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Abstract: The distributed model predictive control (DMPC) strategy with particle swarm optimization
(PSO) is applied to solve the collision-free trajectory tracking problem for the mecanum-wheeled
mobile robot (MWMR) formation. Under the leader–follower framework, the predictive model is
established considering the kinematics and dynamics of the MWMR with the uncertainties and
external disturbances. Based on the information from itself and its neighbors, each MWMR is
assigned its own finite-horizon optimal control problem, of which the objective/cost function consists
of formation maintenance, trajectory tracking, and collision avoidance terms, and the control inputs
of each MWMR are computed synchronously in a distributed manner. PSO serves as the fast and
effective optimizer to find feasible solutions to these finite-horizon optimal control problems. Further,
the feedback emendation is implemented using a double closed-loop compensator to efficiently
inhibit the influence of unknown dynamics in real time. The stability of the proposed distributed
formation control approach is strictly analyzed. Numerical simulations confirmed the robustness and
effectiveness of the control approach in obstacle environments.

Keywords: formation trajectory tracking; collision-free; distributed model predictive control;
mecanum-wheeled mobile robot; particle swarm optimization

1. Introduction

In recent years, extensive research has focused on the motion control of mobile
robots [1–4]. As a typical omnidirectional mobile robot, the mecanum-wheeled mobile
robot (MWMR) has been widely used in family service and industrial production fields be-
cause of its flexibility in confined spaces and capability of moving to any direction without
a turning radius [5]. Four specially made mecanum wheels are symmetrically mounted
around the mobile robot, while each mecanum wheel is separately driven by a motor. Some
rollers are angled at 45◦ to the hub circumference of a mecanum wheel [6], which enables
the MWMR to move in sideways.

Mobile robot formation aims to control multiple mobile robots to synchronously
move in a certain formation pattern, which is one of the hotspot problems in the study
of robotics [7,8]. There are some typical techniques for solving the formation control
problem, for example, the leader–follower method, virtual structure method, and behavior-
based methods [9–13]. Formation control of multiple MWMRs has also attracted extensive
attention from researchers. Aditya et al. [14] established the collaborative kinematics of
the MWMR’s system to realize the cooperative transformation of large-scale goods in
formation. Mehrez et al. [15] established a formation set-point stabilization of MWMRs
using the model predictive control (MPC) method without terminal constraints. However,
the MWMR actually is a complex mechanic system with kinematics, dynamics, and input
saturation constraints. Treating it as a mass point or only considering the kinematics will
reduce the control accuracy.
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The MWMR has the complexity of nonlinearity, uncertainty, and external disturbances
in its dynamics. Additionally, the input saturation constraints can also bring great challenge
to the precise control of MWMRs [16,17]. Alakshendra et al. [18] derived a generalized
dynamic equation of a MWMR using Newton–Euler method. Sun et al. [19] presented the
integrated kinematic–dynamic model of MWMRs, and the formation control of MWMRs
under changing topologies was considered [20,21]. However, uncertainties and unmodeled
disturbances can usually bring up the instability in the control system [22,23]. Thus, it is
highly necessary to handle the uncertainties and disturbances in the MWMRs’ formation
control problem. Lu et al. [22] employed the artificial neural network to estimate various
uncertain disturbances and proposed a novel adaptive sliding mode control (SMC) method
to design the trajectory tracking controller of MWMR. Zhao et al. [23] employed a fuzzy
approximator to approximate unknown dynamics and applied the fixed-time extended state
observer (FTESO) to estimate external disturbances for improving the tracking accuracy of
MWMR. Wang et al. [24] proposed a robust control strategy combing the adaptive SMC
method and extended state observer (ESO) to compensate for total disturbances during
the formation control process of MWMRs. However, the observer-based method can only
estimate the constant and slowly varying parameters. In real contexts, uncertainties and
disturbances are usually time-varying parameters, which are more suitable for feedback
compensation strategies. Moreover, the collision of MWMRs with obstacles and other
MWMRs should be avoided to ensure the safety of the MWMRs’ formation [25]. Potential
field-based methods are often used to handle the collision avoidance [26,27], but these
methods have the drawback of trapping in the local extremum. Barrier function-based finite-
time SMC is also an effective control method for mobile robots under uncertainties and
input saturations [28,29]. Mostafa et al. [28] proposed an optimal adaptive barrier function-
based super-twisting SMC scheme for the trajectory tracking control of parallel robots with
highly complex dynamics in the presence of uncertainties and external disturbances, where
the global property of the controller eliminates the reaching phase, thereby guaranteeing
system stability, and the barrier function-based adaptation law removes the requirement to
know the upper bounds of the external disturbances. Khalid et al. [29] proposed an adaptive
barrier function-based non-singular terminal SMC approach for the trajectory tracking of a
quadrotor drone, where the non-singular terminal sliding surface was employed to ensure
the finite time convergence of the linear sliding surfaces and tracking errors.

