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Abstract: This paper presents the design of two predefined-time active fault-tolerant controllers
for the trajectory tracking of autonomous underwater vehicles (AUVs) which can address actuator
faults without causing actuator saturation. The first controller offers improved steady-state trajectory
tracking precision, while the second ensures a nonsingular property. Firstly, a predefined-time sliding
mode controller is formulated based on a predefined-time disturbance observer by integrating a
novel predefined-time auxiliary system to prevent the control input from exceeding the actuator’s
physical limitations. Subsequently, a non-singular backstepping controller is introduced to circumvent
potential singularities in the sliding mode controller, guaranteeing that the trajectory tracking error is
uniformly ultimately bounded (UUB) within the predefined time. Additionally, theoretical analysis
and simulation results are presented to illustrate the advantages of the proposed method.

Keywords: predefined-time control; AUV trajectory tracking control; actuator saturation; fault-tolerant
control

1. Introduction

Currently, autonomous underwater vehicles (AUVs) are capable of replacing humans
in accomplishing various underwater tasks, such as exploration, mapping, and monitoring.
Trajectory tracking controller design plays a crucial role in these tasks.

To study the dynamics of a nonlinear system, two modeling methods are usually
considered: linear parameter-varying (LPV) modeling [1] and nonlinear modeling. LPV
models offer lower computational complexity compared to nonlinear models, making them
easier to implement in real-time control applications. This is particularly advantageous
when computational resources are limited. Moreover, LPV models can be readily combined
with Kalman filters for state estimation in the presence of measurement noise, providing
a systematic and well-established approach to handle noisy measurements and improve
the overall system performance. LPV models capture certain types of nonlinearities by
considering parameters that vary with the operating conditions, allowing the model to
adapt to different conditions and making it suitable for a range of applications. LPV
models enable the design of controllers that can be optimized for specific operating points
or conditions, potentially leading to improved performance in these specific conditions
compared to a more general nonlinear controller. These advantages make LPV models an
attractive choice for certain applications where the trade-offs between modeling accuracy,
computational complexity, and ease of implementation are critical consideration.

However, when an AUV operates in a complex flow environment (e.g., tidal currents,
waves, and eddies), LPV models may not accurately capture the complex hydrodynamic
effects on the AUV’s motion. In this case, a nonlinear model can better represent the impact
of the flow environment on the AUV, thereby improving control performance. When an
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AUV performs high-speed maneuvering tasks, such as emergency obstacle avoidance or
rapid search, it may experience large acceleration and angular velocities. In this situation,
nonlinear effects (such as inertial coupling and hydrodynamic nonlinearities) become more
significant, requiring the use of nonlinear models for more accurate modeling. For precise
trajectory tracking tasks (e.g., underwater sampling and archaeological exploration), there
are higher requirements for the accuracy of the AUV’s position and attitude. A nonlinear
model can provide a more accurate dynamic description, which helps to achieve high-
precision trajectory tracking control. Notably, the actuators used in AUVs, such as thrusters
or control surfaces, may exhibit nonlinear dynamics (e.g., saturation and hysteresis) that
can significantly affect the AUV’s motion. Nonlinear models can better capture these
actuator nonlinearities, resulting in more accurate and effective control strategies.

Indeed, linear control techniques, which are well-established and widely understood,
can be directly applied to LPV models. This simplifies the controller design process,
making it more accessible and easier to develop. However, to achieve high-precision
tracking performance in an ocean environment, control laws should be created based on a
nonlinear model of an AUV. In recent years, numerous successful developments in this area
have been made, including robust control [2–4], quantization control [5,6], model-predictive
control [7,8], adaptive control [9–11], fuzzy control [12–14] and prescribed performance
control [15,16].

Although advancements in AUV control have satisfied stability requirements for
trajectory tracking, tracking performance is only guaranteed over a nominal control law.
Nevertheless, maintaining the same control performance when AUV actuators fail is
challenging. Actuator faults, such as thruster entanglement or blade and rudder defor-
mation, introduce additional disturbances. These external disturbances negatively impact
tracking performance, reducing precision and potentially leading to system instability in
trajectory tracking.

As a result, integrating fault-tolerant capabilities into AUV trajectory tracking control
schemes is a reasonable choice [17]. Existing fault-tolerant control methods combine
passive and active FTC techniques. Passive fault-tolerant methods utilize adaptive laws to
treat the failures as uncertainties [18–20]. However, the complexity of the AUV operating
environment makes it impossible to predict and eliminate all factors that lead to actuator
faults [21]. For an active FTC with fault diagnosis and identification, further analysis of the
methodologies reveals that a residual must be determined [22–24]. The designer should
establish a threshold for this residual to detect and isolate faults. Subsequently, the normal
control law is replaced by a sophisticated controller, which unfortunately wastes the design
effort put into creating the original normal control law. To overcome this limitation, fault
reconstruction methodologies have been explored for faults in both linear and nonlinear
systems [15,25,26].

In the field of fault reconstruction design for control systems, various investigations
have explored the use of estimators such as observers or Kalman filters to diagnose actuator
faults. Common observer structures include Kalman’s, sliding mode, Tau’s extended, cubic,
and linear observers. Although observers cannot handle stochastic disturbances, control
system modeling and design often assume the presence of simple disturbances with known
frequency characteristics to address this issue. Unknown input observer (UIO)-based
fault reconstruction schemes are conventional solutions, but they assume that the actuator
fault or its differential value are bounded by a known scalar, which may not always be
the case. High-gain observers can address this limitation, but they introduce high-gain
problems and cannot complete the task of reconstruction in finite time. Linear controllers
in control problems usually bring exponential convergence rates, meaning that the system
state reaches the equilibrium point with infinite time. To improve system performance near
the equilibrium point, finite-time control algorithms have been proposed.

Sliding mode control, a widely used finite-time control algorithm, is an inherently
robust control algorithm with a simple structure and clear physical meaning. AUV motion
control can be classified into stabilization control and tracking control, with the latter being
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more complex due to its intricate dynamic model. Nevertheless, control algorithms for
these two aspects are generally similar since the kinetic models are identical.

Finite-time control offers superior performance compared to non-finite-time control,
providing better accuracy, robustness, and anti-interference. The concept of finite-time
stability is crucial to introducing this control method and understanding its benefits. In
particular, in the finite-time control area, predefined-time stability allows for the convenient
determination of the upper boundary of the settling-time. Although the research on
AUV predefined-time control remains relatively limited, it has been considered in various
fields [4,27]. In [28], a predefined-time follower–leader formation tracking control for
AUVs is addressed. For the AUV trajectory tracking control problem, Ref. [29] proposed a
model-free, high-order sliding mode controller. However, these algorithms often overlook
the effects of actuator failures while meeting the time requirements.

