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Abstract: Visual servoing is widely used in the peg-in-hole assembly due to the uncertainty of pose.
Humans can easily align the peg with the hole according to key visual points/edges. By imitating
human behavior, we propose P2HNet, a learning-based neural network that can directly extract
desired landmarks for visual servoing. To avoid collecting and annotating a large number of real
images for training, we built a virtual assembly scene to generate many synthetic data for transfer
learning. A multi-modal peg-in-hole strategy is then introduced to combine image-based search-and-
force-based insertion. P2HNet-based visual servoing and spiral search are used to align the peg with
the hole from coarse to fine. Force control is then used to complete the insertion. The strategy exploits
the flexibility of neural networks and the stability of traditional methods. The effectiveness of the
method was experimentally verified in the D-sub connector assembly with sub-millimeter clearance.
The results show that the proposed method can achieve a higher success rate and efficiency than the
baseline method in the high-precision peg-in-hole assembly.
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1. Introduction

Robotic peg-in-hole assembly is widely used in the industry, such as component
assembly in the aviation field [1], automobile production lines [2], and 3C field [3]. At
present, the peg-in-hole assembly is mostly applied in structured scenes, and the accurate
pose between the peg and the hole is usually obtained by human demonstration. As the
assembly line becomes more flexible and intelligent, robots are required to perform tasks
with higher uncertainty. To handle the uncertainty of the hole position, visual and force
feedbacks [4] are useful for the robots to find the hole. Methods such as visual servoing [5]
and spiral search [6] are widely used. Visual servoing is the key part for eliminating the
pose error because spiral search only works within a small contact range, especially in
high-precision assembly tasks in the 3C field.

Visual servoing is a technique that uses visual feedback to control the robot, which can
be categorized into position-based visual servoing (PBVS) and image-based visual servoing
(IBVS). PBVS defines the position error in Euclidian space, and the position estimation is
obtained from sensors such as stereo cameras or visual markers. Chang [7] reconstructed
the 3D pose of the smartphone back shell using a corner detection algorithm and then
adopted look-then-move and look-and-move control approaches to handle distal and
proximal assembly tasks. Wang [8] introduced velocity feedforward to visual servoing,
which can better track dynamic targets. Due to the accumulation of errors from pose
estimation, robot–camera calibration, and robot positioning, it is difficult to achieve high
accuracy with PBVS. IBVS defines the position error in image space and matches visual
features such as SIFT [9], SURF [10], and ORB [11] between the current image and the
target image. Gu [12] proposed an improved uncalibrated visual servo method based on
projective homography, which can maintain robustness to image defects and noise. In
peg-in-hole assembly tasks, IBVS can usually achieve a higher success rate than PBVS.
However, IBVS is sensitive to camera occlusion.
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Recently, deep learning has drawn wide attention in the community of robotic ma-
nipulation, especially in the field of robotic assembly [13,14]. Many learning-based visual
servo methods have also been developed. Triyonoputro [15] trained a neural network to
identify the hole location based on a concatenated image from two wrist cameras, but the
visual servo is step-wise rather than continuous, making the assembly process inefficient.
Haugaard [16] used multiple cameras to estimate the peg and hole positions simultaneously,
enabling continuous visual servo. However, the above methods are only applicable to
circular peg-in-hole assembly, not to other geometric shapes. To handle different shapes
in real-world peg-in-hole assembly, Puang [17] presented a novel learning-based visual
servoing method named KOVIS, which used one network to learn the keypoint repre-
sentation from the image and another network to learn the robot motion based on the
keypoints. However, KOVIS required the 3D model of objects for training in simulation, so
there was a sim-to-real gap. Spector formulated the peg-in-hole assembly as a regression
problem, and InsertionNet [18,19] was proposed with a fusion of vision and force to achieve
daily insertion tasks. Inspired by human behavior for peg-in-hole, Xie [20] proposed the
Seam Filling Net to fill the seam by gradually aligning the peg pose to the hole. However,
most networks directly output the motion offset, and thus may face problems of scale
and interpretability.

