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Abstract: This paper presents a novel approach for analyzing and optimizing motion coupling in
the coordinated operation tasks of flexible space multi-arm robots (FMSRs). The method integrates
motion coupling between multiple arms and system stiffness to improve the motion and force
accuracy of FMSRs by optimizing the configuration. First, a comprehensive model of an FMSR is
established using the hypothetical modal method. Then, the motion coupling relationship among
multiple arms is analyzed, and a motion coupling degree evaluation index is developed. Furthermore,
the constraint relationship of coordinated operation is analyzed, and an equivalent stiffness model for
the coordinated operation of the FMSR is formulated along with a stiffness evaluation index. Based
on these analyses, the motion trajectory of the FMSR is optimized by comprehensively considering
both the motion coupling degree and the equivalent stiffness factors. Finally, numerical simulation
experiments are conducted to validate the proposed method, and the results show that the accuracy
of the FMSR can be improved by 40% using this approach.

Keywords: flexible manipulators; multi-arm robots; motion coupling; equivalent stiffness; trajectory
optimization

1. Introduction

The coordinated operation of flexible space multi-arm robots (FMSRs) has become
increasingly important in the field of robotics due to its wide range of applications [1].
However, the inevitable flexibility of the robot’s links can cause vibrations during motion,
resulting in low motion accuracy. In addition, the complex coupling relationship in the
motion of FMSRs further reduces the motion accuracy. These problems can lead to changes
in the force of the arms and further lead to force unbalance between the arms, causing
instability in the FMSR’s control system when performing coordinated tasks. The different
ways of improving the motion accuracy of dual/multi-arm robots with rigid links are no
longer applicable [2]. Therefore, it is imperative to develop a method that can improve mo-
tion accuracy by reducing the vibration amplitude and coupling degree, thereby ensuring
successful task execution.

Existing research has mainly focused on developing control strategies and trajectory
optimization methods to suppress vibration and improve motion accuracy in manipula-
tors [3]. However, for FMSRs with high coupling and non-linear characteristics, active
vibration control parameters are difficult to optimize optimally. In addition, most active
vibration control methods require the use of external sensors, and the controller structure
is complex and costly. In contrast, the trajectory optimization method determines the
objective function by building a dynamic model of the flexible linkage mechanism and then
uses a heuristic algorithm to optimize the trajectory that can achieve the lowest vibration
and coupling during motion [4,5]. At present, there are three main methods for improving
the accuracy of flexible robots through trajectory optimization: reducing the degree of
motion coupling, improving stiffness, and energy-based methods.
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Liu [6] designed a minimum disturbance controller based on energy conservation
to optimize the disturbances generated by the vibration of a dual-arm space robot and
improved the tracking accuracy. Cui [5] et al. established an optimal objective function to
minimize the residual vibration of a flexible manipulator using joint acceleration constraints
and boundary conditions and performed joint trajectory optimization using a conventional
PSO algorithm. Zhang [7] established an optimization model for residual vibration and
energy consumption considering constraints such as joint stiffness. However, the methods
based on energy cannot guarantee the accuracy of the external force while improving the
positional accuracy. The accuracy of the force is very important in coordinated operations;
otherwise, the controller may become unstable, and its equipment may become damaged.

Numerous researchers have sought ways to improve the stability and accuracy of
robots through the stiffness matrix. In one study [8], a multi-objective optimization method
based on maneuverability and equivalent stiffness was proposed to obtain optimized oper-
ating postures with better equivalent stiffness while avoiding singular conformations and
staying away from joint rotation limits. Lin [9] established a spatial distribution mapping
of the dexterity performance index, the equivalent stiffness index, and deformation for
the end of industrial robots in the whole working space, respectively, and selected the
robot end position by equivalent stiffness mapping. Qu [10] used the half-axis length of the
equivalent stiffness ellipsoid as an adaptation function and performed pose optimization
of a seven-axis redundant manipulator based on a genetic algorithm. Cai [11] obtained an
empirical formula for the displacement prediction of vibration intensity by the equivalent
stiffness matrix and optimized the attitude based on this empirical formula to obtain a
vibration-stabilized machining posture. ABB [12] used the equivalent stiffness model for
the real-time compensation of machining deformation. In another study [13], the motion
accuracy of the manipulator was improved by establishing and optimizing the stiffness
index of the task direction. The authors of [14] sought to find a way to improve the stability
and accuracy of the robot system through the force-deformation relationship described by
the stiffness matrix. Although the above studies improve the accuracy and stability of the
robot, they do not consider the motion coupling characteristics of the system. For FMSRs
with strong coupling properties, optimizing only the equivalent stiffness may enhance
the degree of motion coupling in certain configurations, particularly the degree of motion
coupling between the arms. Thus, such methods suffer from the same problems as the
energy-based methods. In addition, these stiffness-based methods are mostly specific
to a single manipulator and are not directly applicable to FMSRs, which have complex
constraint relationships.

