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Abstract: This paper investigates the problem of modeling and controlling a space manipulator
system with flexible joints and links. The dynamic model of the flexible manipulator system is
derived by using the Lagrange equation and the floating frame of reference formulation, where the
assumed mode method is adopted to discretize flexible links, while the flexible joints are regarded as
linear torsion springs. The natural characteristics of a single flexible link manipulator, under three
different boundary conditions, are compared to reveal the effect of the flexibility of joints on the
manipulator system and to choose suitable assumed modes. Furthermore, singular perturbation
theory is introduced to decompose the system into a slow subsystem that describes the rigid-body
motion, and a fast subsystem that describes the elastic vibration. Since the system is underactuated, a
compound control strategy, which consists of the underactuated computed torque controller and the
adaptive fuzzy controller, is presented to improve the accuracy of the trajectory tracking of the flexible
joints and to suppress the elastic vibration of the flexible links, in the meantime. Both numerical
simulation and experimentation are performed to verify the effectiveness of the proposed compound
controller, and a comparison with the proportional-derivative (PD) controller is provided to highlight
its superiority in suppressing the residual vibration of the tip.

Keywords: flexible space manipulator; flexible joint; singular perturbation theory; underactuated
computed torque controller; adaptive fuzzy controller

1. Introduction

Space manipulators play an important role in on-orbit activities, such as construction,
inspection, and transportation [1,2]. With the development of space technology, lighter and
larger space manipulators are increasingly applied because of their advantages of being
lightweight, having low energy consumption, quick responses [3]. However, there exist
obvious flexible characteristics in the space manipulator. They are mainly caused by the
structural flexibility of the links and the flexibility of the joints with harmonic gear reducers.
The elastic vibrations generated by these two kinds of flexibility are highly coupled, which
complicates the dynamic characteristics of the space manipulator system [4] and puts
forward greater requirements for controlling. In addition, the coupling between the free-
floating base and the manipulator brings challenges to the control of the manipulator [5].
Structural vibrations will be obvious when the flexible manipulators perform on-orbit
missions, especially for large space flexible manipulators, which may lead to a catastrophic
failure. On the other hand, flexible manipulators usually have high dimensional orders,
low damping ratios, and parameter uncertainties in dynamics. Therefore, it is necessary
and challenging work to investigate the control strategy of the space flexible manipulator.

The focus of controlling a flexible manipulator is to track the desired trajectories and
suppress the vibration of the flexible parts. The dynamics and control of the manipula-
tors have been studied for a long time. Based on differences in modeling, control, and
experimental studies, Dwivedy and Eberhard [6] summarized the original works in the
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field of the dynamic performance of flexible robots. In recent years, many researchers
have extensively studied the problem of modeling and planning and paid more attention
to the controlling of the flexible space manipulator, which has been applied to different
robot platforms [7–9]. At present, advanced intelligent materials have been applied in the
research of some active control methods [10–12].

A high-precision mathematical model is crucial for controller design. However, a
high-precision mathematical model is often difficult to be obtained due to the uncertainty
and error in the model. Yang [13] creatively introduced a set of filtered error variables and
asymptotic filters as well as an auxiliary system, while two novel continuous integral robust
control algorithms have been synthesized, via an improved backstepping framework, for a
class of high-order systems suffering from both matched and mismatched disturbances.
The validation of the proposed controller is performed on a single-link rigid manipulator
and a two-link rigid manipulator, respectively. Shawky [14] used a nonlinear controller
via the state-dependent Riccati equation (SDRE) to compensate for the uncertainties of the
single-link flexible manipulator system with a rigid joint. The simulation results verified
the effectiveness of the SDRE controller. De Luca [15] considered two model classes: robots
with elastic joints and rigid links, and robots with flexible links and rigid joints. In view
of the small deformation, the elasticity of the elastic joint was modeled as a linear spring.
Then, model-based feedforward laws were derived for two basic motion tasks, although
the generalization of the control scheme to a multilink flexible arm was a problem. The
intelligent control technology, which does not depend on models, has paid more attention
to the suppression of the vibration of the flexible links. Qiu et al. [16] introduced a hybrid
control strategy of optimal trajectory planning and diagonal recurrent neural network
(DRNN) control to suppress the vibration of a single-link flexible manipulator with a rigid
joint, both during and after the point-to-point motion. Experimental results demonstrated
that planning an optimal trajectory could cause fewer vibrations and that the DRNN
controller was superior to the classical PD controller on vibration suppression. Malzahn
et al. [17] presented a conjunction of a model-free independent joint control strategy
for vibration damping with a neural-network-based payload estimation and an inverse
kinematics model based on multilayer perceptron (MLP) networks for a multilink-flexible
robot arm under gravity, the control architecture enabled the robot arm to catch multiple
balls sequentially thrown by a human. Neural networks have been used in controlling
flexible manipulators because of their strong nonlinear fitting ability, yet training requires a
lot of available training data, and the training time is often long. Cao et al. [18] developed
a fuzzy self-tuning proportional-integral-derivative (PID) controller and applied it to a
two-link flexible manipulator featuring a piezoelectric ceramics (PZT) actuator, and the
experimental results showed that the controller could effectively suppress the vibration.
Owing to the existence of nonlinear factors and parameter uncertainties, model-based
control methods cannot maintain the required accuracy. Wei et al. [19] designed model-free
fuzzy logic control laws to suppress the vibrations of the single-link flexible piezoelectric
manipulator. Experimental results showed that the adopted fuzzy control algorithms
could substantially suppress the larger amplitude vibrations. Qiu et al. [20] utilized a
Takagi–Sugeno model-based fuzzy neural network control (TS-FNN) scheme to suppress
the residual vibrations of the two-link flexible manipulator with rigid joints. Experimental
results demonstrated that the designed controller could reduce the residual vibrations
quicker than the traditional linear PD controller. Tracking the desired trajectory of a flexible
joint is the focus of controlling flexible manipulators. In order to achieve high-precision
tracking of the revolving angles and vibration suppression of the elastic part, Zhang
et al. [21] developed an adaptive iterative learning control (AILC) law for a two-link rigid–
flexible coupled manipulator system with rigid joints in a three-dimensional (3D) space.
The computed torque method (CTM) has been maturely applied to the tracking of the joint.
Mehrzad et al. [22] designed a modified CTM to control the manipulator motion. Using
numerical simulations, the performance of the proposed control system was evaluated for
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trajectory tracking. In addition, the assumed modes method was mostly used for modeling
flexible links in the aforementioned references.