Humans can easily perform various peg-in-hole tasks for two main reasons: multi-
modal sensors and an efficient strategy. Apart from flexible viewing angles and sensitive
force perception, humans usually try to align the peg with the hole with peripheral geo-
metric features, such as corners and edges. In the assembly process, humans need to focus
on only a few landmarks for alignment, which is similar to face landmark detection. Moti-
vated by the alignment strategy, we propose Peg-to-Hole Net (P2HNet) to extract specific
landmarks of a workpiece. After training with synthetic data in a simulated environment,
P2HNet can be quickly transferred to real-world assembly with a small amount of real data.
The main contributions of this study are as follows:

(1) A neural network for workpiece landmark estimation is proposed, which can extract
specific features from an image.

(2) A synthetic data generation method for peg-in-hole assembly is presented to achieve
transfer learning for real-world assembly.

(3) A multi-modal peg-in-hole strategy is designed to combine learning-based visual
servoing and force control.

(4) The results in real peg-in-hole experiments show that the proposed method has a
higher success rate and efficiency compared to the baseline method.

The rest of this paper is structured as follows: Section 2 defines the robotic peg-in-hole
assembly problem. Section 3 describes the proposed learning-based method. Section 4
presents the experiment and analysis. Section 5 summarizes the whole paper and discusses
future research.

2. Problem Setup

The peg-in-hole assembly system mainly consists of three main parts: the workpiece,
the manipulator, and the sensing system, as shown in Figure 1. The hole part is usually
fixed on the workbench. The manipulator grips the peg part and is controlled to complete
the assembly by visual feedback and force perception.

In real-world assembly tasks, the hole position error cannot be avoided due to me-
chanical errors and imperfect sensors. Therefore, the manipulator cannot directly insert
the peg into the hole by pure motion planning, and contact in the assembly process is
inevitable. Peg-in-hole assembly can be divided into two stages: hole search and insertion.
In the hole search stage, the manipulator is controlled to align the peg with the hole using
cameras and force sensors, where some pose errors are eliminated. In the insertion stage,
the manipulator will eliminate the remaining pose errors to complete the assembly.
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Figure 1. Peg-in-hole assembly system.

The difficulty of a peg-in-hole task depends on many factors such as workpiece
shape and assembly tolerance. Unlike simple assembly tasks with circular or 3D-printed
workpieces, we mainly focused on common connectors in the 3C field such as D-sub,
USB, and RJ45. The connectors typically have irregular shapes and high precision with
sub-millimeter tolerance, which makes it difficult to complete the assembly.

To simplify the problem, we assume that the peg is firmly gripped by the manipulator.
The manipulator base and the hole are located on the workbench. Therefore, the hole pose
error can be represented as a 4-DOF form:

e = [∆x, ∆y, ∆z, ∆θ] (1)

where ∆x, ∆y, ∆z represent the position error, and ∆θ is the orientation error in the z axis.
In the hole search stage, the manipulator is required to eliminate the position error ∆x, ∆y
and the orientation error ∆θ. In the insertion stage, the position ∆z is eliminated. To get a
clear image, the wrist-mounted camera is adopted. The peg-in-hole assembly process is
shown in Figure 2.

Actuators 2023, 12, x FOR PEER REVIEW 3 of 20 
 

 

manipulator
workpiece

sensing system

 

Figure 1. Peg-in-hole assembly system. 

In real-world assembly tasks, the hole position error cannot be avoided due to me-

chanical errors and imperfect sensors. Therefore, the manipulator cannot directly insert 

the peg into the hole by pure motion planning, and contact in the assembly process is 

inevitable. Peg-in-hole assembly can be divided into two stages: hole search and insertion. 

In the hole search stage, the manipulator is controlled to align the peg with the hole using 

cameras and force sensors, where some pose errors are eliminated. In the insertion stage, 

the manipulator will eliminate the remaining pose errors to complete the assembly. 