In addition to the predefined-time requirement in control, the input saturation con-
straint is another important issue. Input saturation constraints stem from the physical
limitations of the actuators, such as the maximum motor speed and maximum rudder
angle in AUVs. If the controller outputs a command larger than the physical limit that the
actuator can handle, actuator saturation occurs. Notably, the predefined-time controller is
prone to outputting large control input at an initial stage while meeting the time constraints.
As a result, it is desirable to keep the control input within the actuator’s physical limitations.
To avoid control input saturation, Zhu approximated the saturation function with a smooth
function in [30]; Ref. [16] used an auxiliary system to compensate for saturation in the
controllers, driving the controller output away from saturation zone. However, these
methods did not consider the predefined-time convergence stability property.

In light of the above observations, this paper proposes a predefined-time, disturbance-
observer-based, predefined-time fault-tolerant architecture for AUV trajectory tracking.
The proposed control schemes have the following properties:

1. A predefined-time sliding mode controller is developed based on a predefined-
time disturbance observer. This is achieved by incorporating a novel predefined-
time auxiliary system to prevent the control input from surpassing the actuator’s
physical limitations;

2. A non-singular backstepping approach is designed to avoid potential singularities
in the predefined-time sliding mode controller, ensuring that the trajectory tracking
error remains uniformly ultimately bounded (UUB) within the predefined time.

The remainder of the paper is organized as follows. Section 2 presents the mathemati-
cal model for a 5-DOF AUV system for trajectory tracking. In Section 3.1, a predefined-time
lumped disturbance observer is presented. Section 3.2 presents a predefined-time sliding
mode controller that avoids the actuator saturation. Then, to avoid the singularity problem
in the sliding mode controller, Section 3.3 designs a nonsingular, practical predefined-time
controller. Section 4 validates the effectiveness of the proposed control scheme through
simulations. Finally, this paper is concluded in Section 5.

Notations: Rn represents a real matrix with n× n elements; In is the n× n identity
matrix; ‖·‖ is the Euclidean norm; λmin refers to the minimum eigenvalues of the matrix;
sgn is the sign function.

2. Preliminaries
2.1. AUV Dynamic Model

Consider the dynamics of the AUV in the following form [31]:

.
η = J(η)v

M
.
v + CRBv + CAv + Dvv + g(η) = τact + τd

(1)

where η = [x, y, z, θ, ψ]T describes the position and Euler angle in the Earth-fixed frame;
v = [u, v, w, q, r]T represents the linear and angle velocities of the AUV, such as in Figure 1;
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x, y, and z are positions; θ, ψ are the pitch and yaw angle; u, v, and w are the velocities along
the axes; q and r are the rotation velocity around the Y-axis and Z-axis; J(η) transforms the
velocities from the body-fixed frame into the Earth-fixed frame:

J(η) =


cos ψ cos θ − sin ψ cos ψ sin θ 0 0
sin ψ cos θ cos ψ sin ψ sin θ 0 0
− sin θ 0 cos θ 0 0

0 0 0 1 0
0 0 0 0 1

cos θ

 (2)

M = diag[m1, m2, m3, m4, m5]
T is the inertial matrix of the AUV; m1, m2, and m3 contain

the effects of the AUV mass and the added mass: m1 = m−X .
u, m2 = m−Y .

v, m3 = m− Z .
w;

X .
u, Y .

v, and Z .
w reflect the hydrodynamic force acting on the AUV. Likewise, m4 = Iyy −M .

q
and m5 = Izz − N.

r attribute the inertial moments and hydrodynamic moments.
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Figure 1. Motion coordinate frames and actuator configuration of the AUV model.

Remark 1. Typically, the AUV’s mission tasks do not require high-frequency maneuverability. The
elements in AUV state vector η are measurable in practice. It is clear that ultra-short baselines
(USBL) can provide the position information; the electronic compass and gauge can provide the
depth and attitude information; and the DVL and IMU can provide the linear velocity and angular
velocity, respectively, which can be transformed into inertial frame by J(η).

Coriolis and the centrifugal matrix Cv refer to the rotation effect of the body-fixed
frame in the Earth-fixed frame.

Cv =


0 0 0 (m− Z .

w)w −(m−Y .
v)v

0 0 0 0 (m− X .
u)u

0 0 0 −(m− X .
u)u 0

−(m− Z .
w)w 0 (m− X .

u)u 0 0
(m−Y .

v)v −(m− X .
u)u 0 0 0

 (3)

The drag matrix Dv models the resistance produced by the water and the AUV body:

Dv =


−Xu − X|u|u|u| 0 0 0 0

0 −Yv −Y|v|v|v| 0 0 0
0 0 −Zw − Z|w|w|w| 0 0
0 0 0 −Mq −M|q|q|q| 0
0 0 0 0 −Nr − N|r|r|r|

 (4)

The restoring moment matrix g(η) = [(τP − τB) sin θ, 0,−(τP − τB) cos θ,−zBτB sin θ, 0]T

comprises the moments provided by the relative position of the weight center and buoyance
center; τP and τB represent the gravity and buoyance of the AUV; zB is the center of the
buoyancy. Supposing that the AUV is water-sealed, the center of the weight and buoyancy
are determined in the design process of the shape and arrangement. With proper design,
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the center of mass of the AUV should be located below its center of buoyancy. The lower
weight center guarantees the inherent stability in the rolling degree of the AUV.

Next, τact represents the actual driving force exerted on the AUV in the body-fixed frame.
The external disturbance τd shows the uncertain but bounded force except for the actuator
force. Generally, sat(τc) = [sat(τc1), sat(τc2), sat(τc3), sat(τc4), sat(τc5)]

T can describe the
actuator saturation constraints of AUVs as sat(τci) = min{|τci|, τci,max}sgn(τci) [30], where
τc = [τc1, τc2, τc3, τc4, τc5]

T provides the expected controller output; τci,max constrains the
maximum output force and moments of the corresponding i− th degree of freedom.

Combined with the saturation constraints, the actuator faults with saturation con-
straints can be modeled as follows [32]:

τf = Ksat(τc) + τa (5)

where a diagonal matrix K = diag([k11, k22, k33, k44, k55]
T) describes the thruster effective-

ness with kii ∈ [0, 1]. Here, kii = 0 implies that the actuator on the corresponding degree of
freedom is healthy, and kii = 1 means that the actuator is completely inefficient. Apart from
these two extreme cases, kii ∈ (0, 1) means that the actuator loss part of its effectiveness.
Additionally, τa = [τa1, τa2, τa3, τa4, τa5]

T denotes the unexpected additive actuator faults in
the thruster model.

Hypothesis 1. Thruster redundancy exists in the AUV actuator fault model. The redundancy
guarantees that each degree of freedom has at least one operatable thruster. This thruster keeps the
AUV fully actuated when the faults and failures occur.