At present, most research paid more attention to rigid–flexible coupled space manip-
ulator systems with a rigid joint. However, the flexibilities of the joints and links exist
objectively only in practice. Thus, there is limited research on the types of assumed modes
when using the assumed modes method to model flexible manipulators. Most controllers
have high requirements for model accuracy. In practice, frictions, interstices, and impacts
in gear transmission of manipulator systems are hard to model, and accurate mathematical
models are hard to be obtained. In addition, according to the singular perturbation model of
the space manipulator system, the fast-varying subsystem featured by the flexible vibration
has the form of a linear equation. Although many controllers exist for linear systems, such
as the linear quadratic regulator (LQR) controllers [23], state feedback control, etc., their
performance greatly relies on the accuracy of the mathematical model of the controlled
system. Therefore, it is necessary to investigate model-independent controllers. A fuzzy
control does not require an accurate mathematical model and has the characteristic of good
anti-interference. Moreover, an adaptive fuzzy controller (AFC) combines the advantages
of traditional fuzzy control and an adaptive learning algorithm and, thus, can cope with
the modeling error and the external disturbance excitation in the motion. Hence, it is a
more desirable choice to design the AFC for the reduced flexible vibration of the system.

The objectives of this paper are to improve the accuracy of trajectory tracking for the
flexible joints and suppress the elastic vibrations of the flexible links by using a compound
control strategy that consists of the underactuated computed torque controller and the
adaptive fuzzy controller. Simulations and experiments, then, confirmed the effectiveness
of the proposed controller. A conclusion was drawn based on the reported results. The
main contributions of this paper are as follows:

1. A mathematical model of a multilink flexible space manipulator system with flexible
joints and links was established.

2. The dynamic responses and natural characteristics of the flexible manipulator under
three different kinds of mode shapes are compared.

3. Based on the underactuated characteristic of the system, the underactuated CTM is de-
signed to achieve high-precision performance on flexible joint trajectory tracking, and
the non-model adaptive fuzzy controller is adopted to suppress the elastic vibrations
of the flexible links.

2. Dynamics of Flexible Space Manipulator System
2.1. Mathematical Model of Flexible Space Manipulator System

A common space flexible manipulator system is shown in Figure 1. It consists of
flexible links with a uniform cross-sectional area, flexible joints, and a free-floating base. A
pair of PZT actuators are attached to the root of each flexible link [19] and a tip payload
is attached to the distal end of the last flexible link. The entire system rotates in the
horizontal plane, driven by electric motors. The kinematic and dynamic symbols of the
space manipulator system used in this paper are listed in Table 1. Unless otherwise specified,
all reference frame systems are inertial frames. In Figure 1, O0 is the position of the center
of mass (CM) of the free-floating base, Oi (i = 1, . . . , n) is the position of the ith joint’s CM,
pi ∈ R2 (i = 1, . . . , n) is the position vector of the ith joint’s CM in the inertial frame Σd,
r’

i ∈ R2 (i = 1, . . . , n) is the position vector of a point P on the ith link in the frame Σ̂i, and
ri ∈ R2 (i = 1, . . . , n) is the position vector of a point on the ith link in the inertial frame Σd,
respectively.
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Figure 1. Schematic of a flexible manipulator system.

Table 1. Kinematic and dynamic symbols of the space manipulator system.

Symbol Representation

J0, Ji(i = 1, . . . , n) Moment of inertia of the base, the ith rotor
m0, mi(i = 1, . . . , n) mass of the base, the ith rotor
l0, l1(i = 1, . . . , n) length of the base, the ith link

ρi(i = 1, . . . , n) The linear density of the ith link
Ii(i = 1, . . . , n) The moment of inertia of the ith link
Ei(i = 1, . . . , n) The elastic modulus of the ith link

mp The mass of the tip payload
Jp Moment of inertia of tip payload

ki(i = 1, . . . , n) The ith spring rate coefficient
αi(i = 1, . . . , n) The theoretical rotation angle of the ith rotor
θi(i = 1, . . . , n) The actual rotation angle of the ith joint
τi(i = 1, . . . , n) The theoretical torque of the ith joint
σi(i = 1, . . . , n) The elastic deformation of the ith joint

Σ0, Σi(i = 1, . . . , n) Base, link frame system
Σ̂i(i = 1, . . . , n) Joint frame system

Σd Inertial frame system

The flexibility of the space manipulator comes from the flexibility of the joints and the
structural flexibility of the links. In practice, the joint deformations are small, and, thus, the
elasticity in the joints can be modeled as a spring [15]. All electric motors were assumed
as uniform rotors with their centers of mass on the rotation axes [24]. Figure 2 shows the
revolute joint model established in this paper. According to geometry, one has:

σi = αi − θi. (1)

Actuators 2023, 12, x FOR PEER REVIEW 4 of 27 
 

 

 

Figure 1. Schematic of a flexible manipulator system. 

Table 1. Kinematic and dynamic symbols of the space manipulator system. 

Symbol Representation 

0
J , =( 1,..., )

i
J i n  Moment of inertia of the base, the ith rotor 

0
m , =( 1,..., )

i
m i n  mass of the base, the ith rotor 

0
l , =

1
( 1,..., )l i n  length of the base, the ith link 

 =( 1,..., )
i

i n  The linear density of the ith link 

=( 1,..., )
i

I i n  The moment of inertia of the ith link 

=( 1,..., )
i

E i n  The elastic modulus of the ith link 

p
m  The mass of the tip payload 

p
J  Moment of inertia of tip payload 

=( 1,..., )
i

k i n  The ith spring rate coefficient 

 =( 1,..., )
i

i n  The theoretical rotation angle of the ith rotor 

 =( 1,..., )
i

i n  The actual rotation angle of the ith joint 

 =( 1,..., )
i

i n  The theoretical torque of the ith joint 

 =( 1,..., )
i

i n  The elastic deformation of the ith joint 


0

,  =( 1,..., )
i

i n  Base, link frame system 

 =ˆ ( 1,..., )
i

i n  Joint frame system 


d

 Inertial frame system 

The flexibility of the space manipulator comes from the flexibility of the joints and 

the structural flexibility of the links. In practice, the joint deformations are small, and, thus, 

the elasticity in the joints can be modeled as a spring [15]. All electric motors were as-

sumed as uniform rotors with their centers of mass on the rotation axes [24]. Figure 2 

shows the revolute joint model established in this paper. According to geometry, one has: 

 

Floating base

d
X

d
Y

0
O

0
X

0
Y

1
O

1
X

1
Y

n
O

n
X

− 2n

1
X̂

1
Ŷ
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Thus, by using the assumed mode method and the assumption of small deformations,
the ith link’s bending deformation can be expressed in terms of m mode shapes as:

ui(x, t) =
m

∑
s=1

qs
i (t)ϕi

s(x), (2)

where ϕi
s and qs

i denote the ith modal shape and the corresponding generalized coordinate,
respectively.