The difficulty of a peg-in-hole task depends on many factors such as workpiece shape 

and assembly tolerance. Unlike simple assembly tasks with circular or 3D-printed work-

pieces, we mainly focused on common connectors in the 3C field such as D-sub, USB, and 

RJ45. The connectors typically have irregular shapes and high precision with sub-milli-

meter tolerance, which makes it difficult to complete the assembly.  

To simplify the problem, we assume that the peg is firmly gripped by the manipula-

tor. The manipulator base and the hole are located on the workbench. Therefore, the hole 

pose error can be represented as a 4-DOF form: 

=    [ , , , ]e x y z θ  (1) 

where   , ,x y z  represent the position error, and θ  is the orientation error in the z 

axis. In the hole search stage, the manipulator is required to eliminate the position error 

 ,x y  and the orientation error θ . In the insertion stage, the position z  is elimi-

nated. To get a clear image, the wrist-mounted camera is adopted. The peg-in-hole assem-

bly process is shown in Figure 2. 

Hole Search Insertion

x

y
peg

hole

top view

 

Figure 2. Peg-in-hole assembly process. 

3. Method 

As mentioned in Section 2, the peg-in-hole assembly comprises two stages: hole 

search and insertion. In our proposed method, the hole search has two steps: P2HNet-

based visual servoing and spiral search. The visual servoing quickly moves the peg closer 

Figure 2. Peg-in-hole assembly process.

3. Method

As mentioned in Section 2, the peg-in-hole assembly comprises two stages: hole search
and insertion. In our proposed method, the hole search has two steps: P2HNet-based visual
servoing and spiral search. The visual servoing quickly moves the peg closer to the hole,
while the spiral search is used to precisely align the peg with the hole. The assembly then
switches to the insertion stage, which uses a constant force control strategy.

3.1. P2HNet

Humans can quickly align the peg with the hole with several landmarks. Inspired by
this, we propose P2HNet to extract landmarks from a workpiece. Many neural networks
can detect visual features well, but the number and distribution of key points are unclear.



Actuators 2023, 12, 144 4 of 19

Therefore, further feature matching is required, which is time-consuming. P2HNet can
directly extract desired features to avoid feature matching. Similar to the 5 predefined
landmarks in the face dataset AFW [21], we define 2 landmarks in the workpiece for peg-in-
hole assembly. The workpiece landmarks can be considered as the application of the idea of
face landmarks in the assembly field. The 2 workpiece landmarks are usually defined as the
2 endpoints of the contact edge during assembly. As for a D-sub connector, its landmarks
are shown in Figure 3.
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Direct output of pixel coordinates is widely used in many deep neural networks, but
it loses the local relationship between adjacent pixels. P2HNet outputs heatmaps rather
than pixel coordinates for better spatial generalization, similar to [22]. Let p = (u, v)T be
the pixel coordinates of a point in image I. For a desired point p∗, its desired heatmap can
be defined with a Gaussian kernel:

Φp∗ = exp

(
−‖p− p∗‖2

2σ2

)
(2)

where σ is the hyperparameter that controls the size of the active region in the heatmap.
We set σ = 3 px for acceptable pixel error. The heatmap has the same resolution as the
input image. To decouple 2 landmarks, the heatmap has 2 layers, and each layer represents
a landmark. The landmarks and the heatmaps are shown in Figure 4.

Learning for a 2-layer heatmap can be modeled as an image regression problem, which
can be estimated by a deep neural network f with trainable parameters ϕ:

Φ̂ = fϕ(I) (3)

The architecture of P2HNet based on U-Net [23] and ResNet [24] is shown in Figure 5,
which is divided into the contracting path (left) and the expansive path (right). The
contracting path gets a 3-channel RGB image, and then the expansive path outputs a 2-
channel heatmap. A residual module is used in the contracting path for better training. The
contracting path and the expansive path are directly connected in each block. The width of
each rectangle in Figure 5 represents the number of channels in the image, while the height
represents the image resolution. The meaning of the arrows can be found in the legend.
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Figure 5. The architecture of P2HNet.