With this assumption in consideration, the actual driving force τact provided by the
fault thrusters with saturation constraints has the form:

τact = sat(τc)− τf = (I−K)sat(τc) + τd = ρsat(τc) + τd (6)

where I is an identity matrix with five dimension and τd = d− τa. The time-varying
function kii(t) describes the health of thruster, satisfying that 0 ≤ kii(t) ≤ kii < 1. This also
implies that 0 < ρ ≤ ρi ≤ λmin(I−K), where ρi = 1− kii.

Remark 2. According to Assumption 1, the AUV is still fully actuated when a fault occurs. The
fully actuated model bounds the value of kii(t).

Hypothesis 2. The external disturbance vector τd is assumed to satisfy ||τd||≤ τd , where τd is a
positive constant.

Remark 3. External disturbances in the ocean environment are often caused by the ocean current
and changes in the density, temperature, and salinity of the water. These causes of external distur-
bance mean that the disturbances usually have a limited range. Thus, Assumption 3 is reasonable.

Subsequently, the AUV dynamic model Equation (1) can be transformed into a Euler–
Lagrange equation form [33]:

..
η = −M−1

η (Cη
.
η+ Dη

.
η+ g(η)) + M−1

η J(η)Tτact + M−1
η J(η)Tτd (7)

where Mη = MJ−1(η), Cη = [Cv −MJ−1(η)
.
J(η)]J−1(η) and Dη = DvJ−1(η) with

.
J(η) =

J(η)S(
.
η) and S(

.
η) is an antisymmetric matrix.

Define the AUV reference trajectory as ηd and the trajectory tracking error as:

ηe = η− ηd.
ηe =

.
η− .

ηd
(8)
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Differentiating Equation (8) and substituting Equation (7) into Equation (8), one has:

..
ηe =

..
η− ..

ηd

= −M−1
η (Cη

.
η+ Dη

.
η+ g(η)) + M−1

η sat(τc) + M−1
η τd −

..
ηd

(9)

Hypothesis 3. The AUVs’ velocities have an upper bound; the desired tracking trajectory ηd and
its corresponding derivatives

.
ηd and

..
ηd should also have upper bounds.

Remark 4. Typically, AUV underwater tasks do not require high-frequency maneuverability. That
the low-frequency maneuverability of the AUVs implies that the velocities are bounded is reasonable
in practice.

The control objective is to design a controller for an AUV closed-loop system to achieve
trajectory tracking control with actuator faults. The designed controller should regulate the
AUV’s tracking error to a compact set within a user-selected time without offending the
physical limitation of the actuator output.

2.2. Definitions and Lemmas

Lemma 1 ([34]). Considering a generalized nonlinear system,
.
x = f (x), x(t0) = x0 is the initial

state of the system. If there exists a radially unbounded Lyapunov function V(x) satisfied such that,

.
V(x) = − π

pT

(
V1−p/2 + V1+p/2

)
(10)

then the system
.
x = f (x) is called a predefined-time stable system. p ∈ (0, 1)is an adjustable

parameter, and T is the user-defined upper boundary of the settling time.

While converging to an equilibrium point is the most desirable in the control designs, it
is usually more practical to drive the states into a compact set around the equilibrium point
in the actual application. Thus, the practical predefined-time stability is given as follows:

Lemma 2 ([27]). If there exists a radially unbounded Lyapunov function V(x) such that:

.
V(x) = − π

pT

(
V1−p/2 + V1+p/2

)
+ ε (11)

then the system
.
x = f (x) is called a practical predefined-time stable system. The upper boundary

of the settling time (UBST) of the system is explicitly adjustable in the controller as Tp =
√

2T.
p ∈ (0, 1) is an adjustable parameter, and 0 < ε < ∞.

Meanwhile, the convergence residual set is given as:{
lim

t→Tp
x|V(x) ≤ min

{(
2εpT

π

) 2
2−p

,
(

2εpT
π

) 2
2+p
}}

(12)

Lemma 3 ([35]). For any zi ∈ Rm, (∑n
i=1|zi|)r ≤ ∑n

i=1|zi|r.

Lemma 4 ([36]). For any vector z ∈ RN , when 0 < a1 ≤ 1, a2 > 1, the following inequalities
are valid: (

N

∑
i=1
|zi|
)a1

≤
N

∑
i=1
|zi|a1 ,

(
N

∑
i=1
|zi|
)a2

≤ Na2−1
N

∑
i=1
|zi|a2 (13)
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3. Main Results

In this section, a predefined-time control architecture is designed for AUV trajectory
tracking control to enhance the time-dependent trajectory tracking performance. The pro-
posed control architecture comprises a predefined-time observer and a predefined-time
controller. First, the predefined-time disturbance observer estimates the lumped distur-
bance, which includes the actuator fault. Then, the estimated disturbance is fed back to
stabilize the closed-loop system within the predefined time. Additionally, considering
the actuator saturation constraints, an auxiliary system is also incorporated into the pro-
posed predefined-time controller to prevent the control input from exceeding the physical
limitation. The entire predefined-time closed-loop trajectory tracking system is depicted
in Figure 2.
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3.1. Predefined-Time Sliding Mode Controller

In this section, a predefined-time disturbance observer is initially designed to estimate
the lumped disturbance. The objective is to ensure that the lumped disturbance estimation
error converges to zero within an adjustable predefined time. To achieve this predefined-
time design goal, Lemma 1 serves as the foundation for the development of the predefined-
time observer and the subsequent predefined-time sliding mode controller.

First, define a new variable ζa composed of the control input sat(τc) and the known
dynamics of the AUVs in Equation (7):

ζa = k1

∫ t

0
[sat(τc) +

.
Mη

.
η− Cη

.
η− g(η)− ζa]ds− k1Mη

.
η (14)

where k1 is a positive constant.
Next, take the derivative of both sides of Equation (14); the change process of the

auxiliary variable then has the form:

.
ζa = −k1ζa − k1fl (15)
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Subsequently, the output of the linear system in Equation (15) can be defined as
γ = k2ζa. Then, the object of estimating the lumped disturbance fl is transformed into
estimating the state of the linear system with a system output γ.

Design a predefined-time disturbance observer as follows:

.
ζ̂a = −k2k3ζ̂a +

1
k2

.
γ + k3γ +

1
2
(M−1

η )
2
ζ̃a +

π

2p1Tc0

(
sig1−p1(ζ̃a) + 3

p1
2 5

p1
2 sig1+p1(ζ̃a)

)
(16)

where ζ̂a is the estimation of variable ζa; ζ̃a = ζa − ζ̂a represents the estimation error;
.
γ is

the derivative of the linear system output γ; 0 < p1 < 1 is an adjustable parameter; k3 is a
positive constant.

