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Abstract: To address the issues of the high cost of marine turbocharger fault simulation testing and
the difficulties in obtaining fault sample data, a multi-body dynamics model of a marine turbocharger
was developed. The simulation approach was used to acquire the turbocharger vibration signals.
The result shows that the amplitude of the 1× vibration signal power spectrum drops as the bearing
surface roughness increases. However, the amplitude of the 2× and 9× vibration signal power
spectra increases as the roughness increases. The TrAdaBoost transfer learning method is used to
develop a marine turbocharger diagnosis model. The validation results of 2040 simulated fault
samples reveal that when the desired sample number is 20, the diagnostic model has an accuracy
of 87%. When the desired number of samples is 40, the diagnostic model’s accuracy is 96%. The
diagnosis model may perform diagnosis information transfer between the actual turbocharger and
the simulation model.

Keywords: marine turbocharger; fault simulation; fault diagnosis; transfer learning

1. Introduction

The turbocharger is a crucial component of a marine diesel engine [1]. Among all diesel
engine components, it is the most prone to damage. The turbocharger has a considerable
influence on diesel engine performance once it breaks [2,3]. Furthermore, due to the intense
working environment and complicated composition system of marine turbochargers, they
are prone to problems during operation [4]. A substantial quantity of failure sample data is
required for the quick and accurate diagnosis of marine turbocharger failures. However,
the economic cost and danger of failure test are also great. The purpose of the model-based
fault simulation study is to simulate the common types of turbocharger failures in actual
operation using professional simulation software. Fault simulation greatly reduces the
time and economic cost required for fault data acquisition. Meanwhile, it also provides rich
sample data for fault diagnosis and turbocharger health status monitoring.

In turbocharger rotor dynamics simulation studies, Li was the first to apply a bearing
finite element model to predict the steady-state response of oil film [5]. Peixoto et al. de-
veloped a turbocharger rotor dynamic model, accounting for lateral and axial vibrations
and cross-coupling bearing effects, to analyze run down or run up dynamic response.
Predictions show a fair agreement with test data in the frequency domain and temperature
estimates, especially for higher rotational speeds [6]. Ntonas et al. present a turbocharged
four-stroke diesel engine simulation framework based on one-dimensional calculations
and analysis. Mean-line models were used in conjunction with the beta lines method for
generating accurate and detailed compressor and turbine performance maps [7]. Koutso-
vasilis et al. investigate the influence of hydrodynamic thrust bearings on the nonlinear
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oscillations and bifurcations of the rotor system in terms of the thrust and radial bearing in-
teraction during run-ups. For a given set of boundaries, the thrust bearing’s position along
the shaft can have either positive, neutral or negative influence on shaft motion [8]. Wang
et al. established a rotor system dynamics simulation model with an improved four-node
aggregate parameter method. A fault simulation was performed. The output fault simu-
lation signal is extracted by the Hu-invariant moment feature extraction method [9]. Bin
et al. developed a finite element model of a turbocharger rotor and analyzed the nonlinear
dynamic response of the rotor. It was found that rotor unevenness has an important effect
on subsynchronous vibrations [10].

Fault diagnosis methods for marine diesel engine turbochargers are divided into
two main categories: model-based methods and data-driven methods. The model-based
fault diagnosis method is common and widely used. It uses physical signals such as
temperature, pressure and vibration, as well as equipment-related mechanistic knowledge
for modelling [11–15]. However, the mathematical model of the marine turbocharger
is complex and cannot be accurately modelled due to its nonlinear characteristics, sys-
tem uncertainty, external disturbances and changes in operating conditions. Therefore,
data-driven fault diagnosis methods based on real-time health condition monitoring are
increasingly used [16–21]. Multivariate statistical analysis methods, subspace identification
methods and pattern recognition methods have been well applied in model identification
and can be widely used in complex industrial systems, for example, partial least squares
(PLS), typical correlation analysis (CCA), efficient projection to latent structures (EPLS),
fault trees and machine learning [22–26]. At the same time, the effectiveness of the above
methods is strongly influenced by the quality of the data. Therefore, it is necessary to apply
a combination of both methods.

Traditional machine learning-based algorithms require a large amount of data for
training. However, they also require that the training and test data are independently and
identically distributed [27,28]. Meanwhile, in practice, factors such as the speed, health
status, ambient temperature and altitude of the turbocharger can affect the independent,
identical distribution of the data. The TrAdaBoost transfer learning algorithm can solve
the problem of the independent identical distribution of the data and transfer knowledge
between different but similar domains. Additionally, only a small amount of fault sample
data plus some auxiliary data are needed to classify the data [29,30]. Then, simulation or
other means can be used to obtain a large amount of auxiliary data. Finally, a small amount
of independent identically distributed fault sample data is easy to obtain.