To address the coupling relationship between the manipulator and the base, Yan [15]
optimized the motion trajectory of the manipulator by considering the complex factors
involved in coupling. Qing [16] et al. proposed a trajectory planning method for a dual-arm
space robot that minimizes the disturbance of the base pose caused by motion coupling.
In [17], a rigid—flexible hybrid dual-arm coordinated path planning method based on
maneuverability optimization was proposed. Several studies [15-17] concern the problem
of accuracy caused by motion coupling between robots and the base or the operated object.
Numerous researchers have investigated the motion coupling of manipulators. Shum [18]
described the magnitude of the perturbation caused by the manipulator’s motion to the
base and introduced the concept of the coupling factor to investigate the velocity coupling
between the manipulator and the base. Xu [19] developed a new dynamic coupling model
for free-floating space manipulators, which overcame the challenge of measuring the
coupling characteristics. According to the conservation of momentum equation, Zhou [20]
obtained a speed relationship matrix between the space manipulator base and the joint
or capture target and proposed the dynamic coupling coefficient and coupling ellipse to
measure the degree of coupling. In other studies in the literature [18-20], the kinematic
coupling between the base and joint end of a space manipulator has been investigated, and
evaluation metrics such as coupling factors and coupling coefficients have been developed.
Deshan [21,22] established a coupling model between a flexible base and a manipulator
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and defined a metric to quantify the degree of motion coupling between the flexible base
and the manipulator. Xu [23] constructed a vibration minimum objective function based
on the relationship between joint motion and the vibration of the flexible body. Du [24]
derived a dynamic coupling matrix for a flexible space manipulator and used a multi-pulse
robust input shaper to suppress the vibration of the flexible structure. The above studies
have only analyzed the motion coupling of a single manipulator, but the motion coupling
between multiple arms caused by vibrations is not yet clear. Therefore, these results cannot
be directly applied to the coordinated operation of FMSRs.

Considering the advantages of the above three methods, we decided to use motion
coupling combined with the stiffness method to improve the motion accuracy of FMSRs.
However, the above studies also have the following problems: () The methods based on
energy or stiffness cannot guarantee the accuracy of the external force while improving
the positional accuracy, which is very limited in coordinated operations. @) The motion
coupling between multiple arms caused by vibrations is not yet clear. (3 Due to the
complicated constraints involved in the coordinated operation of FMSRs, the existing
research on rigid—flexible motion coupling and the stiffness analysis of manipulators
cannot be directly applied to FMSRs.

This paper proposes a novel method for analyzing and optimizing motion coupling
in the coordinated operation of FMSRs. In Section 2, we construct an FMSR model. In
Section 3, we analyze the inter-arm motion coupling relationship and design an evaluation
index for the coupling degree. In Section 4, we develop an equivalent stiffness model for
the FMSR and analyze the constraint relationship involved in its coordinated operation and
then design a stiffness evaluation index. In Section 5, by integrating the motion coupling
degree and equivalent stiffness, we optimize the motion trajectory of the FMSR. In the
last section, a simulation test demonstrates the effectiveness of our method in significantly
improving the motion accuracy of the coordinated operation of FMSRs.

2. FMSR Modeling
Let an FMSR have N arms (N > 3), where the joint degree of freedom of the i arm
(i=a,b,c,---)isn;. Athree-arm robot is shown in Figure 1.
The symbols in Figure 1 are defined as follows:
%1 The inertial coordinate frame;
%o The centroid coordinate frame of the base;
>¢ The end coordinate frame of armi (i = a,b,¢,--- ,N);
¥k The coordinate frame of link k of arm i k=1,2,---,m),;
n; The degrees of freedom of arm i;
Ck  The centroid of link k of arm i;
J& The joint between links k — 1 and k of arm i;
¥ The length of link k of arm i;
The vector connecting ]lk to Cl’f ;
b¥  The vector connecting C¥ to JF;
b? The vector from the centroid of the base to the first joint of arm i;
ro The position vector of the base centroid;
¥ The end position vector of arm ;
rf The position vector of ]lk ;
rf‘ The position vector of link k’s centroid of arm i.



Actuators 2023, 12, 198

4 0f 23

Figure 1. Schematic diagram of a three-arm robot.

2.1. Coordinate Transformation of Flexible Link

A flexible link is considered a continuous elastic structure. The floating frame of
reference formulation is used to describe the deformation of the flexible link in this paper.
We use the link k — 1 of arm i, shown in Figure 1, as an example for specific analysis
and establish its coordinate frame according to the modified Denavit-Hartenberg (MDH)
method, as shown in Figure 2. Z;‘_l and Zif are the first and last coordinate frames of link
k — 1, respectively. Let there be two coordinate frames, Z?il "and Zi-‘ !, at the end of the link
to describe the posture before and after the link deformation. For a rigid link, the attitude
of both coordinate frames coincides with Zif_l.

Figure 2. Diagram of the coordinate frame of the flexible link k — 1 of arm i.
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For defining the transformation that transforms the vectors defined in Z? to their
description in Zf‘l, the transformation matrix can be written as

K17, = Trans(X, IF 1) (§ 71 A;)Rot(X, af"1)Rot(Z, 6F ) Trans(Z, d¥) 1)

where Trans(X, lf_l) denotes the transformation matrix that translates lf-‘_l along the
X-axis, Rot(X, 0(;‘*1) denotes the transformation matrix that rotates zxi.‘*l around the X-axis,
and so on [25]. ll’.cfl, ocffl, 9;‘, and d;‘ denote the parameters of MDH. ﬁflAi denotes
the transformation matrix of the flexible deformation, and its expression is given in the
literature [26].

R R d
FA = ¢i7:Z 1(li;2 k 11k 1 ~oix (i) 811;_)(1(111;_1) @)
¢y () ¢k () 1 &7 i)
0 0 0 1
k-1 A1
& (x) = o) W8 6 () = o) Wi ()8
];Iy—l ];]_(—1 (3)
1) = 5 W ] gh ) = & W () Ek!
bi y (x) = '):1 ij (X)C]'_Zr ¢i 7 (x) = .21 ij (x)gj_y
j= j=

where e’l‘__Yl (x) denotes the sum of the first ni-{_l orders of vibrations of arm i’s link k — 1,
Wl.kjfl (x) is the j-th order vibration modal function of arm i’s link k — 1, g;‘}l is the com-
ponent of the j-th order modal coordinate of link k — 1 along the Y-axis, and so on. Since

the longitudinal and torsional vibrations of the flexible link are generally neglected, it is
known that elf__)g(lf.(_l) =0, gbff__xl(lf-‘_l) =0.