Thus, the position vector r’
i ∈ R2 is:

r’
i =

[
x

ui(x, t)

]
. (3)

The torque of the jth PZT attached to the ith link can be expressed as Mj
i = KaUj,

where Ka is a constant related to the natural characteristics of piezoelectric ceramics.
By using the floating frame of the reference formulation, the motion of the flexible

manipulator system was regarded as the superposition of the large-scale rigid body motion
and the deformation of flexible links. Hence, the manipulator system comprises n + 1
bodies and n hinges. The three kinds of frames are listed in Table 1.

In order to derive the mathematical model of the manipulator system, the matrix Si of
converting the floating frame to the inertial frame should be given. In Figure 3, the angle
transformed from frame Σi to frame Σ̂i is the sum of the flexible rotation angle φi−1|x=li−1

of (i− 1)th link’s end and the ith joint’s rotation angle θi. Thus, the matrix of converting
the floating frame to the inertial frame is:

Si = Si−1EiAi = Ŝi−1Ai, Ŝ0 = I2×2, (4)

where Ai =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
, Ei =

[
cos(φi−1) − sin(φi−1)
sin(φi−1) cos(φi−1)

]∣∣∣∣
x=li−1

, E1 = I2×2.
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Ŝ I , (4) 

where 
 

 

 −
=  
 

cos( ) sin( )

sin( ) cos( )
i i

i

i i

A , 
 

 
−

− −

− − =

 −
=  
 

1

1 1

1 1

cos( ) sin( )

sin( ) cos( )
i

i i
i

i i x l

E , 


=
1 2 2

E I . 

 

Figure 3. Schematic of two adjacent links in a manipulator system. 

Based on the assumption of a small deformation, the matrix 
i

E  can be simplified to: 




−

−

− =

 −
=  
 

1

1

1

1

1
i

i
i

i x l

E . (5) 

Therefore, the position vector ( )
i

xr  in the inertial frame can be written as: 

−1
ˆ

i
X

−1
ˆ

i
Y

−1i
O

−1i
X

−1i
Y

i
O

i
X

i
Y


i

X


i

Y

ˆ
i

X

ˆ
i

Y


i


− −

− =1 1
1

i i
i x l


−1i

Figure 3. Schematic of two adjacent links in a manipulator system.

Based on the assumption of a small deformation, the matrix Ei can be simplified to:

Ei =

[
1 −φi−1

φi−1 1

]∣∣∣∣
x=li−1

. (5)

Therefore, the position vector ri(x) in the inertial frame can be written as:

ri(x) = Siri
′ + pi, pi+1 = pi + Sir’

i(l) = ri(l). (6)
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The velocity of ri(x) on the ith flexible link is:

.
ri(x) =

.
Siri
′ + Si

.
ri
′ +

.
pi, (7)

where
.
Si =

.
Ŝi−1Ai + Ŝi−1

.
Ai,

.
Ŝi =

.
SiEi+1 + Si

.
Ei+1,

.
Ai = BAi

.
θi,

.
Ei = B

.
φi

∣∣∣
x=l

,

B =

[
0 −1
1 0

]
.

To derive the equation of motion for the space manipulator, which consists of lumped
parameter parts (the joint rotations) and distributed parameter parts (the link deformations),
by using the Lagrange formulation, the kinetic energy T and the potential energy V of the
system must be computed. The kinetic energy T receives contributions from the base, links,
joints, and tip payload and is given by:

T = T0 + Tl + Tα + Tp, (8)

where
T0 =

1
2
(m0

.
rT

0
.
r0 + J0

.
ϕ

2
0), (9)

Tl =
1
2

n

∑
i=1

∫ li

0
ρi

.
rT

i
.
ridx, (10)

Tα =
1
2

n

∑
i=1

(Ji
.
α

2
i + mi

.
rT

i (0)
.
ri(0)), (11)

TP =
1
2

mP
.
rT

n (l)
.
rn(l) +

1
2

Jp(
.
ϕne)

2. (12)

In Equation (12),
.
ϕne =

n
∑

j=1

.
θ j +

n
∑

k=1

.
φk

∣∣∣
x=lk

.

The links of the space manipulator are modeled as Euler–Bernoulli beams. Since
the space manipulator system is in a weightless environment, the effect of gravity can be
ignored. Therefore, the potential energy V is only contributed to by the links and joints, i.e.,

V = Vl + Vα, (13)

where

Vα =
1
2

n

∑
i=1

ki(αi − θi)
2, (14)

Vl =
1
2

n

∑
i=1

∫ li

0

[
EIi(

∂φi
∂x

)
2
]

dx. (15)

The generalized Lagrange Equation [14] of the second kind is:

d
dt
(

∂T
∂

.
qj
)− ∂T

∂qj
+

∂V
∂qj

= f j. (16)

The system dynamic equations can be obtained by substituting Equations (8) and (13)
into Equation (16) and is given by:

J
..
α+ Kσ(α− θsub) = τn×1,

M(θ, q)


..
x0..
θ
..
q

+ F(θ,
.
θ, q,

.
q) +

 03×1
−Kσ(α− θsub)

Kqq

 =

[
0(n+3)×1
τ′mn×1

]
, (17)
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where θ = [θ0, θ1, · · · , θn]
T , α = [α1, α2, · · · , αn]

T , τn×1 = [τ1, τ2, · · · , τn]
T is the torque

vector of the joint motor. Moreover, q = [q1
1, q2

1, · · · , qm
1 , · · · , q1

i , q2
i , . . . , qm

i , · · · qm
n ]

T is a
vector consisting of flexible links modal coordinates, θsub = [θ1, · · · , θn]