To train P2HNet, the loss is defined as the mean squared error between the desired
and output heatmap:

loss(Φ, Φ̂) =
1

W × H

H−1

∑
i=0

W−1

∑
j=0

(yij − ŷij)
2 (4)

where W × H is the image resolution, and yij, ŷij represent the pixel value in the coordinate
(i, j) of the label and output heatmap.

The landmarks can then be extracted in the heatmap according to the maximum value:

p̂ = argmax
p

Φ̂p (5)

3.2. Synthetic Data Generation

Collecting and annotating a real dataset is tedious and time-consuming. Moreover, the
dataset cannot cover various cases due to different poses, varying lighting conditions, and
diverse textures of workpieces. Therefore, we propose a method to generate synthetic data
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in a simulated environment. The CAD model of the real workpiece is unnecessary because
we can extract common features in a virtual dataset consisting of polygon primitives. The
virtual data can be automatically collected and annotated, which can save a lot of time.
After pre-training on the virtual dataset, a few real data are sufficient for transfer learning.

The virtual scene is built by Blender, an open-source software for 3D modeling. The
assembly scene consists of a camera, a peg, and a hole, as shown in Figure 6. The hole
is fixed on the plane and the peg is above the hole. To capture images from multiple
perspectives, the camera is not attached to the peg and can move within a certain range
of workspace. Considering that common connectors in the 3C field can be abstracted
as simple geometric shapes, we designed three types of polygon primitives including
trapezoid, square, and convex to represent them, as shown in Figure 7. Similar to the real
connectors, the size of the virtual workpieces is 10~20 mm and the tolerance is 0.5 mm.
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Due to the sim-to-real gap between virtual scenes and real tasks, domain random-
ization was adopted. The hole is fixed on the plane, while the peg position is uniformly
sampled in a circle centered around the hole with a radius of 30 mm and a height relative
to the hole between 5 and 15 mm. The peg orientation is sampled as an Euler angle in the Z
axis between 0 and 5◦. To generalize different camera views, the camera is not attached to
the peg. When synthesizing an image, the distance from the camera to the hole is sampled
between 120 and 150 mm. The angle between the optical axis of the camera and the plane
is sampled between 50 and 60◦, while the rotation angle around the optical axis is sampled
between −5 and 5◦. In addition to the pose randomization, we also introduced domain
randomization of lighting, material, and texture to the virtual scene. For each type of
workpiece, we generate 1000 rendered images. Some examples of the synthetic dataset are
shown in Figure 8.
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Figure 8. Synthetic data examples for different pegs and holes.

Camera parameters and workpiece positions can be accurately obtained in the virtual
scene. Therefore, the pixel coordinates of landmarks can be automatically annotated
without tedious manual work. Examples of landmark annotation are shown in Figure 9.
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Figure 9. Workpiece landmarks for different holes.

3.3. Multi-Modal Peg-in-Hole Strategy

Considering that the peg is firmly gripped by the manipulator and the camera is
attached to the end-effector, the pixel coordinates of the peg landmarks remain unchanged
in the camera view. The peg landmarks can be obtained from the robot–camera calibration.
The hole landmarks are extracted from P2HNet. The workpiece landmarks are shown in
Figure 10.
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The relationship between the motion of the camera and the pixels in the image is given
by the image Jacobian matrix:

[ .
u
.
v

]
=

[
− f /Z 0 u/Z uv/ f −( f + u2/ f ) v

0 − f /Z v/Z f + v2/ f −uv/ f −u

]


vx
vy
vz
wx
wy
wz

 (6)

where the velocity of a pixel can be expressed as the difference between the target position
and the current position: [ .

u
.
v

]
= λ(

[
u∗

v∗

]
−
[

u
v

]
) (7)
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In the hole search stage, the manipulator only needs to handle the pose error ∆x, ∆y
and ∆θ, so the motion relationship can be simplified:

[ .
u
.
v

]
= J(u, v, Z)

vx
vy
wz

 (8)

where J(u,v,Z) is reduced as:

J(u, v, Z) =
[
− f /Z 0 v

0 − f /Z −u

]
(9)

To calculate the required motion of the camera, the landmarks can be stacked with the
same Z-height assumption.