Theorem 1. Considering the AUV trajectory tracking error dynamic model Equation (9) with
lumped disturbance fl , the proposed predefined-time disturbance observer in Equation (16) can
reconstruct the lumped disturbance with in a predefined time Tc0, and the reconstructed disturbance
Fr has the form:

Fr = −
1

k1k2
(k1k2ζ̂a +

.
γ) (17)

Remark 5. In the practical application of the AUV, the position and velocity of the AUV, η and v,
can be measured with the sensors equipped on the AUV. Therefore, the predefined-time disturbance
observer can estimate the lumped disturbance with the states measured.

Proof of Theorem 1. Select a candidate Lyapunov function:

V0 = ζ̃T
a ζ̃a (18)

The derivative of ζ̃a has the following form:

.

ζ̃a = k2k3ζ̂a − k2k3ζa − 1
2 (M

−1
η )

2
ζ̃a − π

2p1Tc0

(
sig1−p1(ζ̃a) + 3

p1
2 5

p1
2 sig1+p1(ζ̃a)

)
= −k2k3ζ̃a − 1

2 (M
−1
η )

2
ζ̃a − π

2p1Tc0

(
sig1−p1(ζ̃a) + 3

p1
2 5

p1
2 sig1+p1(ζ̃a)

) (19)

According to Lemma 4, by substituting Equation (19) into the derivative of V0, one
can obtain:

.
V0 ≤ −

(
2k2k3 + λmin

(∥∥∥M−1
η

∥∥∥2
))

V1 − π
p1Tc0

(
5
∑

i=1
ζ̃2

ai

)1−p1/2

− π
p1Tc0

(
5
∑

i=1
ζ̃2

ai

)1+p1/2

≤ − π
p0Tc0

(
V1−p1/2

1 + V1+p1/2
1

) (20)

According Lemma 1 and Equation (20), the state estimation error ζ̃a will converge to
zero within Tc0.

Consequently, define Fe = fl − Fr to represent the reconstruction error:

Fe = fl + ζ̂a +
1
k1

.
ζa = fl + ζ̂a +

1
k1
(−k1ζa − k1fl) = −ζ̃a (21)

With the predefined-time stability of the state estimation error ζ̃a from Equation (20),
the reconstruction error Fe also converges to zero within the selected time Tc0. Then, the
lumped disturbance fl is approximated by Fr within the predefined time Tc0.

The proof is completed now. �

With the lumped disturbance reconstructed in Theorem 1, two disturbance observer-
based predefined-time controllers will be designed to achieve the desired trajectory tracking
performance within a predefined time in the following sections.
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3.2. Design of Predefined-Time Sliding Mode Controller

First, a predefined-time sliding manifold is formulated based on the trajectory tracking
error ηe defined in Equation (9):

S =
.
ηe + C1ηe +

π

2p2Tf
sig1−p2(ηe) +

π

2p2Tf
5

p2
2 sig1+p2(ηe) (22)

where C1, p2, and Tf are positive constants.

Theorem 2. Assuming that the AUV trajectory tracking error lies on the surface S = 0, then the
tracking error ηe will converge to the origin within a predefined time Tf .

Remark 6. The motion of the AUV trajectory tracking error with initial condition ηe(0) is shown
in Figure 3. As shown in Figure 3, ηe will reach the predefined-time sliding mode surface S after Ts
and lie in S = 0 thereafter based on Theorem 3. Then, according Theorem 2, ηe will continue to
converge to the equilibrium point ηe = 0 after Tf . In summary, the total settling time Tc consists of
two predefined periods: Ts and Tf .

Actuators 2021, 10, x FOR PEER REVIEW 10 of 23 
 

 

where 1 2,C p , and fT  are positive constants. 

Theorem 2. Assuming that the AUV trajectory tracking error lies on the surface 0=S , then the 
tracking error eη  will converge to the origin within a predefined time fT . 

Remark 6. The motion of the AUV trajectory tracking error with initial condition (0)eη is shown 
in Figure 3. As shown in Figure 3, eη  will reach the predefined-time sliding mode surface S  after 

sT  and lie in 0=S  thereafter based on Theorem 3. Then, according Theorem 2, eη  will continue 
to converge to the equilibrium point 0e =η  after fT . In summary, the total settling time cT  con-
sists of two predefined periods: sT  and fT . 

 
Figure 3. Motion of the AUV trajectory tracking error ensured by the proposed predefined-time 
sliding mode controller in Equation (22). 

Proof of Theorem 2. Once the AUV states reach the sliding mode surface S  and stay 
there thereafter, it follows that: 

2
2 21 12

1
2 2

( ) 5 ( )
2 2

sig sige e e e
p p

f

p

f

C
p pT T
π π− +− −= −η η η η&  (23)

Select the Lyapunov candidate function T
e eVη = η η ; the derivative of Vη  then has the 

form: 

( ) ( )

( )

2 2

1 1

2 2
1

2 2

/

1 /2 1 /

/2 2
1

2

2

1 1

2

2

T
e e ei ei

f

p p

f

f

p p

C
p p

p

V
T T

T
CV V V

η

η η η

π πη η

π

− +

− +

≤ − − −

≤ − − +

 η η&

 (24)

The first term in Equation (24), 12CVη− , guarantees that the tracking error eη  is sta-
ble. Then, Lemma 1 guarantees the predefined-time convergence of eη . □ 

Theorem 2 guarantees that the settling time of the tracking error does not depend on 
the initial state once 0=S  is obtained. Subsequently, this section will continue to pro-
vide a controller to ensure that the AUV states reach the sliding mode surface 𝑺 within a 
predefined time sT  . Additionally, considering that the actuator saturation constraints 
may have an adverse effect on the actuator, an auxiliary system is incorporated to avoid 
the control input going beyond the physical limitation of the actuator. Then, the prede-
fined-time sliding mode controller is designed as follows: 

( ) ( ) ( ) ( )

( )

2 2 2

11 11

2 2

2 2

1

/ 2

1 / 2 /2

1 1

1

5
2 2

( ) 3 5 ( )
2 2

( )

1 1
sig sig

sig sig

c

d e
p

e e e
f

r

p p

p p p

s

p

f

s

p p

p T

p p
T T

p T

π π
η

π π

−

− +

+ +



=


+ − − −  

 
 

+ − − − + −


−



− +



η η

η 1 e

η η

τ η D η g ηC

M C

S

F

η η η

M S M

η

S

η

χ

& &

&& & & &  
(25)

Figure 3. Motion of the AUV trajectory tracking error ensured by the proposed predefined-time
sliding mode controller in Equation (22).