T , x0 = [x0, y0]
T

is the position vector of the free-floating base, M(θ, q) is the symmetric inertial matrix,
F(θ,

.
θ, q,

.
q) is the coupled term characterizing the interactions between centrifugal force

and Coriolis force, J = diag(J1, . . . , Jn), Kσ = diag(k1, . . . , kn), and Kq are the joint rotors
mass matrix, joints stiffness matrix, and links stiffness matrix, respectively. Kq is expressed
as:

Kq =


∫ l1

0 EI( d2Φ1

dx2 )× ( d2Φ1

dx2 )
T

dx
. . . ∫ ln

0 EI( d2Φn

dx2 )× ( d2Φn

dx2 )
T

dx

, (18)

where Φi = [ϕi
1, . . . , ϕi

m]
T is a vector consisting of the ith link modal shape functions and

τ′mn×1 is the torque vector of PZT. The generalized force of the jth PZT attached to the ith
link can be expressed as:

τ
j
i =

∫ bij+sij

bij

m

∑
v=1

Mj
i
dϕi

v(x)
dx

=
m

∑
v=1

Mi
j(

dϕi
v(bij + sij)

dx
−

dϕi
v(bij)

dx
), (19)

where bij and sij are the start- and endpoints of the jth PZT attached to the ith link, respec-
tively.

The torque vector τ′mn×1 can be expressed as:

τ′mn×1 = Pnm×nm ×Mnm×1 =

P1
. . .

Pn

×
M1

...
Mn

, (20)

where Mi = [M1 · · ·Mm]
T , the matrix Pi can be expressed as:

Pi =


dϕi

1(bi1+si1)
dx − dϕi

1(bi1)
dx · · · dϕi

1(bim+sim)
dx − dϕi

1(bim)
dx

...
. . .

...
dϕi

m(bi1+si1)
dx − dϕi

m(bi1)
dx · · · dϕi

m(bim+sim)
dx − dϕi

m(bim)
dx

. (21)

Substituting Mj
i = KaUj into Equation (20) yields:

τ′mn×1 = P×

M1
...

Mn

 = P×

K1
. . .

Kn

×
U1

...
Un

 = KvU, (22)

where K1 =

Ka
. . .

Ka


m×m

.

The first and the final equations of the dynamic model (17) are referred to as the motor
and link equations, respectively.

2.2. Natural Characteristics of the Flexible Links under Different Boundary Conditions

Employing the assumed mode method, one can easily obtain the approximated link
deformation by using only a finite number of modes. However, the model accuracy is
not only affected by the number of modes but also by the kind of selected modes. Many
researchers have investigated the errors introduced by modal truncation, and the cantilever
beam mode and the simply supported beam mode are commonly used [25,26]. In fact, the
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boundary conditions of the flexible links of the space manipulators are different from those
of cantilever beams and simply supported beams; thus, using either one of the two modes
may introduce errors. Considering the actual boundary condition of the space manipulator,
the natural characteristics of the flexible links, under three different boundary conditions,
are compared with each other to investigate the influence of the flexibility of the joints. The
three boundary conditions are:

1. Fixed-free boundary condition, which is a single cantilever beam (SCB) boundary
condition.

2. Fixed-inertial load boundary condition, which is a single rigid joint and flexible link
manipulator (SRF) boundary condition.

3. Elastic load-inertial load boundary condition, which is a single flexible joint and
flexible link manipulator (SFF) boundary condition.

As mentioned previously, the link is modeled as the Euler–Bernoulli beam. The free
vibration differential equation of the Euler–Bernoulli beam [10] is:

ρ
∂2u
∂t2 + EI

∂4u
∂x4 = 0, (23)

where ρ is mass per unit length and EI is the bending stiffness.
The dimensionless parameters are defined as:

ξ =
x
l

, Γp =
Jp

ρl3 , Mp =
mp

ρl
, s =

(
pl4ω2

EI

) 1
4

. (24)

The ratio of the stiffness of the flexible joint to the bending stiffness of the flexible link
is defined as:

km =
kl
EI

. (25)

The general solution of Equation (23) can be expressed as:

u(x, t) = ϕ(x) sin(ωt) = lϕ(ξ) sin(ωt). (26)

Substituting Equation (26) into Equation (23) yields a dimensionless expression:

ϕ(ξ)(4) − s4 ϕ(ξ) = 0. (27)

The general solution of Equation (27) can be expressed as:

ϕ(ξ) = A1 · cos(s · ξ) + A2 · sin(s · ξ) + A3 · cosh(s · ξ) + A4 · sinh(s · ξ). (28)

The dimensionless boundary condition formulas corresponding to the three boundary
conditions are:

1. SCB boundary condition:

ϕ(0) = 0,
∂ϕ(ξ)

∂ξ

∣∣∣∣
ξ=0

= 0,
∂2 ϕ

∂ξ2

∣∣∣∣
ξ=l

= 0,
∂3 ϕ

∂ξ3

∣∣∣∣
ξ=l

= 0. (29)

2. SRF boundary condition:

ϕ(0) = 0,
∂ϕ(ξ)

∂ξ

∣∣∣∣
ξ=0

= 0,
∂2 ϕ

∂ξ2

∣∣∣∣
ξ=1
− s4Γp(

∂ϕ

∂ξ

∣∣∣∣
ξ=1

) = 0,
∂3 ϕ

∂ξ3

∣∣∣∣
ξ=1

+ s4Mp
d2

dt2 ( ϕ|ξ=1) = 0. (30)
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3. SFF boundary condition:

ϕ(0) = 0,
∂2 ϕ(ξ)

∂ξ2

∣∣∣
ξ=0
− km

∂ϕ(ξ)
∂ξ

∣∣∣
ξ=0

= 0,

∂2 ϕ

∂ξ2

∣∣∣
ξ=1
− s4Γp(

∂ϕ
∂ξ

∣∣∣
ξ=1

) = 0,

∂3 ϕ

∂ξ3

∣∣∣
ξ=1

+ s4Mp
d2

dt2 ( ϕ|ξ=1) = 0.