2.2. Kinematic Model

Considering the flexibility factor, we extend the mathematical model in [27] to FMSRs.
Let \T denote the transformation matrix of the base coordinate frame ¥ with respect to the
inertial frame ¥;. According to Equation (1), the link transformations can be multiplied
together to find the single transformation that relates frame X to frame X:

I, = ITAT, - i T @)

The angular velocity of the k-th link’s centroid and the angular velocity of the end
under the inertia frame X are as follows:

ko, k-1 o
i = wo + ) (20';) + 1 (JR/w] ) +[RF Wl )
j=1 j=1
1 . 1
wf=wo+ ) (645) + 1 (IR}wh) ©®)
k=1 k=1

where w( denotes the attitude angular velocity of the base spacecraft. zif is the unit vector
along the frame Zi-‘ Z-axis described in . ;{Ri is the rotation matrix that relates frame Z;‘ to
frame ¥, and its expression can be obtained from Equation (4). kwé‘f is the angular velocity
of link k’s centroid relative to the =¥ frame, k_lw;i_l is the angular velocity of the end of

link k — 1 relative to the Z;‘_l frame, specified as follows:

. . T
Cwlf = R() [0 gk y(ab) ¢ ,(ab)]
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k—1w£<*— (){0 (Pk 1(lk ) ¢f__zl(lf_1)}T-

where R(-) is a function of the Euler angles, which represents the mapping matrix from the
Euler angles’ speed to the angular velocity. Since the vibration characteristics of the flexible
link in this paper exhibit low amplitude and high frequency, R(-) can be considered as the
identity matrix. In this paper, symbols are defined in the coordinate frame indicated by
their left superscript, and symbols without a left superscript indicate the description in the
inertial frame.

The centroid linear velocity of link k and the linear velocity of the end under the inertia
frame ¥ are expressed as follows:

k-1

vfc—vo+w0xrfo+]é((zféji) ><( ))+Z( RTw (rﬁ“—r{))%— Z;Ri(fv{*)+kRk k@)

j=1

vf:vo+w0><ffo+]:l2il(zi'{9?x (T _r>>+ZkR Z( SRl x (’f—ri‘c)) ®

where ) denotes the linear velocity of the base spacecraft centroid, 0 = rkc — 1y, and
0 = —n. kuke is the linear velocity of link k’s centroid relative to the Zk frame; specifi-
cally,

T
k ke __ -k
off = Jody(ah) & ,0ah)]

T
k=1, k-1 _ 1k
Ui [0 B (I E (0 1)} :

Using Equations (6) and (8), a new equation is derived as follows:

. o° ' ) .

X = M = Ty, + 00, + 5, )
1
where i, = [vo! on]Tdenotes the differential vector of the base pose; 0; = [0}, 62, ---, fo]T
- . T i T
denotes the joint angle of arm i; §; = [E,\T{i EEZ-] &y = { (:%/i_l 6\1(1'_2 CI\{@_]‘ Czi_n?i } ,
. T

and &, = [ ClZi_l Clzi_z Cléi_j g;li_nni } . ’;T};i_j is the Y-axis component of the j-th or-

der modal coordinates of arm i’s link k. ]E’ denotes the base-arm Jacobi; ]f’ denotes the joint-arm
Jacobi; and f denotes the modal-arm Jacobi.

The mapping relationship between the end velocity of the flexible three-arm space
robots and the base velocity, the joint angular velocity, and the modal velocity can be
obtained as follows:

X}y
ko= Joio + T+ = [y Jo T] | 0 (10)
¢
where %, = [ w7 w6 = [07 8T o7 & = [&7 &7 &),

) Ji
Jo=[8" T ?T]Trfezl I }Jg: J;

I 5
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3. Motion Coupling Analysis of the FMSR
3.1. Kinematic Decoupling

In the case where the position and attitude of the base of the FMSR are free, it is
necessary to decouple the kinematic equations using the momentum conservation law. In
this section, the momentum equations of the FMSR are derived.

The linear momentum of the FMSR can be expressed as the sum of the linear momen-
tum of each link.

N [ 1
P =myvy+ ) (Z mi»‘vé“) (11)
i=1 \k=1

where my is the mass of the base, and mf is the mass of arm i’s link k. N is the number of
arms.
The angular momentum of the FMSR can be expressed as follows:

L=Ly+ryxP (12)

where Ly denotes the angular momentum of the FMSR with respect to the base centroid,

written as

N n;

Ly = Iyw, + Z (Z (Ii-‘wﬁ-“ + mi-‘rﬁ-‘o X vf-“)) (13)
i=1 \k=1

where I, and Ii-‘ denotes the base inertia and link inertia, respectively.
By combining the linear and angular momentum given in Equations (11) and (12),
respectively, the momentum equation for the FMSR can be derived as follows:

[IL):| = Hpxp, + i(H?Bz) + i(H?gl) (14)

where Hy, H?, and Hf‘ is given in Appendix A.