Distributed model predictive control (DMPC) is an effective method to handle the dis-
tributed cooperative control problem with dynamic uncertainties and disturbances [30,31],
and can be applied to formation control of mobile robots [32–35]. Using the distributed frame-
work, robots can share information with neighbors and solve their own local optimal control
commands based on the prediction model. Zhao et al. [32] proposed a DMPC framework
for autonomous underwater vehicles (AUV) through combining the alternating direction
multiplier (ADMM) solver with feedforward compensation to deal with certain disturbances.
Mario et al. [33] proposed a DMPC law for differentially driven robots and ensured system
asymptotic stability. Qin et al. [34] proposed a Nash-based DMPC strategy for the formation
control of multiple mobile robots, and the optimal control input is solved by a primal–dual
neural network. However, there are few studies on MWMR formation control using the
DMPC method. Wang et al. [24] applied linear MPC in the outer loop kinematic controller
of MWMRs, but dynamics were not considered. Xiao et al. [35] proposed the self-triggered
organized formation (STOF) system by combing the DMPC framework and the consensus
protocol to achieve the smoother control performance for the MWMR’s formation, but the
collision avoidance and obstacle avoidance were not considered.

The particle swarm optimization (PSO) algorithm is a typical swarm intelligence
optimization algorithm with the advantages of being a concise concept, having convenient
implementation, high precision, and fast convergence. Benefitting from a fast convergence
speed and global search capability, the PSO optimizer is more efficient and stable than
traditional optimization solvers. Today, there are still many recent studies applying the
PSO optimizer in solving MPC problems, achieving good results [36–41].
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Although lots of existing works have been available, the issue of formation control
of MWMRs has not been well addressed yet when simultaneously considering various
physical constraints, including kinematics/dynamics constraints, uncertainties, and distur-
bances, as well as collision and obstacle avoidance. In this paper, taking into account the
model physical constraints and uncertainties, the collision-free trajectory tracking control of
the MWMR’s formation is solved using a closed-loop DMPC strategy. Based on the leader-
follower framework, the formation predictive model, which describes both the kinematics
and dynamics of MWMRs with the uncertainties and external disturbances, is established.
Under the distributed protocol, the MWMR can share the information among itself and its
neighbors. A finite-horizon optimal control problem is assigned to each MWMR to mini-
mize the objective/cost function consisting of formation maintenance, trajectory tracking,
and collision avoidance terms. The PSO algorithm is introduced to find feasible optimal
control solutions for each MWMR. Then, a novel double closed-loop disturbance feedback
controller is proposed to compensate for model uncertainties and external disturbances.
Theoretical analysis assures the stability of the proposed distributed formation control
approach. The main contribution of the paper is described in the following part:

(1) The leader–follower predictive model of MWMR formation, considering the kinemat-
ics and dynamics with the uncertainties and external disturbances, is established.

(2) By combining information from itself and its neighbors, each MWMR is given its own
finite-horizon optimal control problem within the proposed framework of DMPC,
whose objective/cost function compromises of formation maintenance, trajectory
tracking, and collision avoidance terms simultaneously, is established.

(3) A PSO-based control solver is used to find the feasible solutions to these finite-horizon
optimal control problems, which shows better performance than traditional solvers.

(4) A novel double closed-loop feedback compensation controller is developed to com-
pensate for model uncertainties and external disturbances in real-time.

The rest of this paper is constructed as follows. Section 2 describes the problem
description and definition of the MWMR’s formation. Section 3 presents the proposed
PSO-based DMPC controller for the MWMR’s formation in detail, including the DMPC
framework, PSO optimizer, double closed-loop feedback compensator, as well as the stabil-
ity analysis. In Section 4, numerical results demonstrate the superiority and effectiveness
of our proposed strategy. Section 5 gives the concluding remarks finally.

2. Problem Description
2.1. MWMR Model

In this section, both the kinematic and dynamic models of MWMRs with uncertainties
and time-varying external disturbances are presented. Kinematics can depict the relation-
ship between the position and velocity of the robot, and then, dynamics further establish
the relationship between the control inputs and velocity of the robot.

2.1.1. Kinematics

In order to set up the mathematics model of kinematics for the MWMR, two coor-
dinate frame systems are constructed firstly. As is shown in Figure 1, XaOaYa denotes the
world/global frame, XbObYb denotes the local/body frame x = [x, y, θ]T, and xb = [xb, yb, θ]T

denotes the posture vectors defined in XaOaYa and XbObYb, respectively, and:

.
x = T(θ)

.
xb (1)

where T(θ) is the rotation matrix of the local frame with respect to global frame, as follows:

T(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2)
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∝w
i represents the angle between axes of the i-th wheel rollers and the mecanum wheel

frame xw
i Ow

i yw
i , i = 1,2,3,4, and ∝w

i = π/4; Rw is the wheel radius; a and b are half the length
and width of the MWMR, respectively.