(31)

Substituting the general solution (28) into the aforementioned boundary condition
formulas, respectively, provides the three corresponding frequency equations:

1. SCB boundary condition:

cosh(s)2 + 2 cosh(s) cos(s)− sinh(s)2 + sin(s)2 + cos(s)2 = 0. (32)

2. SRF boundary condition:

−2ssinh(s)
(
s2Γp −Mp

)
cos(s) + 2s4Γp Mp + 2

+
((
−2s4Γp Mp + 2

)
cos(s)− 2s sin(s)

(
s2Γp + Mp

))
cosh(s) = 0

(33)

3. SFF boundary condition:

2ssinh(s)
(
s4Γp Mp + s2Γpkm −Mpkm − 1

)
cos(s)

−2s4Γp Mpkm + 4sinh(s) sin(s)s2Mp − 2km
+[
((

2Γp Mpkm + 4Γp
)
s4 − 2km

)
cos(s)−

2s sin(s)
(
s4Γp Mp − s2Γpkm −Mpkm − 1

)]
cosh(s) = 0

(34)

The parameters Mp, km, and Γp directly affect the natural characteristics of the ma-
nipulator system, thus, the effect of the parameters on the natural characteristics is worth
studying in detail. According to the obtained frequency Equations (32)–(34), the relationship
curve between the dimensionless parameters and the dimensionless natural frequencies
can be drawn.

In many missions, space manipulators only need to grasp light objects, in which case
the dead-weight load ratio Mp is small. Setting Mp = 0.1, the 3D surfaces of the first two
dimensionless frequencies s1 and s2 versus the stiffness ratio km and the moment of inertia
Γp are shown in Figures 4 and 5, respectively. The dimensionless frequency surfaces of
SRF are below the dimensionless frequency surfaces of SFF, as Γp increases, the first-order
dimensionless frequency surface of SRF approaches the first-order dimensionless frequency
surface of SFF, while the second-order dimensionless frequency surfaces are far away from
each other, as shown in Figures 4 and 5, respectively. With the increase in the stiffness ratio
km, the first two dimensionless frequency surfaces of SRF or SFF gradually move away
from those of SCB, respectively, while the first two dimensionless frequency surfaces of SFF
gradually approach the surfaces of SRF. It can be concluded that Γp and km have different
influences on each order of the dimensionless frequency surface.

Grabbing and releasing payloads are important for space manipulators to perform
on-orbit missions. Therefore, it is necessary to analyze the effect of the load ratio Mp on the
natural characteristics of the flexible manipulators. When km = 0.5, the 3D surfaces of the
first two dimensionless frequencies s1 and s2 versus Mp and Γp are shown in Figures 6 and 7,
respectively. Following the increase of the parameter Mp, the first-order dimensionless
frequency surface of SFF is far away from that of SRF, while the second-order dimensionless
frequency surfaces approach each other, as shown in Figures 6 and 7, respectively. Therefore,
an increase in both Mp and Γp can reduce the dimensionless frequencies of SRF and SFF,
although the effect of Mp and Γp on the differences in the dimensionless frequencies of the
same order of SRF and SFF is the opposite.
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Therefore, due to joint flexibility, the frequencies of SFF are lower than those of SCB
and SRF. Moreover, if the stiffness of the joint is large and the moment of inertia in the
tip load is small, the differences in the lower-order frequencies among SCB, SRF, and SFF
are not significant. It can be inferred that in this case, whichever mode is selected as the
assumed mode has no obvious difference in the model. However, in the opposite case, the
differences in lower-order frequencies among SCB, SRF, and SFF are significant. Thus, it is
necessary to be careful in choosing the assumed mode. Hence, the corresponding dynamic
responses are studied in the next section.

2.3. Dynamic Response of a Flexible Space Manipulator System

The dynamic model of the space manipulator system has been established in Section 2.1.
A simulation of the flexible two-link manipulator system was performed using MATLAB
to analyze the dynamic response in this section. As mentioned in the previous section,
to compare the difference in dynamic responses among the three assumed modes, the
parameter km should be small. The parameters of the system are listed in Table 2. Both
flexible joint motors are commanded to output the following sinusoidal force,

τ =

{
sin(πt)N, 0 s ≤ t ≤ 2 s
0N, 2 s < t ≤ 10 s

(35)

Table 2. The values of system parameters.

Symbol Value Link1 Link2

m0 17.23 kg \ \
mp 2.0 kg \ \
J0 0.087 kg ·m2 \ \
Jp 0.005 kg ·m2 \ \

E1, E2 \ 72.0 GPa 72.0 GPa
l0 0.12 m \ \

ρ1, ρ2 \ 1.620 kg/m 1.620 kg/m
J1, J2 \ 0.005 kg ·m2 0.005 kg ·m2

k1, k2 \ 500 Nm/rad 500 Nm/rad
I1, I2 \ 4.50 × 10−8 m4 4.50 × 10−8 m4

l1, l2 \ 2.0 m 2.0 m

The terminal deformations of the two links are shown in Figure 8. The results demon-
strate that the dynamic response amplitude of SFF is the largest, although there is no
significant difference in the dynamic response among the three assumed modes. The
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single-sided amplitude spectrum results show that the low-order natural frequencies are
also close, as shown in Figure 9. Therefore, even if km is small, the selection of the three
kinds of assumed modes has no significant influence on the dynamic response. Therefore,
when the stiffness of the joint is difficult to obtain and the model accuracy requirement is
not high, it is acceptable to choose the modes of SRF or SFF. However, if the stiffness of the
joint can be accurately determined, the mode of SFF is more suitable because the boundary
condition is more similar to the actual system. In addition, because of the coupled dynamic
characteristics, the internal resonance phenomenon occurs between joint 1 and joint 2 after
2 s. Hence, higher requirements on the performance of the controller are raised.
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Figure 8. The terminal deformations of the two links: (a) the terminal deformation of link1; (b) the
terminal deformation of link 2.
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3. Controller Design
3.1. Singular Perturbation Model of Flexible Space Manipulator System

When using the motor torque as the only input to control the output at the end of the
flexible link, the system exhibits non-minimum phase characteristics [27]. Thus, it is not
an easy task to suppress vibrations. In general, the rigid body motion of the system and
the elastic vibration of the system occur in different timescales [28], and the frequency of
rigid body motion is much less than one of the elastic vibration. Additionally, the system
equation is nonlinear and coupled, thus, the calculation is hard to perform. Therefore,
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based on the assumption that huge differences in the frequency domain, between the rigid
motion and the elastic vibration, the singular perturbation method was introduced to
decompose the system into a slow subsystem, which describes the rigid-body motion, and
a fast subsystem, which describes the elastic vibration, after which a composite controller
can be designed [28]. The dynamic model can be transformed into a singular perturbation
model as described:

Define a matrix D

D = M−1 =

[
D11(θ, q) D12(θ, q)
D21(θ, q) D22(θ, q)

]
. (36)

From the system Equation (17), one can obtain:[ ..
x0..
θ

]
= −D11F1 −D12F2 −D12Kqq + D11

[
03×1
Kσσ

]
+ D12τ

′, (37)

..
q = −D21F1 −D22F2 −D22Kqq + D21

[
03×1
Kσσ

]
+ D22τ

′, (38)

..
σ = −J−1Kσσ+ J−1τ−

..
θsub, (39)

where σ = α− θsub. Define a singular perturbation factor ε2 = 1/min(Kσ, Kq), and use
the factor to define:

Kσ = ε2Kσ, Kq = ε2Kq, zσ = σ
1
ε2 , zq = q

1
ε2 . (40)

From Equation (22), one obtains τ′ = KvU. Thus, Kv = εKv due to O(Ka) = O(ε).
Substituting Equation (40) into Equations (37)–(39) yields:

ε2 ..
zσ = −J−1Kσzσ + J−1τ−

..
θsub, (41)

[ ..
x0..
θ

]
= −D11(θ, ε2zq)F1(θ,

.
θ, ε2zq, ε2 .

zq)−D12(θ, ε2zq)F2(θ,
.
θ, ε2zq, ε2 .

zq)

−D12(θ, ε2zq)Kqzq + D11(θ, ε2zq)

[
03×1
Kσzσ

]
+ εD12(θ, ε2zq)KvU

(42)

ε2 ..
zq = −D21(θ, ε2zq)F(θ,

.
θ, ε2zq, ε2 .

zq)1 −D22(θ, ε2zq)F2(θ,
.
θ, ε2zq, ε2 .

zq)

−D22(θ, ε2zq)Kqzq + D21(θ, ε2zq)

[
03×1
Kσzσ

]
+ εD22(θ, ε2zq)KvU

(43)

where superscript “¯” indicates the value of the variables at ε = 0.
If ε = 0, from Equation (41), one can obtain:

zσ = K−1
σ (τs − J

..
θsub). (44)

In Equation (44), τs is the value of τ at ε = 0, which can also be written as τ. Substitut-
ing Equation (44) into Equation (43) provides:

zq = K−1
q D−1

22 (θ, 0)[−D21(θ, 0)F1(θ,
.
θ, 0, 0)−D22(θ, 0)F2(θ,

.
θ, 0, 0) + D21(θ, 0)

[
03×1
Kσzσ

]
). (45)
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Finally, substituting Equations (44) and (45) into Equation (42) and using the inverse
formula yields:[ ..

x0..
θ

]
= (D11(θ)−D12(θ)D

−1
22 (θ)D21(θ))(

[
03×1
τs

]
−
[

03×1

J
..
θsub

]
− F1(θ,

.
θ)). (46)

Equation (46) is the quasi-steady-state equation for the system and the slow subsystem.
Defining the following boundary layer correction terms as:

η1 = zσ − zσ,η2 = ε
.
zσ,β1 = zq − zq,β2 = ε

.
zq. (47)

Substituting Equation (47) into Equations (41)–(43) gives the fast subsystem equation,

dη
dγ

= A fη+ B f U f , (48)

where η =


η1
β1
η2
β2

, U f =

[
τ f
τ′

]
, A f =

 0 0 I
−J−1Kσ 0 0
D2112 Kσ −D22Kq 0

, B f =

 0 0
J−1 0
0 D22

, D2112

is a submatrix of D22, which does not contain elements in the first column of the matrix
D22.

3.2. Computed Torque Controller Designed for Joints

The system of space manipulators with a freebase is underactuated. To design the
underactuated computed torque controller, the parameter δ is introduced. Based on the
slow subsystem Equation (46), the control torque was designed as:[

0
τs

]
= (M11(θ) +

[
0

J

]
)

[
δ

us

]
+ F1(θ,

.
θ), (49)

where us is the reference input, determined by the outer loop control. Substituting Equation
(49) into Equation (46) provides:

[
δ

us

]
=

[ ..
x0..
θ

]
=


..
x0..
θ0..
θsub

. (50)

In this way, the inner loop control is completed by introducing model-based torque. A
PD controller was introduced, and the reference input us was obtained by:

us = −Kpes −Kd
.
es +

..
θd, (51)

where Kp and Kd are the position feedback gain matrix and velocity feedback gain matrix,
respectively, both of which are positive definite, and es = θd − θsub is the error between
desired position θd, and actual output joint position θsub. From Equation (44), one can
easily deduce that the variable zσ is bounded, which indicates the elastic deformation
vector σ = 0 at ε = 0 (Since zσ = σ 1

ε2 , and zσ is bounded at ε = 0, then, σ = 0 at ε = 0
necessarily). Therefore, θsub = α, es = θd −α, motor position can be used for the inner
loop control.

Substituting Equation (51) into Equation (50) yields: δ =

[ ..
x0..
θ0

]
..
es + Kpes + Kv

.
es = 0

, (52)
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where (es,
.
es) = (0, 0) is the globally asymptotically stable equilibrium point since Kp, Kd

are positive definite, and δ represents the perturbed acceleration of the base body, whereby
the effect cannot be ignored for a small mass base.

δ can be solved from Equation (49):

δ = M−1
1111(−M1112 us − F1(θ,

.
θ)), (53)

where M1111 = M(1 : 3, 1 : 3), M1112 = M(1 : 3, 4 : n + 1).

3.3. Adaptive Fuzzy Controller Designed for Piezo Actuator

The system decomposed into a slow subsystem and a fast subsystem, as noted in
Section 3.1. The fast subsystem, Equation (48), is linear. The LQR controller introduced for
the linear systems by researchers [28] may be used to suppress the vibrations. However, the
effectiveness of the LQR controller designed for fast subsystems relies heavily on modeling
accuracy. In practice, joint friction, structural damping, etc., are difficult to be modeled.
Furthermore, the modal truncation introduced by the assumed mode method reduces the
accuracy of the model. Therefore, a direct adaptive fuzzy controller is presented to suppress
the vibration of the flexible links.