When the position and attitude of the base are free, the linear and angular momentums
of the FMSR are both equal to zero, denoted as L = P = 0. Based on this, the momentum
conservation equation of the FMSR in the floating base mode can be derived as follows:

m — [H, H,) [ T+ HE=0 (15)

whereHy = [ H? HY - HY - H‘ﬁ]]andH‘i:{Hj H: - Hf - HZ‘E]]

1 1
Since the initial momentum of the FMSR in the floating base mode is zero, we can obtain
the velocity mapping relationship between the modal coordinates and the base, and the
velocity mapping relationship between the modal coordinates and joint angles.

| Ib;;]'
[6] e 6

where ],z and Jg are functions of Hy, Hy, and Hy.

Substituting Equation (16) into Equation (10), we obtain the mapping relationship

between ¢ and x,, which can be expressed as follows:

X, = (Ub To) { ﬁg } +Ig>é = J & (17)
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where ]eg is the Jacobi matrix of the modal coordinates and the end velocity. J o is denoted

in chunks as follows:
aa ]ba Ica
Je= U Jov T (18)

ac be Icc

3.2. Degree of Motion Coupling

The diagonal elements in Equation (18) represent the mapping relationship between
the modal velocity of each robotic arm and its corresponding end velocity. The off-diagonal
elements of the matrix represent the mapping relationship between the modal velocity of
an arm through the base to the end velocity of another arm, which is referred to as the
inter-arm modal motion coupling relationship.

To characterize the influence of modal velocity on the end velocity of the FMSR, metrics
for the degree of modal velocity coupling must be defined. Various mathematical metrics
have been proposed by scholars to quantitatively evaluate the degree of the singularity

of Jacobi matrices. In this paper, the operability degree w = y/det(JJ) is chosen as the
comprehensive index to evaluate the degree of modal velocity coupling, which can reflect
the overall influence of modal coordinates on the velocity of the FMSR. The operability
values we, of J.;, wep of Jp,, and wy, of J,, are used to evaluate the degree of two-by-two
coupling of the three-arm end velocity caused by the modal velocity.

Weqg = 1/ det(]ca];ra)/wcb =V det(]cbfcrb)/wba =\ det(]ba]Eg) (19)

4. Equivalent Stiffness Analysis of Coordinated Operating System for the FMSR

Figure 3 illustrates the coordinated operation system of an FMSR with a rigid body,
which is subject to the following assumptions:

> The end gripper of each robot arm and the rigid body are in a state of no relative
displacement;

The entire coordinated operating system of the FMSR is in static equilibrium;

The positional deformation generated in the system satisfies the small deformation
condition.

>
>

Figure 3. The coordinated operation of an FMSR with a rigid body.
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The rigid body coordinate frame ¥, is established with the centroid of the rigid body as
the origin. The grasping coordinate frame X¢(i = a,b, c - - -) is established with the grasping
point at the end of the arm as the origin. It is assumed that the rigid body has infinite
stiffness and does not deform under the action of the output force at the end of the robot
arm and the external environmental force. To establish the virtual grasping coordinate
frame X;, frame X is translated to the origin of X, as the virtual grasping point.

The solution of the stiffness matrix of the flexible manipulator is given in the litera-
ture [13]. The total deformation at frame X is the sum of the deformation generated by
joint flexibility, linkage flexibility, and the servo.

Axei = CeiFei (20)

where the flexibility matrix C; of the manipulator represents the linear relationship between
the external force F,; applied to the end and the resulting deformation Ax,; caused by the
force. The equivalent stiffness matrix Ke; of the manipulator end can be represented by the
inverse matrix Ce; ! of the flexibility matrix C,;.

4.1. Motion Constraint Relationship

In the inertia frame X, the frame %, the frame ¥, and the frame X,; can be mathe-
matically represented as follows:

T s Toi
Xo = |:€0(:>:|’ Xej = |:¢%:|/xoi = l:q;)%] (21)

where the position vector is represented by r,,#¢, and r,; respectively. Since the axes
orientation of the frame X,; coincides with that of X, the attitude angle is represented by
@o and ¢, respectively.

Assuming a sufficiently large stiffness of the body and negligible deformation under
external forces, the origin of frames X, and X,; will always coincide. Therefore, the pose
constraints between the body and the virtual grasping point can be expressed as follows:

’

To = toi (22)
4.2. Force Constraint Relationship
In the X; frame, the output force of the FMSR can be represented as follows:

O A N R Y 23)

of oi X fei 7 Mei
where f,; and n,; are the output force and torque at the end of each arm, p ; is the position

X
vector from the centroid of the rigid body to the end of each arm, J ; = [153 p Ei } is the
3 3

grasping matrix of the arm, and p_;* denotes the antisymmetric matrix of p_;.
The total external forces acting on the body can be expressed as follows:

_ | | Xfoi| T
R=h] = g =R 9
whereJ, = [J, JL, TL] " is the grasping matrix of the FMSR, and F, = [Fl, FL, FL] '
denotes the end output force of the FMSR.

4.3. Coordinated Operating System Equivalent Stiffness Model

Applying the principle of virtual work, the total work performed by the F, force can
be expressed as follows:

FiAxo =Y Fhidxg =Y FiAx (25)
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F, and Ax, satisty Hooke’s law.
C.F, = Axo =) Axy (26)

where Ax, denotes the positional deformation produced by the F, force; C, denotes
the equivalent flexibility matrix of the multi-arm robot system at the origin %,; and
Axoi = CF;, C,; denotes the flexibility matrix of each robot arm in frame %,;.