.
u1.
v1.
u2.
v2

 =

[
J(u1, v1, Z)
J(u2, v2, Z)

]vx
vy
wz

 = Js

vx
vy
wz

 (10)

Then, the motion of the camera can be calculated.

 vx
vy
wz

 = λJ†
s


u∗1 − u1
v∗1 − v1
u∗2 − u2
v∗2 − v2

 (11)

where J†
s is the pseudo-inverse of Js.

Depth information in the z direction can be obtained from a depth camera, and an
image-based visual servo is performed based on Equation (8). When the camera view is
occluded, it indicates that the peg has roughly reached the top of the hole. The manipulator
is then controlled to move down in the z direction until the contact force is generated. A
small spiral search is performed until the contact force changes abruptly in the z direction.
Insertion can be completed with constant force control. The entire process is shown in
Figure 11.
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4. Experiment

In this section, we start with the experiment setup containing the necessary parameters
for assembly. Then we evaluate the performance of P2HNet and transfer learning. In the
end, we validate the multi-modal peg-in-hole strategy for the entire assembly process.

4.1. Experiment Setup

The peg-in-hole assembly platform is shown in Figure 12, which consists of a robot, a
depth camera, and the NIST Assembly Task Board #1 [25].
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Figure 12. The peg-in-hole assembly platform.

We used the Franka Emika Panda robot, a 7-DoF torque-controlled robot. The pose,
force, and torque estimation of the end-effector are accessible through the FCI interface. The
Denavit–Hartenberg parameters of the robot are given in Table 1, and the pose repeatability
is ±0.1 mm.

Table 1. DH parameters of the Franka Emika Panda robot.

Link ai−1 (mm) αi−1 (◦) di (mm) θi (◦)

1 0 0 333 0
2 0 −90 0 0
3 0 90 316 0
4 82.5 90 0 0
5 −82.5 −90 384 0
6 0 90 0 0
7 88 90 0 0

Gripper 0 0 103.4 −45

The wrist camera, RealSense D435, was attached to the end-effector of the robot to
observe the hole. The resolution of the camera was set to 640 × 480, which is suitable
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for the assembly platform. The pose of the camera coordinate frame {C} relative to the
end-effector frame {E} was calibrated.

E
CT =


0.0118 −0.9999 −0.0092 0.0512
0.9999 0.0117 −0.0077 −0.0354
−0.0076 0.0093 0.9999 −0.0359

0 0 0 1

 (12)

The NIST Assembly Task Board #1 includes 4 different 3C connectors (USB, RJ45,
waterproof, and D-sub), ranging from easier single insertion to harder multi-pin alignment.
The D-sub connector (DB-25) was selected as the workpiece in the following experiment.
The mating face is shown in Figure 13, and the size/tolerance is given in Table 2. The
minimum clearance between the peg and hole was 0.2 mm.
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Table 2. DB-25 size and tolerance.

DB-25 B D

Male Size 38.96 ± 0.13 mm 8.36 ± 0.13 mm
Female Size 38.38 ± 0.13 mm 7.90 ± 0.13 mm
Fit Tolerance 0.52 mm 0.52 mm

Minimum Clearance 0.32 mm 0.20 mm

It should be noticed that although the motion accuracy of the robot is comparable to
the minimum clearance of the DB-25, pure motion planning is inadequate to complete the
assembly task due to the error in visual feedback.

All experiments were run on a computer with a 3.7GHz Intel(R) Core(TM) i9-10900X
CPU and an RTX 2080Ti GPU.

4.2. Evaluation of P2HNet
4.2.1. Dataset

The virtual dataset was generated according to Section 3.2. To produce a real dataset,
the robot is set to teach mode. Then, the end-effector of the robot is dragged by a human
in the workspace. The images are collected continuously to cover different positions. The
motion range of the robot during data collection is limited to Ω centered on the hole.