The fuzzy system of a space manipulator system can be described as F̂(q
∣∣γ) . A

fuzzy controller is designed by using product inference engine, gauss fuzzier, and a center
averaging defuzzifier. According to the controller design method, based on a traditional
fuzzy system, the robust fuzzy adaptive control law is designed as:

τ′mn×1 = F̂(q
∣∣γ)−KDs−Wsgn(s), (54)

where s = de f +Λe f , and KD, W, and Λ are weight matrices. The sign function in Equation
(54) is designed to address the problem of external disturbances. However, the sign function
may lead to a high-frequency chattering phenomenon. To avoid high-frequency chattering,
the sign function can be substituted for by the saturation function. Thus, the adaptive fuzzy
controller is designed as:

τ′mn×1 = F̂
(

q,
.
q
∣∣γ)−KDs−Wsat(s), (55)

where sat(s) =


1, s > ∆
1
∆ s, |s| ≤ ∆
−1, s < ∆

, and the parameter ∆ is generally set to a small value.

The adaptive law is designed as:

.
γi = −ζ−1

i siξ(
.
q), i = 1, 2, · · · , n, (56)

where ζi (ζi > 0) is called the adaptive parameter.
The fuzzy system is designed as:

F̂(
.
q|γ) =



F̂1(
.
q1

1)
...

F̂2(
.
qm

1 )
...

F̂m×n(
.
qm

n )


=



γT
1 ξ

1(
.
q1

1)
...

γT
2 ξ

2(
.
qm

1 )
...

γT
m×nξ

m×n(
.
qm

n )


. (57)

The basic structure of the presented fuzzy controller is shown in Figure 10. The
link end displacement e f and its speed de f are used as control inputs, while E f and dE f
are the fuzzy quantities corresponding to the two inputs. The control torque τf of the
piezoelectric actuator is obtained by defuzzing the fuzzy quantity M, obtained by the fuzzy
logic inference.
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Figure 10. Schematic of adaptive fuzzy controller.

4. Numerical Simulation

The effectiveness of the presented control strategy is examined on a two-link flexible
manipulator system, as shown in Figure 11. A pair of PZT actuators are attached to the root
of each flexible link and a tip payload is attached to the distal end of the second flexible
link. The main parameters of the manipulator system are listed in Table 3.
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Figure 11. Two-link flexible manipulator with fixed base.

Table 3. Kinematic and dynamic parameters of the space manipulator system.

Symbol Value Link1 Link2

mp 0.1 kg \ \
Jp 1.25× 10−6 kg ·m2 \ \

E1, E2 \ 200.0 GPa 200.0 GPa
ρ1, ρ2 \ 0.5688 kg/m 0.3160 kg/m
J1, J2 \ 0.001 kg ·m2 0.001 kg ·m2

k1, k2 \ 9.6 Nm/rad 9.6 Nm/rad
I1, I2 \ 2.40× 10−11 m4 1.33× 10−11 m4

l1, l2 \ 0.5 m 0.25 m

The membership functions of e f and de f used in the two cases are shown in Figures 12
and 13, respectively. Define nine levels of fuzzy value: PB (positive big), PM (positive
middle), PS (positive small), PO (positive zero), ZO (zero), NO (negative zero), NS (negative
small), NM (negative middle), and NB (negative big).
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In this section, the performance of the proposed control scheme is evaluated for two
cases: setpoint motion control and periodic motion control. The PD and CTM controllers
were firstly used to track the joint trajectories with their performance comparisons. The
PD controller and AFC were, then, adopted to suppress the elastic vibration of the links
and were compared with each other. Moreover, to ensure the fairness of the comparisons,
the parameters Kp and Kd in the inner loop controller of CTM were set to the same as the
proportional control gain and differential control gain of the PD controller, respectively,
and the performance of AFC and one PD were compared when the maximum voltage of
PZT was limited. A set of gains for the PD controller for better control performance was
tuned by numerical simulation.

4.1. Case 1: Setpoint Motion Control

The manipulator is commanded to track a desired cycloid trajectory to a desired
position. The desired position of both links was set to π/2 rad, and the required time for
the two links to reach the desired position was set to 5.0 s. The desired cycloid trajectory
is θd = π × [t/5− sin(2πt/5)/2π]/2. The tip vibration caused by the motor stopping is
called residual vibration. In order to demonstrate the control effect on the residual vibration,
the simulation time was set to 10 s.

The comparison of tracking the control performance between the proposed computed
torque method and the PD controller is shown in Figure 14. Figure 14b,e show the superior
performance of CTM in tracking the desired trajectory, especially at the inflection point
of the trajectory. Moreover, the output torque of CTM was smoother than that of PD,
as evidenced in Figure 14c,f. The simulation result of acceleration response is shown in
Figure 15. The amplitude of the residual vibration with AFC costs only 0.1 s to attenuate to
10% of its maximum amplitude, the PD controller costs 0.2 s, and uncontrol costs 0.18. The



Actuators 2023, 12, 138 18 of 26

AFC provides better performance than PD in rapidly suppressing the residual vibration.
Additionally, compared to the uncontrol, the RMS of the acceleration response with AFC
attenuated by 95%, whereas one with the PD controller only attenuated by 23%. The
residual vibration attenuates under the uncontrol condition was due to the joint control
torques, which kept the joint positions stable.
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Figure 14. Simulation result of motion case 1: (a) joint 1 position; (b) position error of joint 1; (c) output
torque of motor 1; (d) joint 2 position; (e) position error of joint 2; (f) output torque of motor 2.
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4.2. Case 2: Periodic Motion Control

In case 2, a desired period sinusoidal trajectory θd(t) = Am sin(2π f1t + b) + Am/2 is
selected to test the effectiveness of the proposed controller in a periodic motion, where
Am = π/4, f1 = 0.1, and b = 0. The motion time was 30 s and the simulation time was
35 s. A comparison of tracking is shown in Figure 16. Here, CTM is seen to still provide
better performance than PD in tracking the periodic motion. The trajectory of PD obviously
buffets near the desired trajectory. It is worth noting that the tracking error of CTM visibly
increases at 30 s, yet rapidly reduces after 30 s. Figure 16c,f show the torques of the two
joints, respectively. It can be seen that the torques of the CTM are obviously smaller than for
PD. Figure 17 shows a comparison of the control effect on the tip vibrational acceleration.
Compared to the uncontrol, the RMS of the acceleration response with AFC attenuated by
95%, and one with the PD controller only attenuated by 62%. Obviously, AFC maintains a
good performance in suppressing the vibration. In addition, in the two cases, the frequency
of the elastic vibration was greater than 70 Hz, and one for the rigid motion was less than
3 Hz, which indicates that the elastic vibration and the rigid body motion occur in different
timescales, hence, the introduction of the singular perturbation theory is suitable. The
elastic deformation is very small in numerical simulation, which demonstrates that the
small deformation assumption of the flexible joint is suitable.
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5. Experimental Results