Proof of Theorem 2. Once the AUV states reach the sliding mode surface S and stay there
thereafter, it follows that:

.
ηe = −C1ηe −

π

2p2Tf
sig1−p2(ηe)−

π

2p2Tf
5

p2
2 sig1+p2(ηe) (23)

Select the Lyapunov candidate function Vη = ηT
e ηe; the derivative of Vη then has

the form: .
Vη ≤ −2C1ηT

e ηe − π
p2Tf

(
∑ η2

ei
)1−p2/2 − π

p2Tf

(
∑ η2

ei
)1+p2/2

≤ −2C1Vη − π
p2Tf

(
V1−p1/2

η + V1+p1/2
η

) (24)

The first term in Equation (24), −2C1Vη , guarantees that the tracking error ηe is stable.
Then, Lemma 1 guarantees the predefined-time convergence of ηe. �

Theorem 2 guarantees that the settling time of the tracking error does not depend
on the initial state once S = 0 is obtained. Subsequently, this section will continue to
provide a controller to ensure that the AUV states reach the sliding mode surface S within a
predefined time Ts. Additionally, considering that the actuator saturation constraints may
have an adverse effect on the actuator, an auxiliary system is incorporated to avoid the
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control input going beyond the physical limitation of the actuator. Then, the predefined-
time sliding mode controller is designed as follows:

τc = Cη
.
η+ Dη

.
η+ g(η)− Fr

+Mη

( ..
ηd − C1

.
ηe −

π(1−p2)
2p2Tf

sig−p2(ηe)
.
ηe −

π(1+p2)
2p2Tf

5p2/2sigp2(ηe)
.
ηe

)
+Mη

(
−S− π

2p1Ts
sig1−p1(S)− π

2p1Ts
3p1/25p1/2sig1+p1(S)

)
+ Mη(−χ1)

(25)

where Fr is the estimated disturbance in Equation (17) and χ1 is an auxiliary variable
incorporated to attenuate the influence of the actuator saturation problem:

.
χ1 =



−kχ1χ1 + M−1
η ∆τc −

‖STM−1
η ∆τc‖+0.5(M−1

η ∆τc)
2

‖χ1‖2 χ1

− π
2p1Ts

(
sig1−p1(χ1) + 3p1/25p1/2sig1+p1(χ1)

) ‖χ1‖ > χ10

−kχ1χ1 − π
2p1Ts

(
sig1−p1(χ1) + 3p1/25p1/2sig1+p1(χ1)

)
‖χ1‖ ≤ χ10

(26)

where ∆τc = sat(τc)− τc and χ10 is a positive constant to avoid the singularity.

Theorem 3. For the AUV closed-loop system described in Equation (7), subjected to the lumped
disturbance fl , with the predefined-time disturbance observer in Equation (16) and the predefined-
time sliding mode controller in Equation (25), the AUV trajectory tracking error will converge to
zero within the predefined settling time Tc = Tf + Ts.

Remark 7. A fundamental assumption about the predefined-time controller design is that actuator
saturation does not affect the feasibility of control performance. Specifically, if the predefined time
exceeds the maximum output that the actuator can provide, the output of the controller keeps the
actuator in saturation all the time. In this case, a controller with an unreasonably predefined time
cannot achieve the predefined-time stability provided by Theorem 3.

Remark 8 The control parameter p1 should be carefully selected due to the existence of −p1 in the
controller term sig−p1(ηe). The negative parameters in the powers may lead to singularity in the
proposed predefined-time sliding mode controller in Equation (25). The probability of generating
singularity is a disadvantage of the proposed control law.

Proof of Theorem 3. First, differentiating the proposed predefined-time sliding mode
surface S in Equation (22), one has:

.
S = −M−1

η FR − S− π
2p1Ts

sig1−p1(S)− π
2p1Ts

3p1/25p1/2sig1+p1(S)− χ1 + M−1
η ∆τ + M−1

η fl

= −M−1
η (Fr − fl)− S− π

2p1Ts
sig1−p1(S)− π

2p1Ts
3p1/25p1/2sig1+p1(S)− χ1 + M−1

η ∆τc

(27)

Considering the definition of the variable ζ̃a and the actuator saturation auxiliary
variable χ1, choose the Lyapunov candidate function VS as:

VS = STS + χT
1 χ1 (28)

Differentiate the Lyapunov candidate function in Equation (28):

.
VS ≤ 2STM−1

η Fe − π
p1Ts

[
∑
(
S2

i
)1−p1/2

+ 3p1/25p1/2∑
(
S2

i
)1+p1/2

]
−STχ1 + 2STM−1

η ∆τc + 2χT
1

.
χ1

(29)
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Since Fe = −ζ̃a = 0 for t > Tc0, when substituting the derivative of χ1 in Equation
(26) into Equation (29), Equation (29) becomes:

.
VS ≤ −STS− π

p1Ts

[
∑
(
S2

i
)1−p1/2

+ 3p1/25p1/2∑
(
S2

i
)1+p1/2

]
− π

p1Ts

[
∑
(
χ2

1i
)1−p1/2

+ 3p1/25p1/2∑
(
χ2

1i
)1+p1/2

] (30)

Applying Lemma 4 again, one has:

.
VS ≤ − π

p1Ts

(
χT

1 χ1 + STS
)1−p1/2

− π
p1Ts

3
p1
2

(
χT

1 χ1 + STS
)1+p1/2

≤ − π
p1Ts

[(
χT

1 χ1 + STS
)1−p1/2

+
(

χT
1 χ1 + STS

)1+p1/2
]

= − π
p1Ts

[
V1−p1/2

S + V1+p1/2
S

] (31)

According to Equation (31) and Lemma 1, it can be obtained that S ≡ 0 and ζ̃a ≡ 0 after
Ts. Considering the predefined-time stability in Theorem 2, it follows that the trajectory
tracking error ηe = 0, ∀t ≥ Tf after reaching the sliding mode surface S. Therefore, the
trajectory tracking error ηe satisfies:

ηe(t) = 0, ∀t ≥ Ts + Tf (32)

The proof of Theorem is completed now. �

3.3. Design of Nonsingular, Practical Predefined-Time Controller

Although Theorem 3 ensures that the closed-loop system for AUV trajectory tracking is
a predefined-time stable system, using the proposed sliding mode controller Equation (25),
the negative power component within the controller may introduce singularity issues in
the closed-loop system. Consequently, we develop a nonsingular, practical predefined-time
controller based on the backstepping design procedure to address this concern.

First, define the trajectory tracking error as ηe and a virtual control input error z2
as follows:

ηe = η− ηd, z2 =
.
ηe − α1c (33)

where a1c is a filtered virtual control input. The filtered virtual control input is obtained by
allowing the virtual control input α1d to pass through a nonlinear first-order filter:

T1
.
α1c = −(α1c − α1d)−

πT1

2p1Tc1

[
sig1−p1(α1c − α1d) + sig1+p1(α1c − α1d)

]
(34)

where T1 is the time constant of the nonlinear first-order filter. With the nonlinear first-
order filter in Equation (34), the differential term

.
α1c can be directly acquired instead of

calculating
.
α1d, which is required in the conventional backstepping method. Note that the

first-order filter used here is nonlinear instead of a linear filter. This is because the linear
filter cannot guarantee the predefined-time convergence in the AUV closed-loop system.