In this paper, a multi-body dynamics model of a marine turbocharger was established
based on AVL Excite software. Its simulation calculation results were analyzed. The tests
were carried out on the bench, and the simulation and test results were compared to
ensure that the model was accurate. The model’s inaccuracy is less than 5%. Then, the
approach of turbocharger dynamics fault simulation was validated. Based on the model,
fault simulation and data analysis were carried out. The amplitude of the 1× vibration
signal power spectrum drops as the bearing surface roughness increases. However, the
amplitude of the 2× and 9× vibration signal power spectra increases as the roughness
increases. A defect diagnostic model for marine diesel engine turbocharger system is built
using the TrAdaBoost algorithm. The diagnostic model has a 96% accuracy rate. The
diagnosis findings indicate that the algorithm can transfer diagnostic knowledge between
the real engine and the simulation model of a marine turbocharger. It provides a new way
of thinking about turbocharger failure diagnosis.

2. Turbocharger Simulation Model Building
2.1. Turbocharger Bench Test

To obtain actual turbocharger measurement data for simulation model calibration, a
kind of turbocharger was tested on the experiment bench under normal, dynamic imbalance
and bearing wear circumstances. Temperature and pressure before and after the turbine
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and compressor inlet/outlet, turbocharger speed, vibration acceleration of the turbocharger
base and shaft center orbit were all measured throughout the test.

Figure 1 is a schematic diagram of the test system, in which T, P andω represent the
temperature, pressure and speed sensors. V and O represent vibration and shaft centre
orbit sensors. The test stand mainly consists of a turbocharger, a combustion chamber and
a gas valve. The injector jets fuel into the combustion chamber for combustion. The high
temperature gas enters the turbine to do work to drive the rotor shaft rotation. The coaxial
compressor compresses the air. When the self-circulation valve opens, the pressurized air
then enters the combustion chamber to form a self-circulation.
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Figure 1. Schematic diagram of the turbocharger test system.

During the test, the temperature and pressure of the turbine and compressor intakes
and outlets, the speed of the turbocharger, the vibration acceleration of the turbocharger
base and the orbit of the shaft center were all measured. The Siemens LMS SCADAS Mobile
system recorded the vibration, orbit of the shaft center and speed signals. The speed,
temperature and pressure signals were also collected by the test bench’s measuring and
control platform. The principal test instruments and equipment used in the test are shown
in Table 1.

Table 1. Test instruments and equipment in stand test.

Equipment Name Model Range Precision

Turbocharger measurement and control system NI — —
Vibration test system LMS SCADAS Mobile — —
Acceleration sensor B&K 4534-B ±700 g —

orbit of the shaft centre Eddy current sensor Bently3300 10~100 mils —
Rotational speed sensor EM3309 — ±0.5%

Temperature sensors K index thermocouple 0~1000 ◦C ±2%
Pressure sensors Y-153BF 0~1.6 MPa ±0.4%

The turbocharger was put through four tests: severe dynamic imbalance, severe
dynamic imbalance with bearing wear, minor dynamic imbalance and normal condition.
First, a severe dynamic imbalance failure test was performed; second, a dual failure test
of severe dynamic imbalance plus bearing wear was performed by replacing the faulty
bearing; third, the normal bearing was replaced and the rotor dynamic imbalance was
reduced on the dynamic balancing machine for a slight dynamic imbalance failure test; and
finally, the dynamic imbalance of the rotor was reduced to a normal value on the dynamic
balancing machine for a normal condition test. The turbocharger’s speed ranges from
35,000 r/min to 60,000 r/min, with a 2500 r/min gap. Additionally, the test program is
shown in Table 2. There are two tests for dynamic unbalance. Its condition characterization
parameters are the dynamic unbalance of the rotor, and the unit is mg·mm. The condition
characterization parameters were 10 and 7.6, respectively. In the dynamic unbalance plus
bearing wear condition, there is one test. In the normal status, there is one test. Similarly,
their state characteristics parameters and units can be found in the table.
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Table 2. Turbocharger failure test program table.

Turbocharger Status Condition Characterization
Parameters Unit Tests

Dynamic unbalance condition Rotor dynamic unbalance and
Bearing surface roughness Ra value