Rectifying Equations (23), (25) and (26) yields
Co=Y Coiy Coi=J Cel! (27)

Then, the equivalent stiffness matrix of the coordinated operating system of the FMSR
can be expressed as follows:

T
K, =Y Ko =) JoiKeiloi (28)

Equation (28) characterizes the stiffness performance of the coordinated operating
system at the frame X,. K is a 6 x 6 matrix, where each element represents the linear
relationship between force and position deformation, as well as moment and angular
deformation, resulting in different dimensions. Therefore, to facilitate the analysis, the K|,
matrix is divided into four 3 x 3 submatrices.

K K
Ko = | K rf} 29
|:KfT KTT ( )

where K ff denotes position stiffness; K;; denotes attitude stiffness; and K, f and K fr denote
position—attitude coupling stiffness.

4.4. Equivalent Stiffness Evaluation Index

Assume that the output of the unit force f by the coordination operating system
satisfies Equation (30).
ff=1 (30)

Applying the definition of stiffness, Equation (30) can be reformulated as an expression
for the stiffness matrix in terms of deformation, given by

d"Ky"Kppd = 1 (31)

Due to the symmetry and positive definiteness of the stiffness matrix, K¢s can be de-
composed into Kyr = UvU' using singular value decomposition yields, where
U= [uy wup wuz]isa matrix composed of eigenvectors, and V is a diagonal matrix

composed of singular values A, Ay, and A3. Thus, Equation (31) can be expanded as
follows:
AM?
d'u Ay? u'd=1 (32)
A3?

Assuming that m = w1 'd, n = up'd, and k = u3"d are substituted and expanded in
Equation (32), the following ellipsoidal equation can be obtained:

m? n? k2

P v R v

=1 (33)

Equation (33) represents the equivalent flexibility ellipsoid equation, where the half-
axis lengths of the three principal axes are the reciprocal of the singular values of the stiffness
matrix Ky, and the principal axis direction coincides with the corresponding eigenvectors
of the stiffness matrix, respectively. The . vector pointing from the origin of the ellipsoid
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to any point on the surface of the ellipsoid satisties Equation (30), which represents the
flexibility of the coordinated operating system along r.;. The larger the modulus of 7y,
the weaker the ability to output force in that direction, and vice versa. Therefore, the
shortest half-axis of the flexibility ellipsoid indicates the best stiffness performance of the
coordinated operating system.

When operating in interaction with the environment, the FMSR establishes a constraint
coordinate frame with the contact point as the origin, and the Z-axis of the constraint
coordinate frame is aligned with the normal direction of the constraint surface. In this
context, the stiffness model of the system is established at the constraint coordinate frame,
and let 7y, , 1 € R3*1 be the vector along the Z-axis of the constraint coordinate frame that
satisfies Equation (30). This vector is defined as the task direction flexibility, which is the
deformation produced by the output unit force in the task direction. A smaller value of k.
indicates a better stiffness of the FMSR operating system in the task direction.

ke = Hrm,n,k |2 (34)

5. Motion Accuracy Optimization Method for Coordinated Tasks
5.1. Modeling Multi-Objective Optimization Problems

e  Decision variables

The objective of this paper is to optimize the degree of motion coupling and the end
equivalent stiffness of the FMSR to achieve optimal performance within its workspace.
For a multi-arm robot with three seven-degree-of-freedom redundant manipulators, the
decision variables to be optimized are as follows:

T
- [eﬂT 0,T GCT} e R™(n =21) (35)

e  Objective function

In this study, the coordination operation task is used as an example of optimization
analysis, and the objective function can be formulated as follows:

minf(@) = [wca/ Wehr Whas kC]T (36)

Although the multi-objective particle swarm optimization method can obtain the
optimal Pareto solution for the multi-objective problem expressed in Equation (36), selecting
a suitable solution that meets the task requirements from multiple non-inferior solutions
is a new issue. One approach to solving this problem is to obtain the weight coefficients,
which can reflect the weight relationship among the indicators by using the covariance
matrix. By transforming the multi-objective problem into a single-objective problem using
these weight coefficients, the task requirements can be satisfied.

First, it should be noted that the metrics used in the study are dimensionless. Specifi-
cally, for the path planning task of the FMSR, a set of indicator values {wea },, {wep } 5, {Wpa } 5/
{kc}, can be obtained for each control cycle during task execution, corresponding to each
of the indicators we,, Wy, Wp,, and k.. The mean value of each set can then be calculated as
follows:

S S S S
Y Wea_i Y Wep ,21 Wha_i Y ke
= =

— =1 — i=1 — T i=1
Weq = f/wcb = f/wha = S /kC = S (37)

Then, the covariance of the two indicators w., and w,, can be expressed as follows:

(Wea_i — Wea) (Wep_ij — Wep)

e

Cov(wcm wch) =

p—] (38)
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where the denominator uses s — 1 instead of s, which is known as an unbiased estimation.
This approach allows for a better estimation of the covariance with a smaller sample. This
method can be used to calculate the covariance between any two indicators. The resulting
covariance matrix of multiple indicators can be expressed as follows:

Cov(Wea, Wea)  COv(Weg, Wep)  COV(Weg, Wyy)  COV(Weq, ke)
Cov(wep, wea)  Cov(Wep, Wep)  Cov(wep, wpe)  Cov(wep, ke)
Cov(wba,wca) Cov Wha, Wep) Cov W, Wpg) Cov Wea, ke)

0v(ke, Wea) Cov(ke, wep) Cov(ke, wp,) Cou(ke, ke)

(39)

The diagonalization of the covariance matrix presented in Equation (39) allows for the
decoupling of the coupling relationship between the indicators. Since the covariance matrix
is symmetric, there exists an orthogonal matrix U that satisfies the relation ufcu = A,
where A is the diagonalized matrix, and U represents the eigenvector matrix of the co-
variance matrix C. The eigenvector matrix can be used to transform the multi-objective
optimization problem into a single-objective optimization problem.