Ω : x ∈ [−0.1m, 0.1m], y ∈ [−0.1m, 0.1m], z ∈ [0.2m, 0.3m], θ ∈ [−180◦, 180◦] (13)

The DB-25 dataset consists of 420 images, and the image resolution is 640 × 480. Some
examples are shown in Figure 14. LabelMe [26] was used to annotate the two landmarks
of DB-25.
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Figure 14. Dataset of D-sub Connector.

4.2.2. Train and Test

P2HNet was first trained on the virtual dataset containing 3000 images. The training
set and the test set were divided by 9:1. To find the optimal learning rate, the one-cycle
policy [27] was adopted in the training, and other hyperparameters are given in Table 3.

Table 3. Hyperparameters for training.

Hyperparameter Value

Epoch 15
Optimizer Adam

Maximum learning rate 0.001
Weight decay 0.0001

Mini-batch size 16

After training for 15 epochs, P2HNet was able to detect the workpiece landmarks, as
shown in Figure 15.
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Based on the transfer learning method, P2HNet was initialized by the parameters
trained on the virtual dataset, and then the real images were used for training. The
learning curve with and without transfer learning is shown in Figure 16. P2HNet converges
faster with transfer learning, and the final training loss is 20% less than that without
transfer learning.
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Figure 16. The learning curve on the real dataset.

To find out whether a smaller number of real images is sufficient for training with
transfer learning, all/half/a quarter of the real dataset was used to train. The learning
curve shown in Figure 17 indicates that more real images have less training loss. Moreover,
half of the real dataset with transfer learning can achieve similar performance compared to
the whole real dataset without transfer learning, which means much less tedious work of
manual labeling.
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The heatmap predicted by P2HNet is shown in Figure 18. According to Equation (5),
the workpiece landmarks are shown in Figure 19.
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Figure 19. Workpiece landmark detection.

4.3. Peg-in-Hole Experiment
4.3.1. P2HNet-Based Visual Servo for Assembly

In the initial state, the peg is already firmly gripped by the manipulator, and the hole is
in the view of the wrist camera. The visual servo control was performed based on P2HNet,
followed by a spiral search. When the hole is found, a constant force control in the Z axis is
used to finish the insertion. The motion process of the manipulator is shown in Figure 20.
The end-effector trajectory of the manipulator is shown in Figure 21.

The external force profile is shown in Figure 22. According to the curve, the visual
servoing for hole search was performed within 0~5 s. At 5.5 s, the external force in the
z direction exhibited a peak change, and then the manipulator switched to spiral search
after contact of the peg and the hole. At 6.8 s, the peak change of the external force in the
z direction showed that the hole was found. Then, the peg was inserted into the hole by
force control within the next 1 s.



Actuators 2023, 12, 144 15 of 19
Actuators 2023, 12, x FOR PEER REVIEW 16 of 20 
 

 

   

   

Figure 20. Snapshots of peg-in-hole experiment with DB-25. 

 

Figure 21. The manipulator end-effector trajectory. 

The external force profile is shown in Figure 22. According to the curve, the visual 

servoing for hole search was performed within 0~5 s. At 5.5 s, the external force in the z 

direction exhibited a peak change, and then the manipulator switched to spiral search 

after contact of the peg and the hole. At 6.8 s, the peak change of the external force in the 

z direction showed that the hole was found. Then, the peg was inserted into the hole by 

force control within the next 1 s.  

Figure 20. Snapshots of peg-in-hole experiment with DB-25.

Actuators 2023, 12, x FOR PEER REVIEW 16 of 20 
 

 

   

   

Figure 20. Snapshots of peg-in-hole experiment with DB-25. 

 

Figure 21. The manipulator end-effector trajectory. 

The external force profile is shown in Figure 22. According to the curve, the visual 

servoing for hole search was performed within 0~5 s. At 5.5 s, the external force in the z 

direction exhibited a peak change, and then the manipulator switched to spiral search 

after contact of the peg and the hole. At 6.8 s, the peak change of the external force in the 

z direction showed that the hole was found. Then, the peg was inserted into the hole by 

force control within the next 1 s.  

Figure 21. The manipulator end-effector trajectory.



Actuators 2023, 12, 144 16 of 19Actuators 2023, 12, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 22. Force profile in the peg-in-hole assembly process. 