mg·mm and
µm

(1) 10.0 mg·mm 0.5 µm
(2) 7.6 mg·mm 0.5 µm

Dynamic unbalance and
bearing wear condition

Rotor dynamic unbalance and
Bearing surface roughness Ra value

mg·mm and
µm (1) 10.0 mg·mm 1.2 µm

Normal status Rotor dynamic unbalance and
Bearing surface roughness Ra value

mg·mm and
µm (1) 3.1 mg·mm 0.5 µm

2.2. Turbocharger Model
2.2.1. Whole Machine Model

The primary structure of the turbocharger includes the housing, rotor and floating
ring bearing, which are the three main structures influencing the turbocharger’s multi-
body dynamics computation. The software is used to build the general framework of the
turbocharger dynamics model, and the established model is illustrated in Figure 2. In the
figure, TC-Rotor represents the turbocharger rotor with turbine and compressor blades,
RS represents the bearing connection, TS-Housing represents the turbocharger housing,
chassis represents the chassis and EMount represents the mounts. The global parameters
of the computational model are set by Crank Train Global. Then, the connection types of
the model are defined. Additionally, the file geometry, degrees of freedom, stiffness and
mass of the entire part obtained by modal reduction are introduced into the AVL Excite
software platform through the software interface. After defining the loading nodes, the
multi-body dynamics model is completed.
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The plain bearings involved in the model are radial plain bearings. Therefore, in
addition to the bearing load state, the lubrication state of the bearing should also be
considered. The calculation takes into account the elastic deformation of the bearing
structure, bearing clearance, journal misalignment, oil groove oil hole and oil supply
conditions. A complex elastomeric hydrodynamic lubricated bearing type is selected as the
connecting unit. According to this bearing type, single-point to multi-point coupling form
is used to simulate the wedge effect and squeeze effect.

2.2.2. Input of Model Parameters

After the establishment of the turbocharger model, the parameters of each component
are entered, and the turbocharger rotor, bearing, turbocharger housing and chassis are
set. The focus of modelling is on the rotor, housing and bearing parameters. The needed
parameters for elastohydrodynamic (EHD) bearing calculation include lubricant quality,
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bearing geometry parameters and so on. The precise non-confidential data are presented
in Table 3. The rotor is modelled using the rotor shaft diameter, compressor impeller
eccentricity and turbine impeller eccentricity. The floating ring bearing is modelled using
the inner diameter of the floating ring, the outside diameter of the floating ring and the
size of the floating ring. The rest of the parameters are used to build the oil film model.

Table 3. Table of parameters required for model calculation.

Parameter Value Unit

The diameter of the rotor shaft 12.4 mm

Eccentricity of the compressor impeller 2 mm

Eccentricity of the turbine impeller 3 mm

Inner diameter of the floating ring 12.4 mm

Outer diameter of the floating ring 17.7 mm

Size of the floating ring 20.2 mm

The density of oil 827.9 kg/m3

The initial temperature of the oil film 373 K

The viscosity of the lubricant 11.3 mPa·s
Specific heat of the oil film 1950 J/kg·K

Thermal conductivity of the oil film 0.14 W/m·K

Constant α of viscosity-pressure 2.2 × 10−8 m2/K

Constant β of viscosity-temperature 0.03 K−1

The turbocharger speed and step settings are shown in Figure 3. Additionally, the rotor
speed is applied to the kinetic model during the computation, i.e., the model boundary
settings. The real turbocharger running speed is in the 35,000~60,000 r/min range, and the
calculation interval is 2500 r/min, which matches the test speed.
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2.2.3. Finite Element Division and Modal Reduction of Turbocharger Substructure

The turbocharger housing, rotor and floating ring bearing are all considered elastomers.
Additionally, finite element modelling method is used. The turbocharger’s major structure
is cleaned up; threaded holes, chamfers and other structures that are not appropriate for
meshing are eliminated; and the second-order tetrahedron is utilized for finite element
division of the turbocharger’s main structure.

The hypermesh software was used to divide the grid. A grid-independent test is
performed. The model is divided into tetrahedral meshes with the number of (40, 60, 80,
100, 120, 140) × 104. As the number of meshes increases, the model calculation results tend
to be stable. When the number of meshes increases to 80 × 104, the vibration variation rate
is less than 1%. Therefore, the number of grids is set to about 80 × 104, which can satisfy
the calculation accuracy requirement.

After dividing the grid, the turbocharger shell and rotor are pre-processed, and the
connection surface between the shell and chassis is constrained to simulate the operating
condition of the turbocharger during the actual test. The three-way degrees of freedom at
the contact location between the floating ring bearing and the rotor must be preserved in
the EHD calculation, with 7 nodes at the journal centerline and 70 nodes in the circumfer-
ential direction. Following the aforementioned parameters, the modal reduction of each
substructure is performed. Additionally, the stiffness and mass matrices are created, which
may be utilized in subsequent dynamics computations.

2.2.4. EHD Bearing Modelling

A crucial component of the turbocharger model is the floating ring-bearing multi-body
dynamics model. In comparison to the rigid hydraulic lubrication bearing model, the EHD
bearing model considers the lubricant’s extra viscous pressure effect, the roughness of the
contact surface and the elastic deformation. Nodes for modal reduction are defined on the
surfaces of the rotor journal, floating ring bearings and shaft shingles. The corresponding
connection relationships are established after the nodes are reduced. The inner bearing of
the floating ring in the model employs a single-point to multi-point connection to link the
journal to the inner surface of the bearing.

