converges to the desired speed for the
first time. Although it can maintain a good cooperative performance eventually, the shock
caused by the control input will lead to more actions of internal actuators that consume
more energy than the optimal distributed cooperative control strategy proposed in this
paper. The optimal distributed cooperative control and the optimal control for each train
both experience the cooperative control gain when the appropriate weight matrix is chosen
to obtain a flexible control strategy, which thus improves the train operation performance.
In general, the optimal distributed cooperative control strategy saved 13.02% and 8.99%
energy consumption compared with the basic cooperative control strategy and the control
strategy in reference [7].

Table 2. Three different control strategies are compared from the perspectives of convergence time
and energy consumption.

Convergence Time within
Acceleration Phase [0,100] s

Convergence Time within
Cruising Phase [100,600] s

Energy
Consumption

The basic distributed cooperative control 23 s 20 s 3.0700 × 104 KJ
The cooperative control in reference [7] 30 s 5 s 2.9340 × 104 KJ
The optimal distributed cooperative control 10 s 12 s 2.6703 × 104 KJ
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Figure 10. The trajectory diagram of the energy consumption curve under three different control
strategies, where e1 refers to the basic cooperative control strategy, e2 refers to the cooperative control
strategy in reference [7] and e3 refers to the optimal distributed cooperative control strategy.

4.4. Simulation Test of Consensus Ability of Optimal Distributed Cooperative Control Strategy
under Nonzero Initial Speed

In this section, we give the initial position and speed and the virtual lead train speed
curve trajectory again, as shown in Table 3 and Figure 11, respectively.

Table 3. The initial speeds and positions of each high-speed train.

i 1 2 3 4 5

xi(t0) 64 km 53 km 48 km 41 km 34 km
vi(t0) 72 m/s 57 m/s 38 m/s 22 m/s 11 m/s
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Figure 11. The speed curve trajectory of virtual leader train.

Based on the optimal distributed cooperative control strategy, the speed tracking
curve and distance evolution curve of each train at a nonzero initial speed are shown in
Figures 12 and 13, respectively. As shown in Figure 12, the trains with different initial
speeds could track the desired speed curve with a good tracking performance and excellent
control effect of rapidity and accuracy. During the whole tracking operation, due to
the large difference in the initial speeds, it took more time for all the trains to achieve
consensus within [0,100] s than in the following phases, and the speeds of all the trains
were aligned after about 12 s of information transmission. In the following operation
phases, the consensus of each train did not change obviously due to the change in speed.
Moreover, the distance curves between the trains are constantly changing with the change
in the train speed in Figure 13. When all the trains reach a consensus, all the distance curves
are kept at a given distance value, and during the whole simulation process, all the trains
keep a safe distance. The simulation results fully demonstrated the consensus ability of
the optimal distributed cooperative control strategy, which means that the control strategy
could be used to solve additional problems regarding multiple trains’ cooperative cruise
control at different initial speeds.
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Figure 12. The speed tracking curve trajectory by applying optimal distributed cooperative
control strategy.
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Figure 13. The tracking distance evolution curve between trains by applying optimal distributed
cooperative control strategy.

5. Conclusions

In this paper, the problem of optimal distributed cooperative cruise control for multiple
trains is studied. An optimal distributed cooperative control method based on LQR is
proposed to achieve the displacement and speed consensus of all trains with energy-saving
optimization. The cooperative control gain was obtained by using LQR optimization to
minimize the relative state errors and energy consumption during the cooperative operation
of multiple trains. Moreover, the proposed strategy is robust when it comes to arbitrary
directed communication topologies with a sufficient condition for the scalar coupling gain.
The stability of the system was proved by the Hurwitz and Lyapunov stability theorem. The
feasibility of the designed optimal cooperative control algorithm was verified by comparing
the energy consumption of the basic cooperative control algorithm through a simulation.
Additionally, the comfort of the train during the distributed cruise and the delay in the
communication network were not considered, which will be investigated in the future.
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Notation

The symbol ⊗ is used to represent the Kronecker product. In is used to represent an identity
matrix of n. 0n×n denotes a n × n- dimensional matrix with all components being equal to 0. The
superscript T is the transpose of the matrices. The superscript H is the conjugate transpose of the
matrices.
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