4.3.2. Method Comparison 

Because the contact area between the peg and the hole is limited in the mating face 

of DB-25, rather than a large plane in many other scenes, the success of the assembly 

mainly depends on the final pose of the peg after the visual servo. If the pose error is too 

large, the spiral search will fail to find the hole in such a limited contact area. 

Given the same spiral search strategy, we compared the visual servo method based 

on P2HNet and ORB. ORB was chosen as the baseline method due to its accuracy and 

efficiency. The initial peg position was randomly sampled in a circle centered around the 

hole with a radius of 100 mm and a height of 100 mm relative to the hole. The initial peg 

orientation was randomly sampled between −5 and 5°. The experiment was repeated 10 

times.  

Part of the visual servo process based on P2HNet is shown in Figure 23. The work-

piece landmarks in red and green were accurately detected in the whole process, so a 

small final pose error can be eliminated by the spiral search.  

 

Figure 23. Visual servo process based on P2HNet. 

Figure 22. Force profile in the peg-in-hole assembly process.

4.3.2. Method Comparison

Because the contact area between the peg and the hole is limited in the mating face of
DB-25, rather than a large plane in many other scenes, the success of the assembly mainly
depends on the final pose of the peg after the visual servo. If the pose error is too large, the
spiral search will fail to find the hole in such a limited contact area.

Given the same spiral search strategy, we compared the visual servo method based
on P2HNet and ORB. ORB was chosen as the baseline method due to its accuracy and
efficiency. The initial peg position was randomly sampled in a circle centered around the
hole with a radius of 100 mm and a height of 100 mm relative to the hole. The initial peg
orientation was randomly sampled between −5 and 5◦. The experiment was repeated
10 times.

Part of the visual servo process based on P2HNet is shown in Figure 23. The workpiece
landmarks in red and green were accurately detected in the whole process, so a small final
pose error can be eliminated by the spiral search.
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In the ORB-based visual servo, the target image and pre-annotated workpiece land-
marks are shown on the left in Figure 24. Based on feature detection and matching between
the target image and the current image, a homography matrix H can be calculated. Then,
the workpiece landmarks in the current image can be mapped from matrix H, as shown on
the right in Figure 24. However, some wrong matches may occur due to similar features,
as shown in Figure 25. The wrong matches will lead to a large pose error after the visual
servo, so the spiral search may fail to find the hole.
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Further comparison between the ORB and P2HNet methods is shown in Table 4.

Table 4. Comparison between the ORB and P2HNet methods.

Comparison ORB P2HNet

Mean time for a vision servo step 43 ms 15 ms
Mean time for the hole search 8.5 s 7.8 s

Success rate of peg-in-hole 8/10 10/10
The bold indicates that P2HNet outperforms the ORB method.

The mean time for a visual servo step in P2HNet is 15 ms, much less than 43 ms in the
ORB method. The primary reason for the difference is the pipeline of image processing.
Compared with the ORB method, which requires feature detection, feature description,
and feature matching, P2HNet directly extracts the desired landmarks through a neural
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network without further feature matching. The mean time for the hole search time in
both methods is close. The success rate of the P2HNet-based method outperforms the
ORB-based method. Overall, the results show that the proposed method achieves a higher
success rate and efficiency than the baseline method.

5. Conclusions

In this paper, a neural network named P2HNet is proposed, which can directly extract
specified landmarks for visual servoing in the peg-in-hole assembly. To train P2HNet
efficiently, a virtual assembly scene was established to generate a large number of labeled
virtual images for transfer learning. Then, a multi-modal peg-in-hole strategy is proposed.
Rough positioning was accomplished by P2HNet-based visual servoing, and then the align-
ment was completed by spiral search, followed by a force control to complete insertion. The
method was validated on the peg-in-hole task of the D-sub connector with sub-millimeter
clearance. The results confirmed that our method can achieve a 100% success rate with
high efficiency. In the future, the generalization to different workpieces and a closer fusion
between vision and force perception can be further investigated.
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