The actual turbocharger has three oil holes on the circle of the floating ring bearing.
More realistic lubricating oil pressure boundary conditions and the actual operating state of
the floating ring bearing were taken into account. Three oil holes with a diameter of 3 mm
around the perimeter of the floating ring bearing were uniformly added. The interaction of
oil pressure between the inner and outer oil film is thoroughly considered. Meanwhile, the
centrifugal force of the oil film, the friction created by the bearing motion, and the friction
generated by the bearing motion are all extensively considered in the model.

2.3. Model Validation

The accuracy of the proposed model was verified by the measured data of the tur-
bocharger at 35,000 r/min, 37,500 r/min, 40,000 r/min . . . 60,000 r/min operating con-
ditions. The frequency spectrum of the vibration signal, the shaft centre orbit, and the
vibration power spectrum density (PSD) waterfall plot were calibrated. At 60,000 r/min
operating conditions, the comparison between the simulation PSD of the vibration signal
and the test PSD is shown in Figure 4. It shows that in the low frequency region of 0~4 kHz,
the medium frequency region of 4~8 kHz and the high frequency region of 8~12 kHz, the
calculated vibration curve of the turbocharger base and the test curve maintain a high
consistency in trend and value. The maximum error of the simulation result is 4.9%. The
modal reduction process simplifies the turbocharger appropriately, so a certain amount of
error is introduced. However, the error is within 5%, which is acceptable. The calculated
model and the test data of the turbocharger are in good agreement.
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To further validate the correctness of the model fault simulation, the model was
calibrated using dynamic unbalance fault and double fault test data. A double fault
is dynamic unbalance superimposed on bearing wear fault. Figures 5 and 6 show a
comparison of the PSD of the vibration signal at 60,000 r/min operating conditions. The
simulation result curves and the test curves match well in the low frequency zone of
0~4 kHz, the medium frequency region of 4~8 kHz, and the high frequency region of
8~12 kHz, with maximum errors of 4.5% and 4.7%, respectively. The mistake has the same
origin as in the normal state simulation. The margin of error is lower than 5%, which
is acceptable. Therefore, the proposed model can meet the accuracy requirements of the
subsequent turbocharger dynamics fault simulation.
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Comparing Figure 5 with Figure 4, the amplitude rises at 1k Hz. At 60,000 r/min
operating conditions, the 1× frequency is 1k Hz. Because when the turbocharger changes
from the normal state to dynamic unbalance, the rotor rotates once, which itself will
produce a shock. Additionally, its vibration response characteristics will be reflected in the
1× frequency, resulting in the 1× frequency amplitude rise. The impeller has 9 main blades
and 9 slave blades. At the same time, the rotor rotates once, then the impeller blade air
pass occurs 9 times. It produces air pass vibration 9 times. This is the so-called blade pass
frequency. Its vibration response characteristics are reflected in the 9× frequency. When the
turbocharger changes from normal condition to bearing wear, its 1×, 2× and 9× frequency
amplitudes change.



Actuators 2023, 12, 146 8 of 17

3. Fault Simulation and Its Data Analysis

After establishing the marine turbocharger dynamics model, the fault simulation is
conducted and the fault data are examined.

3.1. Bearing Wear Simulation

Bearing failure is a common cause of turbocharger failure. External influences cause
the turbocharger bearings to wear over long periods of operation. Additionally, the wear
directly alters the roughness of the inner surface of the bearings. The condition of the oil
film between the bearings changes. The stability and safety of rotor operation are impacted
by the bearing wear. The bearing is altered due to long-term corrosion and scouring by
high-pressure oil. It increases surface roughness. Serious bearing wear leads to the oil film
being unable to be established. It also causes dry friction and welding of the journal and
bearing. The normal roughness of the turbocharger is 0.5 µm. The working condition of
the turbocharger was simulated at 1.1, 1.7 and 2.3 bearing roughness.

Table 4 shows the variation of turbocharger parameters under normal and fault
conditions. The data in it are obtained by selecting the data from 10 cycles of turbocharger
operation for analysis. It can be seen that as the bearing wear increases, the time domain
signal acceleration peak, peak-to-peak and root-mean-square values increase. This is
because, as the bearing surface roughness increases, poor lubrication makes the rotor
rotation deteriorate. It increases rotor vibration, which is transmitted to the turbocharger
housing and base through the oil film, bearing and bearing seat. Then, the peak, peak-to-
peak and root mean square values of vibration acceleration on the base increase. As the
bearing roughness gradually becomes larger from the normal amount, the energy ratio in
the 2–4 k band and the energy ratio in the 8–10 k band rise.

Table 4. Turbocharger parameters under normal and fault conditions.