Choose the candidate Lyapunov function to stabilize the trajectory tracking error ηe:

V1 = ηT
e ηe (35)

Differentiating the Lyapunov function V1 yields:

.
V1 ≤ 2ηT

e z2 − 2c1ηT
e ηe −

π

p1Tc1

(
η

2−p1
e + η

2+p1
e

)
+ 2ω1 + 2ηT

e σ1 (36)
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Different with the virtual controller in conventional backstepping method, the virtual
controller is proposed as follows:

α1d = −
_
α1d
(
ηT

e
_
α1d
)√

(ηT
e

_
α1d)(ηT

e
_
α1d) + ω2

1

(37)

where ω is a positive constant, and

_
α1d = c1ηe +

π

2p1Tc1

[
sig1−p1(ηe) + 3p1/25p1/2sig1+p1(ηe)

]
(38)

Before analyzing the dynamic of z2, the nonsingular property of the virtual control
input α1d is reconsidered. We know that the conventional virtual control input has a form
similar to α1d. According to the definition of α1d, one has:

._
α1d = c1

.
ηe +

π

2p1Tc1
(1− p1)|ηe|−p1 .

ηe +
π

2p1Tc1
(1 + p1)3p1/25p1/2|ηe|p1 .

ηe (39)

The term −p1 occurring in the equation seems to cause the singularity problem, as in
the analysis of the proposed predefined-time sliding mode control law. However, the modi-
fied virtual control input α1d replaces

_
α1d to solve this problem. In detail, differentiating

the virtual control law in Equation (34) yields,

.
α1d = −

d
[_
α1d
(
ηT

e
_
α1d
)]

dt
·

√(
ηT

e
_
α1d
)(

ηT
e

_
α1d
)
+ ω2

1(
ηT

e
_
α1d
)(

ηT
e

_
α1d
)
+ ω2

1
+

_
α1d
(
ηT

e
_
α1d
)(

ηT
e

_
α1d
)(

ηT
e

_
α1d
)
+ ω2

1
·

d
[√(

ηT
e

_
α1d
)(

ηT
e

_
α1d
)
+ ω2

1

]
dt

(40)

where

d[
_
α1d(ηT

e
_
α1d)]

dt =
._
α1dηT

e
_
α1d +

_
α1d

.
η

T
e

_
α1d +

_
α1dηT

e

._
α1d

d
[√

(ηT
e

_
α1d)(ηT

e
_
α1d)+ω2

1

]
dt = 1

2
√

(ηT
e

_
α1d)(ηT

e
_
α1d)+ω2

1

·
( .

η
T
e

_
α1dηT

e
_
α1d + ηT

e

._
α1dηT

e
_
α1d + ηT

e
_
α1d

.
η

T
e

_
α1d + ηT

e
_
α1dηT

e

._
α1d

) (41)

Then, it can be found that
.
α1d contains the original term

._
α1d, which may cause the

singularity problem. Recalling the definition of ηT
e

._
α1d again, one has:

ηT
e

._
α1d = c1ηT

e
.
ηe +

π

2p1Tc1
(1− p1)|ηe|1−p1 .

ηe +
π

2p1Tc1
(1 + p1)3p1/25p1/2|ηe|1+p1 .

ηe (42)

where the term −p1 becomes 1 − p1. According to the definition that 0 < p1 < 1,
it can be found that the nonsingular property is guaranteed directly by the modified
virtual controller.

Subsequently, by differentiating the virtual control input error z2, one has:

.
z2 =

..
η− ..

ηd −
.
α1c (43)

Considering that the first-order filter introduces filtered error, define the filter error as
σ1 = α1c − α1d; then, Equation (34) has the form:

.
α1c = −

1
T1

σ1 −
π

2p1Tc1

[
sig1−p1(σ1) + sig1+p1(σ1)

]
(44)

Similar to the design of virtual control law in Equation (37), design the actual control
input τc as follows:

τc = −
_
τc
(
zT

2
_
τc
)√(

zT
2

_
τc
)(

zT
2

_
τc
)
+ ω2

2

(45)

where ω2 is a positive constant, and
_
τc satisfies:
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_
τc = z1 + c2z2 + FR −

[
Cη

.
η+ Dη

.
η+ g(η)

]
− ..

ηd −
.
α1c +

π

2p1Tc1

[
sig1−p1(z2) + 3p1/25p1/2sig(z2)

]
(46)

Correspondingly, modify the auxiliary system as follows:

.
χ2 =


−kχ2χ2 + M−1

η ∆τc −
‖zT

2 M−1
η ∆τc‖+0.5(M−1

η ∆τc)
2

‖χ2‖2 χ2 − π
2p1Tc1

(
sig1−p1 (χ2) + 3p1/25p1/2sig1+p1 (χ2)

)
‖χ2‖ > χ20

−kχ2χ2 − π
2p1Tc1

[
sig1−p1 (χ2) + 3p1/25p1/2sig1+p1 (χ2)

]
‖χ2‖ ≤ χ20

(47)

Define the Lyapunov function as:

V2 = V1 + zT
2 z2 + σT

1 σ1 + χT
2 χ2 (48)

Differentiating V2, one has:

.
V2 =

.
V1 + 2zT

2
.
z2 + 2σT

1
.
σ1 + 2χT

2
.
χ2

= −(2c1 − 1)ηT
e B1 − π

p1Tc1

(
ηT

e ηe
)1−p1/2 − π

p1Tc1
3p1/25p1/2(ηT

e ηe
)1+p1/2

+ 2ω1 + σT
1 σ1 + 2ηT

e z2

−2zT
2

{
−M−1

η

[
Cη

.
η+ Dη

.
η+ g(η)

]
+ M−1

η τc + M−1
η ∆τc + M−1

η fl −
..
ηd −

.
α1c

}
+2σT

1
.
σ1 + 2χT

2
.
χ2

(49)

According to Theorem 1, when t > Tc0, ζ̃a = 0, by substituting the control law in
Equation (45) and the definition of χ2 in Equation (47), one has:

.
V2 ≤ −(2c1 − 1)zT

1 z1 − π
p1Tc1

(
z2

1
)1−p1/2 − π

p1Tc1
3p1/25p1/2(z2

1
)1+p1/2

+ σT
1 σ1

−2(c2 − 1)zT
2 z2 + 2zT

2 M−1
η ∆τ − π

p1Tc1

[(
z2

2
)1−p1/2

+ 3p1/25p1/2(z2
2
)1+p1/2

]
+ 2σT

1
.
σ1

− π
p1Tc1

[(
χ2

2
)1−p1/2

+ 3p1/25p1/2(χ2
2
)1+p1/2

]
+ 2ω1 + 2ω2

(50)

Consequently, based on the definition of σ1 and α1d, one has:

.
σ1 =

.
α1c −

.
α1d = − 1

T1
σ1 − π

2p1Tc1

[
sig1−p1(σ1) + sig1+p1(σ1)

]
− .