Experiments were performed to verify the simulations in case 1 and case 2. The
experimental setup is schematically shown in Figure 18. The flexible links are clamped at
the shafts of the motors through couplings, and the diagonal rope is supported on each
joint to counter the gravity on the flexible link. Two AC rotary servomotors (designed
by YASKAWA and SGM7J-01AFC6S) were used to drive the flexible links, and a built-in
24-bit absolute encoder installed within the motor was applied to calculate the rotating
angle. Each flexible link had a PZT actuator (MFC, M-8514-P1) attached to the root, and
the PZT actuators were used to suppress the elastic vibration on the flexible links. Each
flexible link had an accelerometer (PCB 333B32) attached at the end to collect the vibration
acceleration signal. The velocity signal and displacement signal were obtained using the
first and second integration of the acceleration signal, respectively. In practice, the zero drift
and high-frequency noise of the sensor cannot be avoided. Hence, a low-pass digital filter
was designed to address the issue. A small-time delay could be introduced by the digital
filter. However, the time delay was accepted in the experiment. Furthermore, the ambient
laboratory temperature was maintained at a constant value to reduce the drift caused by
the temperature changes. The main parameters of the experimental model are shown in
Table 3. A motion controller (GALIL DMC1846) interfaced with a high-performance PC
was used to snatch data and process data. The control voltage signals for the motor and the
PZT actuators were sent to the servo driver and HVPZT amplifier using the GALIL motion
controller, respectively. To remove the effect of the residual modes and high-frequency
noise, a low-pass digital filter was designed for the vibrational acceleration signal.
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Figure 18. Scheme of the two-link flexible manipulator experimental setup.

The experimental results of the setpoint motion control are shown in Figures 19 and 20.
Figure 19 shows that the CTM performs better than PD in the experiment. Figure 20
indicates that both PD and AFC can suppress residual vibration, although AFC had a better
performance than the PD controller in suppressing the residual vibrations. The root mean
square (RMS) and the amplitude of the whole course corresponding responses are listed
in Table 4. Compared to the uncontrol, the RMS of the acceleration response with AFC
was attenuated by 78.3%, while one with the PD controller attenuated by only 44.9%. This
indicates that AFC provides better performance in suppressing the vibrations. Figure 19a,b
demonstrate that serious buffet occurs under PD control, and the position error of PD is
larger than for CTM. The position error of joint 2 is larger than for joint 1 under PD control
during the motion, as shown in Figure 19c,d. The experimental performance of CTM was
worse than the simulated performance. The position error was more significant during
the first 3 s. CTM cannot perform high-precision trajectory tracking in the experiment. A
possible reason is that the mathematical model does not consider the influence of nonlinear
factors, such as friction and clearance, in the actual system.
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Table 4. Vibration suppression effect of the experimental system for case 1.

Controller Uncontrol PD AFC

RMS (m/s2) 0.1847 0.1017 0.04
Amplitude (m/s2) 0.5048 0.3186 0.2309

Experimental results under periodic motion control are shown in Figures 21–24, respec-
tively. The results of the tracking shown in Figure 21 demonstrate that the joint positions are
tracked well once the CTM is employed. Figure 22 shows the acceleration response of the
tip node when the adaptive parameter is ζ1 = ζ2 = ζ = 2000. The RMS and the amplitude
of the whole course response are listed in Table 5. Both AFC and PD can suppress the
vibration of the tip node. Compared with uncontrol, the RMS of AFC was attenuated by
62.5% and one for the PD controller was attenuated by 48.9%. In this case, the control
performance of AFC was slightly better than of PD. The value of the adaptive parameter ζ
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is important for the control performance of AFC. The experimental results for the further
adjustment of the parameters ζ are shown in Figures 23 and 24. Figures 23 and 24 show the
control performance of AFC when ζ = 5000 and ζ = 20,000, respectively. When ζ = 5000,
the vibration is rapidly suppressed by employing AFC, the RMS of AFC was attenuated
by 81.3% compared with the uncontrol. However, increasing the adaptive parameter to
ζ = 20,000 does not necessarily improve the performance of the AFC, the RMS of AFC
was only attenuated by 57.1% compared to the uncontrol. When the value of the adaptive
parameter ζ was small, the convergence of the AFC algorithm was slow and, thus, the AFC
performance was poor. Overall, the acceleration can be suppressed quicker as the adaptive
parameter increases. However, when the value of the adaptive parameter ζ was too large,
the gain of the AFC was large, resulting in instability and causing additional vibrations.
In light of these results on simulation, 4000 < ζ < 6000 is suitable for this experimental
system.
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Figure 24. Experiment result of acceleration response for case 2 (ζ = 20,000).

Table 5. Vibration suppression effect of the experimental system for case 2 (ζ = 2000).

Controller Uncontrol PD AFC

RMS (m/s2) 0.0808 0.0413 0.0303
Amplitude (m/s2) 0.3500 0.2819 0.2997

6. Conclusions

In this paper, a dynamic mathematical model for a flexible space manipulator was
derived. To choose a suitable mode, the natural characteristics of the link under three
different boundary conditions were compared to each other, and the dynamic response
results of the simulation showed that the internal resonance behavior existed in the system.
A computed torque controller was designed to track the angle of the joints. Furthermore, a
model-independent adaptive fuzzy controller was proposed to suppress the elastic vibra-
tion. The simulations of the two cases were performed in a two-link flexible manipulator
system, and the results show that the proposed control strategy had a good performance in
rapidly tracking trajectory and effectively suppressing the flexible vibration. Experiments
were also performed to verify the proposed control strategy and simulation results. Com-
pared with the uncontrol, the RMS of the vibration response with AFC was attenuated by
78.3% and 81.3% in the two cases, respectively. In addition, to improve the accuracy of
the mathematic model of the space manipulator system, the damping of the joint and link
should be considered in future modeling studies, and the effect of the internal resonance
phenomenon on the stability of the control system should be studied in further detail in the
future.
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