Normal Minor Failure Moderate Failure Severe Failure

Time domain acceleration peak/g 4.89 8.16 11.89 16.64
Peak to peak acceleration/g 13.55 21.44 31.39 42.29
Root mean square value/g 2.74 4.14 5.84 7.57

0–2 k band energy ratio 28.13% 12.96% 11.03% 10.73%
2–4 k band energy ratio 3.42% 5.51% 6.72% 8.06%
4–6 k band energy ratio 2.43% 1.56% 1.50% 1.43%
6–8 k band energy ratio 11.12% 9.48% 9.08% 8.68%

8–10 k band energy ratio 40.89% 53.23% 55.13% 55.30%
10–12 k band energy ratio 14.01% 17.26% 16.54% 15.80%

Figure 7 shows the variation of power spectrum amplitude of 1×, 2× and 9× octaves
with the roughness of the bearing surface. The 1× octave power spectrum amplitude
decreases with the increase in bearing surface roughness. Meanwhile, the 2× and 9× octave
power spectra amplitude increases with the increase in roughness.
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3.2. Dynamic Unbalance Simulation

Dynamic imbalance is a common turbocharger failure. Turbocharger impeller rotor
and turbocharger shell scraping, rotor blade oil accumulation or foreign object strike will
cause an increase in rotor dynamic imbalance or vibration amplitude. If the rotor dynamic
imbalance is severe, its circle rotation of the low circumferential vortex will be more violent.
It may lead to the oil film instability, journal and bearing weld. In severe cases, this can
cause impeller damage, resulting in serious safety accidents. The turbocharger’s condition
was simulated for the rotor dynamic balancing values of 3, 13, 23 and 33 g·mm.

Table 5 shows the variation of turbocharger parameters under normal and dynamic
unbalance conditions. It can be seen that as the degree of dynamic unbalance increases, the
peak acceleration, peak-to-peak and root mean square values of the time domain signal
rise significantly. Because when the turbocharger rotor is unbalanced, the rotor rotates
once, which itself will produce a shock. Additionally, its 1× frequency vibration will
increase significantly, resulting in the rise of the above time domain signal. When the rotor
dynamic imbalance becomes larger, the energy ratio rises in the 0–2 k band and falls in the
8–10 k band.

Table 5. Turbocharger parameters under normal and dynamic unbalance conditions.

Normal Minor Failure Moderate Failure Severe Failure

Time domain acceleration peak/g 4.89 18.73 34.83 48.55
Peak to peak acceleration/g 13.55 31.31 46.39 61.94
Root mean square value/g 2.74 7.59 13.93 19.57

0–2 k band energy ratio 28.13% 31.52% 35.26% 72.32%
2–4 k band energy ratio 3.42% 3.40% 0.96% 6.29%
4–6 k band energy ratio 2.43% 2.42% 2.33% 2.48%
6–8 k band energy ratio 11.12% 11.06% 16.92% 1.20%

8–10 k band energy ratio 40.89% 37.67% 22.93% 9.87%
10–12 k band energy ratio 14.01% 13.92% 21.60% 7.85%

Figure 8 shows the variation of the power spectrum amplitude of the 1×, 2× and
9× vibration signals with the rotor dynamic unbalance. The amplitude of the 1× vibration
signal power spectrum grows as the rotor dynamic imbalance increases. Additionally, the
9× vibration signal power spectrum amplitude decreases with the increase in the rotor
dynamic unbalance.
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4. Turbocharger Fault Feature Extraction

The author’s earlier proposed multi-objective matched synchrosqueezing chirplet
transform (MOMSSCT) is a time–frequency analysis approach specialized in dealing with
strong time-varying signals. It can better handle vibration signals from rotating machinery
such as turbochargers. The approach is based on the linear chirplet transform (LCT). The
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steps of the LCT are to add a demodulation factor to the Fourier transform. A set of different
rotation angles and demodulation rates is given. Then, the appropriate demodulation
parameters are selected for calculation. The specific calculation steps of the LCT are
as follows:

G(c, t, ω) =
∫ +∞

−∞
s(u)g(u− t)e−iω(u−t)e−ic(u−t)2/2du (1)

c = tan(β) · Fs

2Ts
(2)

β = −π

2
+

π

Nc + 1
,−π

2
+

2π

Nc + 1
, . . . ,−π

2
+

Ncπ

Nc + 1
(3)

Nc is the number of demodulation rates. The sampling time Ts and sampling frequency
Fs form a time–frequency plane. The relationship between the rotation angle β and the
demodulation rate c in the time–frequency plane is given in (2). The original LCT method
is based on the principle of maximum time–frequency coefficient. Then, the appropriate
demodulation parameters is selected. However, its noise immunity is poor. Redundant LCT
results are generated when the noise amplitude in the signal is larger than the amplitude of
the component signal.