α1d

= − 1
T1

σ1 − π
2p1Tc1

[
sig1−p1(σ1) + sig1+p1(σ1)

]
+ B1

(
η,

.
η, ηd,

.
ηd, σ1

) (51)

where B1
(
η,

.
η, ηd,

.
ηd, σ1

)
is a continuous vector function.

Then, applying Young’s inequality, it can be obtained that:

2σT
1

.
σ1 = − 2

T1
σT

1 σ1 + 2σT
1 B1 ≤ −

2
T1

σT
1 σ1 + ‖σ1‖2‖B1‖2 + 1 (52)

Hypothesis 4. According to the designed virtual control law in Equation (37), we assumed that
there exists a positive constant BM that satisfies ‖B1‖ ≤ BM.

Considering Assumption 4, the control parameters c1, c2, and c3 and the time constant
T1 can be chosen as

c1 >
1
2

, c2 >
1
2

, c3 > 1, T1 <
2

BM + 1
(53)
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Theorem 4. Considering the AUV closed-loop system in Equation (7) as consisting of disturbances,
as characterized by Assumptions 1–4, combined with the predefined-time disturbance observer Equa-
tion (16), if the virtual control law and actual control law are provided by Equations (37) and (45),
the closed-loop system is then a practical predefined-time stable system, and the trajectory tracking
errors will converge to a set around zero within

√
2Tc1. In addition, the actual control input will

not avoid the actuator saturation constraint by combing the auxiliary system in Equation (47).

Remark 9. The modified virtual control input α1d contributes to the nonsingular property. However,
as stated by Theorem 4, the nonsingular property is based on the practical trajectory tracking
precision instead of an asymptotic tracking. The selection of the controller is based on the actual
requirement: the sliding mode controller has higher steady-state trajectory tracking precision and
the other has a nonsingular property.

Proof of Theorem 4. With the properly selected parameters in Equation (53), one can
obtain that:

.
V2 ≤ −(2c1 − 1)zT

1 z1 − 2(c2 − 1)zT
2 z2 − π

p1Tc1

(
z2

1
)1−p1/2 − π

p1Tc1
3p1/25p1/2(z2

1
)1+p1/2

+ 2ω1 + 2ω2 + 1

− π
p1Tc1

[(
χ2

2
)1−p1/2

+ 3p1/25p1/2(χ2
2
)1+p1/2

]
− π

p1Tc1

[(
z2

2
)1−p1/2

+ 3p1/25p1/2(z2
2
)1+p1/2

]
−
(

2
T1
− 1− ‖B1‖2

)
σT

1 σ1 − π
p1Tc1

[(
B2

2
)1−p1/2

+ 3p1/25p1/2(σ2
2
)1+p1/2

] (54)

Then, similar to Section 3.2, one can obtain that:

.
V2 ≤ −

π

p1Tc1

(
V1−p1/2

2 + V1+p1/2
2

)
+ Γ2 (55)

where Γ2 = 2ω1 + 2ω2 + 1.
According to Lemma 2 and Equation (55), one has:{

lim
t→
√

2Tc1

x|V2 ≤ min

{(
2Γ2 p1Tc1

π

) 2
2−p1

,
(

2Γ2 p1Tc1

π

) 2
2+p1

}}
(56)

Therefore, the closed-loop system is proven to be a practical, predefined-time stable
system, and the proof is completed. �

4. Simulation Cases

In this section, simulations are performed to demonstrate the effectiveness of the
two proposed predefined-time controllers. Tables 1 and 2 provide the hydrodynamic and
inertial coefficients of the AUV required in the simulation. For the selected AUV model,
the thrusters act as the actuators to provide the control force required by the proposed
controller. Correspondingly, the actuator saturation constraints in the dynamic model are
limited by the output of the thrusters, given by τc,max = [50N, 100N, 100N, 50Nm, 50Nm]T.

Table 1. The inertial coefficient of AUV.

Parameter M Ixx Iyy Izz

Value 30 kg 0.1215 kgm2 5.468 kgm2 5.468 kgm2
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Table 2. AUV partial hydrodynamic coefficients.

Parameters Value Parameters Value

X .
u −7.14 kg Y .

v −67.7 kg
Xu −5.8 kg/s Yv −49.15 kg/s

X|u|u −9.29 kg/m Yv|v| −79.71 kg/s
Z .

w −60.63 kg N .
r −0.48 kgm2

Zw −49.52 kg/s Nr −0.56 kgm2/s
Z|w|w −80.15 kg/m Nr|r| −115.06 kgm2

Since the spiral trajectory contains the motion in different degrees of freedom, they are
usually chosen to judge the maneuverability of the AUV [37]. Therefore, a spiral trajectory
ηd = [xd, yd, zd, θd, ψd]

T is selected as the reference trajectory:

xd(t) = 2 sin(0.1t)m, yd(t) = 2 cos(0.1t)m

zd(t) = −0.01tm, θd(t) = 0rad, ψd(t) = 0rad
(57)

Correspondingly, the time-varying disturbances are set as follows:

τd1 = −1.5 sin(0.6t)N, τd2 = − sin(0.5t)Nτd3 = −2 sin(0.4t)N,

τd4 = −1.5 cos(0.2t)Nm, τd5 = −3 cos(0.3t)Nm, τd6 = −2 sin(0.1t)Nm
(58)

Two initial AUV states η(t0) are provided for simulation:

η1(t0) = [0. 5 m,1. 5 m,− 0. 05 m,
π

18
rad,

π

9
rad]

T
; η2(t0) = [1. 6 m,0. 7 m,−0.01m,

π

6
rad,

π

6
rad]

T
(59)

The setting of the initial state of the AUV in Equation (59) indicates that the AUV begins
to move from positions and attitudes away from the reference trajectories in Equation (57).
Recalling the fault actuator model in Equation (5), set K = diag[0.2, 0.1, 0, 0.2, 0.2]T and
τa = [3, 5, 5, 1, 1]T in different degrees of freedoms.