f(©) = ’u' [Wea, Web, Wpa, kc]T (40)

Up to now, in solving the covariance matrix of each indicator of the robot, the dimen-
sionless nature of each indicator has been realized. By diagonalizing the covariance matrix,
the eigenvector matrix of the covariance matrix can be obtained, which enables the decou-
pling of each indicator and transforms the multi-objective problem into a single-objective
problem.

e Binding conditions

Since the kinematic constraints of the robot were duly considered in the path planning
stage, and the motion trajectory of the rigid body was obtained, we now consider the
optimization problem using only boundary constraints. These boundary constraints include
limits on the velocity and angle that the robot must maintain.

5.2. Solution of Particle Swarm Optimization Algorithm Based on Stochastic Inertia Factor

In this study, the optimization problem presented in Equation (40) is solved using a
particle swarm algonthm Let us denote the posmon and velocity of the i-th particle at

step j as x and v respectively. Similarly, let p and p), represent the individual historical
optimal solut1on and the population historical optimal solution of the i-th particle at step ;.
The velocity and position update equations can be obtained as follows:

0P — wol 4+ clx\(pl — ] ) + o1 (ps —x ) (41)

where w refers to the inertia factor, controls the dependence of the particle on its initial
velocity, and affects its ability to explore the global solution space. The cognitive factor c;
and the random number A, which is distributed on the interval [0, 1], together determine
the degree of dependence of the particle on its individual historical optimal solution. The
social factor ¢, and the random number 7, also distributed on the interval [0, 1], together
determine the degree of dependence of the particle on the population’s optimal solution.

In this study, a random inertia factor satisfying the normal distribution is used for the
PSO algorithm, which tends to oscillate near the global optimal solution in the late stage of
the algorithm. The expression for the random inertia factor is as follows:

W =sg- N(0,1) + pmin + (#max — #min) - rand (0, 1) (42)

where yimax and pimin represent the maximum and minimum values of the mean of the
random inertia factor, respectively. s represents the variance of the random inertia factor.
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Random number N(0, 1) obeys standard normal distribution, and rand(0, 1) is a random
number between 0 and 1.

In this study, the optimization of the robot configuration is performed in the zero
space of each arm. Specifically, the vector Ufemp is mapped to the null space of the arm,

and based on this, the velocity and position update equations of the particle swarm are

obtained as follows: - emn
{ U;J'H: (Ej_let'h)vi i (43)
x; o =x+ 0y
where E denotes the identity matrix, and { is a constraint factor characterizing the degree
of particle succession to the speed of the current step update. The values of the above
parameters can be adjusted according to the specific requirements of the optimization
problem.

The optimization process in this paper involves continuously updating the particle
velocity and position using Equation (43). The algorithm terminates when the velocity
of each particle becomes 0, and the position no longer changes, or when the maximum
number of iterations is reached.

6. Test and Discussion
6.1. Subject

We carried out simulation experiments using a three-arm robot. The three modular
arms are named 4, b, c, all of which were configured with a “shoulder3-elbow1-wrist3”
structure and had seven degrees of freedom. The shoulder and wrist joints were symmetri-
cal with respect to the elbow joint. The material of the links was aluminum alloy, with an
elasticity modulus of 70 GPa. The diameters of link 3 and link 4 were 96 mm and 70 mm,
respectively, and the wall thickness was 5 mm. The frame of the arm was established using
the MDH method, as shown in Figure 4. The kinematic and dynamic parameters are shown
in Tables 1 and 2, respectively. The initial poses of the three arms in the base frame > were
[0.5,0.3,0,0,0,0],[-0.5,0.3,0,0,0, 0], and [0, —0.6, 0, 0, 0, 0], respectively. The base mass
and inertia were mg = 102 kg and Iy = diag[11 kg - m2,11 kg - m?,21 kg - mz], respectively.

Figure 4. MDH coordinate frame.
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Table 1. Kinematic parameters.

k ) 1571 (mm) 0% () df~1 (mm)
1 0 0 0 166.8

2 -90 0 -90 183.1

3 90 0 0 —52

4 0 544.9 90 0

5 0 500.9 -90 0

6 90 0 -90 -121.1

7 -90 0 0 0

Table 2. Dynamics parameters.

Center of Mass

k x (m) y (m) z (m) Mass (ke)
1 0 —0.00754 0.00864 8.5
2 0 0.00754 0.00864 8.5
3 —0.45495 0 0.24168 10.8
4 —0.5013 0.00475 0.32914 6.3
5 0 0.11454 0.00521 2.13
6 —0.00451 —0.12413 0 2.3
7 0 —0.00354 —0.00771 1.9

6.2. Model Validation

Following the second and third sections, we built a simulation model of the FMSR
on a computer using MATLAB and Robotics Toolbox (Peter Corke Release 10), as shown
in Figure 5a. ODE45 (Runge-Kutta fourth and fifth order) was used to solve the kinetic
differential equations. Although the vibration modes of each link had many orders, the
higher order mode had less influence on the amplitude. We intercepted the first three
modes to improve computational efficiency. Since the motion of joints 3 and 4 contributed
the most to the trajectory error, we set the angular velocity of joints 3 and 4 to 1° /s to obtain
the end trajectory. Additionally, we compared it with the trajectory of a rigid arm under the
same conditions. The configuration of each arm at the beginning of the model validation
experiment was 6;,;; = [O —90°0°90" —90" —90° OO]T. The position error is shown
in Figure 6a. Due to the consistent parameters and configurations of each arm, only the
position error of arm a is given here. Figure 7 shows the position and time relationship of
arm a during the experiment. As there was no motion or vibration along the X-axis, only
the Y-axis and Z-axis results are shown here. It can be seen that the robot continues to
vibrate slightly along these two axes, which affects the precision of the trajectory.