With four values of the Rayleigh entropy (RE), signal-to-noise ratio (SNR), root mean
square error (RMSE) and peak signal-to-noise ratio (PSNR) as the target parameters, we
suggest a MOMSSCT. The closer the demodulation rate and the modulation rate of the
signal components are to one another and the smaller the Rayleigh entropy, the greater the
time–frequency aggregation effect is. Rayleigh entropy is used to quantitatively evaluate
the closeness of the demodulation rate of the windowed signal to the transform parameters.
Additionally, the signal’s anti-noise effect is assessed using the SNR, RMSE and PSNR.
The higher the signal-to-noise ratio is, the better noise immunity becomes. The four target
parameters are calculated as follows:

RE = −1
2

log2

(∫ ∞

−∞

∫ ∞

−∞
|G(t, w)|ξdwdt/

∫ ∞

−∞

∫ ∞

−∞
|G(t, w)|dwdt

)
(4)

SNR = 10 log10

[(
m

∑
i=1

x(i)2

)
/

(
m

∑
i=1

(s(i)− x(i))2

)]
(5)

RMSE =

√
1
m

m

∑
i=1

(s(i)− x(i))2 (6)

PSNR = 10 log10

[
max

(
x(i)2

)
/

1
m
×
(

m

∑
i=1

(s(i)− x(i))2

)]
(7)

where s is the time domain signal. x is the effective signal. Additionally, m is the number
of sampling points. After the above analysis, the optimal demodulation rate ĉ can be
obtained as:

ĉ(t, ω) = argmin
c
{RE + SNR + PSNR− RMSE} (8)

Finally, the time–frequency transformation equation can be expressed as:

Gĉ(t, ω) = G(ĉ, t, ω)

=
K
∑

k=1
Ak(t)eiϕk(t)

√
2σπ

1−iσ[(ϕ′′ k(t)−ĉ)] e
− σ[ω−ϕ′k(t)]

2

2[1−iσ[(ϕ′′ k(t)−ĉ)]]
(9)

where Ak(t) is the amplitude of the kth component of the signal. ϕk(t) is the instantaneous
phase of the kth component of the signal.
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The bandwidth ∆ω of the transform is calculated by the following equation.

∆2
ω = 1

2π

∫ +∞
−∞ ω2|Gĉ(t, ω)|2dω

= 1
2π

K
∑

k=1

(
A2

k(t)
2π(

1+(ϕ′′ k(t)−ĉ)2
)1/2

)
×
∫ +∞
−∞ ω2e

− (ω−ϕ′k(t))
2

(1+(ϕ′′ k(t)−ĉ)2) dω

=
K
∑

k=1
A2

k(t)
(√

πϕ′k(t) +
√

2
(

1 + (ϕ′′ k(t)− ĉ)2
)) (10)

Local maximum compression of the signal is used to form a new time–frequency
representation (TFR) MGs

ĉ(t, ξ):

MGs
ĉ(t, ξ) =

∫ +∞

−∞
Gĉ(t, ω)δ(ξ − ω̂(t, ω))dω (11)

where the instantaneous frequency estimate is calculated from Equation (12).

ω̂(t, ω) =

{
argmax

ω
|Gĉ(t, ω)|, ω ∈ [ω− ∆, ω+∆], if |Gĉ(t, ω)| 6= 0

0, if |Gĉ(t, ω)| = 0
(12)

The signal reconstruction is calculated as:

s(t) =
1

2πĝ(0)

∫ +∞

−∞

∫ +∞

−∞
MGs

ĉ(u, ξ)eiωtdudξ (13)

where ĝ(ω) is the Fourier transform of the window function.
MOMSSCT is performed on the turbocharger to obtain the time–frequency transforma-

tion results. Then, the 1×, 2× and 9× frequency time-domain signals of the turbocharger
are reconstructed from the time–frequency transformation results. The RMS values of
the turbocharger’s 1× vibration, 2× vibration, 9× vibration, rotor unbalance factor and
bearing wear factor are extracted as the fault characteristic parameters. The calculation
equations are as follows.

1. RMS value of rotor frequency vibration R1, unit m/s2.

R1 =

√√√√ 1
K

K

∑
k=1

x2
1k (14)

The rotor n× frequency vibration component waveform of the vibration signal wave-
form is noted as xnk.

2. RMS value of rotor 2× frequency vibration R2, unit m/s2.

R2 =

√√√√ 1
K

K

∑
k=1

x2
2k (15)

3. RMS value of rotor 9× frequency vibration R9, unit m/s2.

R9 =

√√√√ 1
K

K

∑
k=1

x2
9k (16)

4. Rotor unbalance factor α1, unit m.

α1 = R1/ f 2
N (17)

fN is the rotor 1× frequency and unit Hz.
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5. Bearing wear factor α2, dimensionless.

α2 = R2/(2 fN)
2 (18)

5. Transfer Learning Based Turbocharger Fault Diagnosis Method
5.1. TrAdaBoost Algorithm

Transfer learning is the transfer of knowledge between different but similar data and
domains. It consists of two elements: “domain” and “task”. The domain consists of feature
space and edge probability distribution. TrAdaBoost is a transfer learning algorithm based
on the idea of instantiation and boosting, which is suitable for solving small sample and
poor data problems. The computational flow of TrAdaBoost is shown in Figure 9, whose
training set consists of a small amount of target domain data and a large amount of auxiliary
data. The initial weight of the training set data is set to 1/m and the number of training
rounds is N. The output prediction of the classifier is calculated based on the weights and
the test set. The error rate is calculated based on the prediction results. New weights
are calculated based on the error rate. The weight of misclassified target domain data is
increased in the calculation process. The similarity between the auxiliary data and the
target data is judged according to the classification results of each iteration. According to
the result, the weights of similar data in the auxiliary data are increased and the weights of
dissimilar data are decreased to obtain the final classifier. A fault diagnosis model using
fewer target data was constructed [31,32].
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The Xa is defined as the auxiliary domain sample space and Xb as the source domain
sample space, which together form the joint training set X. The test set is defined as S.