4.1. Case 1: Disturbance-Observer-Based Predefined-Time Control

First, the trajectory tracking control is simulated with the predefined-time control law
in Equation (25). The tunable parameters of the predefined-time observer and controller
are set as: k1 = 1, k2 = 10, k3 = 5, c1 = 1, Ts = 10 s, Tf = 5 s, p1 = 7/13, and p2 = 1/5.
The initial states of predefined-time disturbance observer in Equation (16) are all set as
zeros. From the parameter setting, it can be found that the predefined convergence time is
Tc = Ts + Tf = 15 s. With the predefined convergence time Tc, Figures 4 and 5 show the
simulation result of trajectory tracking error in different initial AUV states. It shows that
the AUV position and attitude tracking error both converge to zero within 15 s in the two
different initial states.

Then, keep the other control parameters unchanged and only modify the predefined
time Tc from Tc = 15 s to Tc = 20 s. The modification in the predefined time will illustrate
the adjustable time parameter’s influence on the convergence of the tracking error. The
simulation result with the initial condition 1 η1(t0) is shown in Figure 6. Comparing the
trajectory tracking errors in Figures 4 and 6, it can be concluded that the convergence for
Tc = 20 s has a larger settling time than Tc = 15 s. This implies that the upper boundary of
the settling time can be changed only by modifying Tc.
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Figure 4. The AUV trajectory tracking result with predefined time as 15 s under initial condition 1:
(a) AUV position tracking error; (b) AUV attitude tracking error.
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Figure 5. The AUV trajectory tracking result with predefined time as 15 s under initial condition 2:
(a) AUV position tracking error; (b) AUV attitude tracking error.
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Figure 6. The AUV trajectory tracking result with predefined time as 15 s: (a) AUV position tracking
error; (b) AUV attitude tracking error.
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Subsequently, in order to analyze the influence of the control force and control moment,
the change in the control input is shown in Figure 7. Figure 7 shows that the output forces
and moments provided by the proposed controller are both constrained by the actuator’s
physical limitations.
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Figure 7. Control input with auxiliary system with predefined time as 15 s under initial state 1:
(a) Control force under initial state 1; (b) control moment under initial state 1.

Then, the trajectory tracking error and the control input without the auxiliary system
are presented in Figures 8 and 9. Figure 8 shows that the trajectory tracking object can be
achieved without considering the actuator saturation constraints. However, Figure 9 shows
that the control input exceeds the physical limitation of the actuators. This is not suitable
for the practical application of the AUV. The performance of the predefined-time control
architecture is validated in the simulations.
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Figure 8. The AUV trajectory tracking result with predefined time as 15 s: (a) AUV position tracking
error; (b) AUV attitude tracking error.
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Figure 9. Control input without auxiliary system with predefined time as 15 s under initial state 1:
(a) Control force under initial state 1; (b) control moment under initial state 1.

4.2. Case 2: Disturbance-Observer-Based Practical Predefined-Time Control

In this section, the performance of the nonsingular, practical, predefined-time con-
troller is illustrated. The tunable parameters of the controller are set as T1 = 0.1, c1 = 1,
c2 = 1, kχ2 = 2, ω1 = 0.001, and ω2 = 0.001. In order to choose a similar convergence
time to the predefined time controller in Equation (45), the predefined convergence time is
chosen as Tc1 = 15/

√
2 s. Applying Lemma 2, we can obtain that the practical convergence

time is Tc = 15 s. Then, Figure 10 shows the simulation result of the trajectory tracking
error with predefined time Tc = 15 s.

It can be found from Figure 10 that the non-singular controller guarantees the trajectory
tracking error convergence within the practical convergence time is Tc = 15 s. Then, with
other control parameters unchanged, modify only the predefined time Tc from Tc = 15 s to
Tc = 20 s to verify the influence of the adjustable time parameter on the convergence of
the tracking error. From Figures 10 and 11, it can be concluded that the trajectory tracking
error for Tc = 20 s has a larger settling time. This implies that the upper boundary of the
settling time can be changed only by modifying Tc1.
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Figure 10. The AUV trajectory tracking result with predefined time as Tc1 = 15/
√

2 s under initial
condition 1: (a) AUV position tracking error; (b) AUV attitude tracking error.
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Figure 11. The AUV trajectory tracking result with predefined time as Tc1 = 15/
√

2 s under initial
condition 1: (a) AUV position tracking error; (b) AUV attitude tracking error.

Then, Figure 12 continues to show the control input of the nonsingular backstepping
method. Compared with Figure 7, there exists chattering at the beginning of the trajectory
tracking process. The chattering phenomenon is influenced by the selection of predefined
time Tc1 and Tc2 and the positive constants ω1 and ω2 in the virtual control input and
the actual control input. A shorter predefined time and smaller value in the selection of
ω1 and ω2 will increase the chattering phenomenon. Finally, Figure 13 shows that the
predefined-time observer in Equation (16) reconstructs the lumped disturbance within the
predefined time. The reconstructed lumped disturbance provides the compensation term
for the predefined-time controller.
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Figure 12. The AUV trajectory tracking result with predefined time as Tc1 = 15/
√

2 s under initial
condition 1: (a) AUV position tracking error; (b) AUV attitude tracking error.

Nonetheless, the conservatism of this predefined time approach still persists. To
demonstrate the conservatism in the proposed method, we can compare the convergence
set obtained from Theorem 4 with the simulation result under the condition Tc = 15 s. The
theoretical bound of the states is 0.038, as calculated from Theorem 4 using ω1 = ω2 = 0.001.
However, in the simulation, in the trajectory tracking result shows that the actual boundary
of the convergence set is lower than the analytical set. This suggests that the theoretical
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convergence set exhibits conservatism. The conservatism of the analysis results arises
from the fact that the theoretical calculation process is based on information from different
degrees of freedom, while the simulation results are observed separately. Additionally, the
theoretical boundary depends on the unknown scalar α1c, which is related to the virtual
control law. Apart from a large value at the initial time, the unknown scalar remains close
to zero. For these reasons, it can be concluded that some conservatism remains in the
predefined boundaries at the predefined time.
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Figure 13. Lumped disturbance reconstruction with predefined-time observer in Equation (12):
(a) Lumped disturbance forces reconstruction result; (b) lumped disturbance moments reconstruction
result.

5. Conclusions

In this paper, we developed two predefined-time active fault-tolerant controllers
for the trajectory tracking of AUVs without violating the actuator’s physical limitations.
We first designed a predefined-time sliding mode controller based on a predefined-time
disturbance observer by incorporating a novel predefined-time auxiliary system to address
actuator saturation constraints. Subsequently, a non-singular backstepping controller was
developed to circumvent potential singularities in the sliding mode controller, guaranteeing
that the trajectory tracking error converges within the predefined time. Simulation results
were presented to demonstrate the effectiveness of the proposed architecture. Future
research may explore the use of variable exponent coefficients in predefined-time controller
to achieve zero-error predefined-time tracking with non-singular properties.
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