To verify the correctness of the results, a co-simulation environment with MSC/ADAMS
and MATLAB/SIMULINK was generated; the 3D model of the FMSR was established in
ADAMS, and all control algorithms were generated in SIMULINK. The communication
interval between ADAMS and SIMULINK was 0.01, and the simulation mode was set to
discrete. To obtain the dynamic response of the flexible links, each link was preprocessed
using ABQUS, including mesh partitioning, creating analysis steps (intercepting the first
15th mode), setting boundary conditions, etc., to finally obtain the mnf (modal neutral file).
The mnf was then used to replace the rigid links in ADAMS, as shown in Figure 5b-d.
Similarly, joints 3 and 4 of each arm were moved at an angular velocity of 1°/s to obtain the
position error of the flexible arm and the rigid arm, as shown in Figure 6b. As the arterial
angular velocity was relatively small, and the simulation lasted 1 s, the configuration shown
in Figure 5b—d does not change significantly. However, the changes in the color of the links
show that the joints were constantly moving.

o
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Position error/mm

Zlm

Figure 5. FMSR model: (a) the model built using MATLAB; (b-d) the configuration changes in the
simulation process using ADAMS.
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Figure 6. Position error: (a) the position error obtained using MATLAB; (b) the position error obtained
using ADAMS.
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Figure 7. Position error: (a) position error along Y-axis; (b) position error along Z-axis.

Comparing Figure 6a,b, it can be seen that the model established in this paper and the
simulation results using MATLAB are basically consistent with the results of ADAMS in
terms of vibration frequency and amplitude, which indicates that the model established
in this paper is accurate and effective. However, we were unable to obtain the responses
of each vibration mode from ADAMS, and there were also difficulties in simulating over-
constrained models, such as coordinated tasks. Therefore, in subsequent analysis, we only
used MATLAB for simulation.

6.3. Optimization and Analysis

The robot’s rigid body had a mass of 5 kg, and its cross-sectional shape was a waist
triangle with a side length of 0.67 m, 0.67 m, and 0.6 m. The three arms of the FMSR hold
the three vertexes of the rigid body and move it from the initial pose Pe; to the final pose
Pe, along the straight-line path, where Pe; = [0, 0, 0.6, 0, 0, 0] and Pe, =[0.1, 0.1, 0.8, 0, 0, 0].
Let the desired external force Fe; of the FMSR be a zero vector. The desired trajectory of the
rigid body is obtained using trapezoidal interpolation with the parabolic transition. The
motion trajectory of the three arms is derived from the motion constraint relationship. The
motion trajectory of each joint is obtained using inverse kinematics.

1.  Experiment1

We considered the four points that divided the straight-line path into five equal parts,
together with the two endpoints of the path, for a total of six points. We then plotted the
configuration diagram separately at these six points to display the changing process of the
configuration on the path, as shown in Figure 8a—f. The initial configuration, shown in
Figure 8a, was 0;,,; , = [114.5°,11.7°, —78.5°,56.3°, —63.5°, 160°, —12.5° ], 6,,,; ,, = [136.8°,
—20.0°, —83.2°,53.7°, —61.0°, 178.4°, —70°], and 6;,,; . = [180°, 0°, —143.0°, 55.4°, —2.4°,
0°,90°].

The joint angle was substituted into the model developed in Section 2 to obtain the
pose of the FMSR, and the actual trajectory of the rigid body was solved according to
the motion and force constraints and compared with the desired trajectory. The position
error is shown in Figure 9a, with a maximum value of approximately 2.5 mm. The actual
external force of the three arms was obtained according to Equation (20) and compared
with the desired external force. The force error is shown in Figure 9b, with a maximum
value of approximately 10 N. It can be seen that the position errors due to vibration in
coordinated operation and the interaction of the three arms with the rigid body lead to
external force errors. Excessive force errors in coordinated operations are dangerous and
can easily lead to controller instability. Equation (19) was used to calculate the inter-arm
modal motion coupling metrics, as shown in Figure 10. It can be seen that there is motion
coupling between the different arms, which means that the movements of the arms affect
each other. Equation (34) was used to calculate the task directional stiffness, as shown in
Figure 11. It can be seen that when the coupling degree and the directional stiffness are
large, the force error is also larger. Therefore, in this study, the accuracy of the FMSR was
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optimized by establishing the objective function of the coupling degree and the directional
stiffness.

Figure 8. Configuration of FMSR before optimization: (a—f) configuration at 6 points in sequence.
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Figure 9. (a) Position error before optimization; (b) force error before optimization.
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Figure 10. Inter-arm modal motion coupling metrics before optimization.
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Figure 11. Task directional stiffness k. before optimization.