The goal of TrAdaBoost is to build a classification model by a source domain dataset
with a small amount of data and an auxiliary training set with a large amount of data. In
this model, the test dataset minimizes the error.

The steps of the TrAdaBoost algorithm are as follows [31]: (1) Set the number of iterations
to N, create the initial weight vector w1 and assign values as shown in Equations (19) and (20).
(2) Calculate the distribution pt, as shown in Equation (21). A base machine learning
algorithm is given pt, the training set X and the test set S. It computes the output prediction
ht. Meanwhile, the error εt of the prediction is shown in Equation (22). In the calculation
process, make sure that εt ≤ 0.5, if greater than 0.5, εt = 0.5 is taken. (3) Weight calculation
factor γ and learning machine weights βt are calculated by Equations (23) and (24). Up-
dating the training weights is shown in Equation (25). Additionally, repeat steps (2) and
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(3). (4) After reaching the maximum number of iterations N, the final hypothesis h f (x) is
output as shown in Equation (26).

w1 = (w1
1, · · · , w1

m+n) (19)

w1
i =

{ 1
n , i = 1, 2, 3 · · · n

1
m , i = n + 1, n + 2, · · · n + m

(20)

pt =
wt

n+m
∑

i=1
wt

i

(t = 1, 2, . . . , N) (21)

εt =
n+m

∑
i=n+1

wt
i |ht(xi)− c(xi)|

n+m
∑

i=n+1
wt

i

(22)

γ = 1/(1 +
√

2 ln n/N) (23)

βt =
εt

1− εt
(24)

wt+1
i =

{
wt

i γ
|ht(xi)−c(xi)|, i = 1, 2, 3 · · · n

wt
i β
−|ht(xi)−c(xi)|
t , i = n + 1, n + 2, · · · n + m

(25)

h f (x) =

 1,
N
∏

t=[ N
2 ]

β
−ht(x)
t ≥

N
∏

t=[ N
2 ]

β
− 1

2
t

0, other
(26)

where N is the maximum number of iterations. n is the number of samples in the auxiliary
training set. m is the number of samples in the source domain training set. c(xi) is the true
label value of the data. xi (i = 1, 2, . . . , n) is the sample in Xa. xi (i = n + 1, n + 2, . . . , n + m)
is the sample in Xb. Algorithm 1 is the implementation code of TrAdaBoost.

Algorithm 1 TrAdaBoost

Step 1: Initialization
Input N, X, S and w1 by Equation (20).
Step 2: Update weight
for t = 1:N
Calculate pt, ht, εt by Equation (21) and (22).
If εt > 0.5, take εt = 0.5.
Use the value of εt and ht to calculate γ, βt and wt+1

i by Equations (23)~(25).
end for
Step 3: Output the hypothesis
Calculate h f (x) by Equation (26).

5.2. Model Diagnostic Effect

To verify the effectiveness of the diagnosis method, the turbocharger failure data was
simulated. Three kinds of fault data of turbochargers under conditions of 35,000, 40,000,
50,000 and 60,000 r/min were simulated. Simulation data are used as source domain
auxiliary data. The measured fault characteristic data of the turbocharger is taken as target
domain data. Each fault is divided into three different degrees of failure. The data set
was also divided into a training set and a test set according to a certain ratio, as shown in
Tables 6 and 7. The total number of sample data for simulation is 2040. The number of
source domain auxiliary training samples is 1600 (4 loads, 10 fault states, 40 samples for
each state). The number of target domain data in the training set is 20 and 40, respectively.
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Additionally, the number of target domain samples is 400 (4 loads, 10 fault states, 10 samples
for each state).

Table 6. Division of source domain auxiliary data and target domain data set.

Source Domain Auxiliary
Data (Simulation)

Target Domain Data
(Measured)

Normal 160 40

dynamic unbalance 480 120

bearing wear 480 120

Dynamic unbalance combined
with bearing wear 480 120

Table 7. Training set and test set samples.

Training Set Test Set

Data content Source domain auxiliary data Small amount of target domain data Target domain data
Data quantity 1600 20 or 40 400

As shown in Table 7, the training set contains a small amount of target domain data,
whose numbers are 20 and 40, respectively. The test set contains a large amount of target
domain data with untagged state labels, the number of which is 400. The data in the test
set are the actual measured turbocharger data on the test stand. Additionally, the data in
the training set are the data simulated using the turbocharger model plus very few actual
measured data. If the diagnosis success rate is high, it indicates that the diagnosis model is
able to achieve the knowledge transfer between the turbocharger simulation model and the
real machine.

After the diagnostic model is trained, it is validated. The 400 sample data in the test set
were diagnosed by the diagnostic model. The labels of normal, slight unbalance, medium
unbalance, severe unbalance, etc., were defined as F1~F10, which also included the labels
of two combinations of faults. The confusion matrix results are shown in Figure 10 for
when the number of data in the target domain of the training set was 40.
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The confusion matrix can analyze the diagnostic effect of the fault diagnosis model
more intuitively and conveniently. The total of each row represents the real number of data
in a certain category, and the total of each column indicates the number of data predicted
as that category. Take the third row as an example; it means that the actual number of F3
labels is 40. Additionally, the fault diagnosis model predicts 37 correctly, among which one
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is predicted as F2 and two are predicted as F4. The larger the number on the blue diagonal,
the better the diagnosis effect.

As can be seen from Figure 10, the algorithm can better distinguish between normal
and fault states. However, for the dynamic unbalance slight and moderate faults, the fault
diagnosis model will occur a misjudgment phenomenon because their fault characteristic
parameters are more similar. Similarly, a similar situation occurs for normal and slight
faults, and moderate and severe faults. For severe faults and normal states, the characteristic
parameters are more different and there are basically no miscalculation occurs.

Table 8 shows the accuracy of the algorithm with different numbers of target samples
in the training set. The accuracy of the algorithm increases when the number of target
samples in the training set increases. The accuracy of the TrAdaBoost algorithm reaches
more than 85% in both cases. The algorithm changes the weights of each target sample
in the training set through the training of source domain auxiliary data. It enables the
fault diagnosis model to better diagnose the target domain data (measured turbocharger
data). It also improves the overall recognition effect of the model on the target domain data.
The diagnostic accuracy indicates that the fault diagnosis model achieves the transfer of
knowledge from the turbocharger simulation model to the real machine.

Table 8. Accuracy of the algorithm with different numbers of target samples in the training set.

Source Domain→ Target Domain Data1 Data2

Number of target samples in the training set 20 40
TrAdaBoost algorithm accuracy 0.87 0.96

6. Conclusions

1. A marine turbocharger dynamics model was developed with model errors within an
acceptable 5%. The failure sample set of the turbocharger was obtained by simulation. The
fault simulation results were analyzed. The 1× vibration signal power spectrum amplitude
decreases with the increase in bearing surface roughness, while the 2× and 9× vibration
signal power spectra amplitude rises with the increase in roughness. The 1× vibration
signal power spectrum amplitude rises with the increase in the rotor dynamic unbalance,
and the 9× vibration signal power spectrum amplitude decreases with the increase in the
rotor dynamic unbalance.

2. Faults were diagnosed using the TrAdaBoost transfer learning algorithm. The
validation results of 2040 simulated fault samples show that the algorithm can distinguish
normal and fault states well. However, for minor and moderate faults of dynamic im-
balance, the fault diagnosis model feature individual misclassification. When the target
sample number is 20, the accuracy of the diagnosis model is 87%. When the target number
of samples is 40, the accuracy of the diagnosis model is 96%.

3. The model has the ability to diagnose under the condition of small sample data.
It can realize the transfer of diagnosis knowledge between the turbocharger simulation
model and the real machine. Further research could focus on transfer learning across more
machine types of the turbocharger, or between different kinds of types.
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Nomenclature

G Result of linear chirplet transform
s(u) Time domain signal
g(t) Window function
c Demodulation rate
β Rotation angle
Fs Sampling rate
Ts Sampling time
Nc Number of demodulation rates
RE Rayleigh entropy
SNR Signal-to-noise ratio
RMSE Root mean square error
PSNR Peak signal-to-noise ratio
x Effective signal
m Number of sampling points
ϕk(t) Instantaneous phase of the kth component of the signal
Ak(t) Amplitude of the kth component of the signal
MGs

ĉ(t, ξ) Result of linear MOMSSCT
δ The dirichlet function
∆ Band width
Rn RMS value of rotor n× frequency vibration
xnk The rotor n× frequency vibration component waveform
α1 Rotor unbalance factor
fN Rotor 1× frequency
α2 Bearing wear factor
X Joint training set
Xa Auxiliary domain sample space
Xb Source domain sample space
S Test set
w1 Initial weight vector
pt Distribution
ht Output prediction
εt Error
γ Weight calculation factor
βt Learning machine weights
N The maximum number of iterations
h f (x) Hypothesis
n Number of samples
m Number of samples in the source domain training set
c(xi) True label value of the data
xi (i = 1, 2, . . . , n) Sample in Xa
xi (i = n + 1, . . . , n + m) Sample in Xb
TFR Time–frequency representation
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