2. Experiment 2

We sought to use the method proposed in this paper to reduce the position error.
Using the method developed in Section 5, a model of optimization problems was generated
using MATLAB. The number of the particle population was 50, and the maximum iteration
was 100 times. The inertia factor was w = 0.8, ¢c; = ¢ = 0.5, and the constraint factor
¢ = 1. Equations (41)—-(43) were used to optimize each configuration on the expected
path. The results of the configuration optimization are shown in Figure 12. The opti-
mized initial configuration was 9;;”. . = [62°,-13.2°, —62.7°,52.9°, —116.7°,111.4°, 38.5°],
of ., =[-216.4°, —21.9°, —92.3°,38°, —103.6°, 113.4°, —20.5°], and 6 , . =[85.4°, —36.9°,
—159.8°,26.5°, —54.4°, —53.1°, 186.1°].
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(e) (f)

Figure 12. Configuration of FMSR after optimization: (a—f) configuration at 6 points in sequence.

The inter-arm modal motion coupling indices after optimization using the proposed
method are shown in Figure 13. Compared with Figure 10, it can be observed that the
inter-arm modal motion coupling indices caused by the modal motion were reduced by
15~30% after the optimization. This means that the amplitude of the vibration was reduced,
and the degree of motion coupling between the three arms was reduced by up to 30%. The
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directional flexibility after optimization is shown in Figure 14. A comparison with Figure 11
indicates that the system flexibility in the direction of motion was reduced by 32%.
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Figure 13. Inter-arm modal motion coupling metrics after optimization.
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Figure 14. Task directional stiffness k. after optimization.

Figure 15a shows the position error between the actual path of the rigid body and
the desired path. The results show that the maximum position error before optimization
was 2.5 mm (as shown in Figure 9), while the maximum error after optimization was
1.5 mm. The force error is shown in Figure 15b, with a maximum value of approximately
6 N, Comparing Experiments 1 and 2, it can be inferred that the method proposed in this
paper could effectively improve the motion accuracy of the FMSR by 40% and improve the
accuracy of the external force of the arms.
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Figure 15. (a) Position error after optimization; (b) force error after optimization.
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A comparison between the experiments without and with the method proposed in
this paper is shown in Table 3. It can be seen that the method proposed in this paper could
effectively reduce the position error and force error by 40%. The results of the simulation
experiment show that the method of this paper is effective in improving the accuracy of
the FMSR.

Table 3. The comparison between the experiments.

Experiment 1 Experiment 2
Position error The maximum value was 2.5 mm  The maximum value was 1.5 mm
Force error The maximum value was 10 N The maximum value was 6 N
lower than Experiment 1 / 40%

7. Conclusions

This paper presents a motion coupling analysis and optimization method to improve
motion accuracy in the coordinated operation tasks of FMSRs. The contributions of this
study are significant in several aspects. First, a general model of an FMSR was established
using the hypothetical modal method. Second, we investigated the rigid—flexible motion
coupling law of the FMSR and designed an evaluation index of the coupling degree. Third,
the stiffness model of the flexible manipulator was extended to the FMSR by analyzing the
constraint relationship in coordinated operation tasks. Finally, we considered the rigid—
flexible motion coupling between multiple arms and the stiffness index when optimizing
the motion trajectory. This optimization effectively improves the robot’s motion accuracy
and force accuracy. Future research will focus on exploring the motion coupling character-
istics of the flexible base and the robot during on-orbit assembly tasks and studying the
coordination control method under the coupled vibration of the FMSR.
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Appendix A
Substituting Equation (7) into Equation (11) yields

(Bonbz) @D

1

P=[ue -] [20] 4 £ (10) + L) +

N
=1

where M is the total mass of the system. E denotes identity matrix. rlgO = 1‘? — 19, rIg

is the vector of the system centroid. 1‘§OX denotes the antisymmetric matrix of r‘fo.]%-
n. n. n.
Sk — v (k — v (K i
k§1 (mi] Lik)’ RT/TZ' = kg (mir;x/Lik)’ IgTi = k§1 (miéuk)' The expression for J; ;, Ig(ukr and
]g Lik is given in Appendix B.
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Substituting Equations (5) and (7) into Equation (13) yields

o=t n][] - E(10) + B(50) s L(50)

N n; i
where L, = IO + 421 <k21 (Iic - m?#i(ox rﬁ‘(OX ) ) ’ I? = k21 (I;{]Aik + m{-(fi«(OX]Lik> p
i=1 \k= —

}’ll- n

I, = 21 (I;{I(}:(Aik + mi'{ri‘coxﬁyuk)f and I, = k§1 (Ii'(I%Aik + mi‘(’Ji(OX]%LiO Jaikr T ans and

]‘; ik 18 givenin Appendix B.
By substituting Equation (A2) into Equation (12) and combining it with Equation (A1),
the expression of Hy, H? , and Hf are obtained.

0
H, = ME 0 B rg
Mry* —Mre" > —Mrg*ri % + 1,

0
HY = [ Tri } € RO,
s

H — [ ]gTi ]gn
1,0><

¢ ¢ |-
Z ,gTi—i_IYi ”OX]%TiJFIZi

c R6><6

Appendix B

Juw = [z} x (rf€ —r}), 28 x (i = 17), -+, 2 x (€ = 1), 0, 0] € R™M

IAZk = [le’zlz’..' /Z?/O/' o /0] S R?)an.

t
Thej+ Y nls.*l(l < t < k — 1)-th columns of the four Jacobi matrix I%K/Lik, Ingik' ]%Lik'
s=1
t

t
ijs i

X . .
FYATE ¢ i+l t t
and ]éAik are ini_j — (rf —1; ) zZW ZiW,_j,
k
ijr

0. Both y and z are unit vectors along the frame axes.

X .t -t
ZWE + (=) YW, —yiW

k . .k k n;
columns j+ ) nls._l are yi?Wikj, Z;(W zi?Wl."j, —yi.‘Wl- ji columns ) nj +1to ). nj areall
s=1 - a B s=1 s=1
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