As to the i-th MWMR, the inverse kinematics can be represented as:

.
qi = J

.
xib (3)

J =
1

Rw


1 −1 −(a + b)
1 1 a + b
1 1 −(a + b)
1 −1 a + b

 (4)

where xib = [xib, yib, θib]
T is the state vector of MWMR-i in the body frame;

.
qi =

[ .
qi1,

.
qi2,

.
qi3,

.
qi4
]T

is the angular velocities of four mecanum wheels of MWMR-i.
Define J+ as the Moore–Penrose inverse of J that is shown in the following equation:

J+ =
(

JT J
)−1

JT (5)

Therefore, the kinematic model of MWMR-i is:

.
xib = J+

.
qi (6)

where J+ can be represented as:

J+ =
Rw

4

 1 1 1 1
−1 1 1 −1
− 1

a+b
1

a+b − 1
a+b

1
a+b

 (7)

Combining (1) and (6), the kinematic model of MWMR-i with respect to the global
frame can be expressed as follows:

.
xi = T(θi)J+

.
qi (8)

where θi represents the heading angle of MWMR-i.
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2.1.2. Dynamics

The mathematics model of the MWMR dynamics is developed using the Lagrange’s
equation. For the MWMR-i, the kinematic energy equation can be expressed as:

Ki =
1
2

m(
.
x2

i +
.
y2

i ) +
1
2

Jz
.
θ

2
i +

1
2

Jw(
.
q2

i1 +
.
q2

i2 +
.
q2

i3 +
.
q2

i4) (9)

where m is the total mass of the MWMR, Jz = m (2a)2+(2b)2

12 is the moment of inertia of

MWMR around the zb-axis, mw is the mass of the mecanum wheel, and Jw = mwR2
w

2 is the
moment of inertia of wheels around the center of revolution. Further, the loss energy due
to the viscous friction is:

D =
1
2

.
qT

i Hn
.
qi (10)

where Hn = diag(λ1, λ2, λ3, λ4) denotes the coefficient of the wheel’s viscous friction.
Let the Lagrangian function be

Li = Ki −Vi (11)

where Vi is the potential energy of MWMR-i on the horizontal plane and equals to zero.
Using the Lagrangian equation, the following equation can be yielded:

d
dt

∂

∂
.
qi

Li −
∂

∂qi
Li = ui −

∂

∂
.
qi

DR2
w − F(

.
qi)Rw (12)

where ui = [ui1, ui2, ui3, ui4]
T denotes the driving torque vector by the four motors of MWMR-i.

The static friction F(
.
qi) is denoted by F(

.
qi) =

[
f sgn(

.
qi1), f sgn(

.
qi2), f sgn(

.
qi3), f sgn(

.
qi4)

]T.
f = µmwg represents the maximum static friction and µ is the frictional coefficient. g = 9.8m/s2

is the gravity acceleration.
Manipulating (12), the dynamic model of MWMR-i can be represented as:

ui = Mn
..
qi + Hn

.
qiR

2
w + F(

.
qi)Rw (13)

where

Mn =


JA + JB + Jw −JA JA JB − JA
−JA JA + JB + Jw JB − JA JA
JA JB − JA JA + JB + Jw −JA

JB − JA JA −JA JA + JB + Jw

 (14)

where JA = JZ Rw
2

16(a+b)2 , JB = mRw
2

8 . Then, substituting (8) into (13), the second-order differen-

tial equation for MWMR-i can be obtained as follows:

..
xi = T(θi)J+Mn

−1ui − RwT(θi)J+Mn
−1F(

.
qi)− [T(θi)

.
T
−1

(θi) + Rw
2T(θi)J+Mn

−1Hn JT−1(θi)]
.
xi (15)

2.1.3. Model under Uncertainties and Disturbances

Considering wheel slippage, flaws of mechanical structure, and measurement errors,
both the model uncertainties and external disturbances can affect the actual motion of
MWMRs. Therefore, adding the uncertainty and disturbance factors into Equation (8), the
kinematic model can be rewritten as follows:

.
xi = T(θi)(J+ + ∆J)

.
qi (16)

where ∆J is the uncertainties term of the kinematic equation. Then, the dynamic equation
in (13) can also be rewritten as follows:

ui + ud = (Mn + ∆M)
..
qi + (Hn + ∆H)

.
qiR

2
w + (F(

.
qi) + ∆F)Rw (17)
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where ∆M, ∆H, and ∆F represent the uncertain dynamic terms and ud denotes the unknown
input disturbances.

Combining (16) and (17), the second-order dynamic equation with model uncertainties
and disturbances can be derived as follows:

..
xi = −(T(θi)

.
T
−1

+ R2
wT(θi)A+BT−1(θi))

.
xi + T(θi)A+ui + T(θi)A+ud − RwT(θi)A+(F(

.
qi) + ∆F) (18)

where A = (Mn + ∆M)(J+ + ∆J)+, B = (Hn + ∆H)(J+ + ∆J)+, and A+ and (J+ + ∆J)+ are
the Moore–Penrose inverse of A and (J+ + ∆J), respectively.

2.2. Formation Model

In this section, the distributed formation trajectory-tracking model for a team of M
MWMRs under the leader–follower framework is established. Given the reference trajectory
xr and the desired formation pattern Pd ∈ R2×M, each MWMR-i in the formation should
use its own state xi and the neighbor state xj =

[
xj, yj, θj

]T to form the desired formation
shape and track the reference trajectory. At the same time, the collision avoidance and
obstacle avoidance are also required.

The desire formation pattern is defined by Pd =
[

pd
1, · · · , pd

M

]
, where pd

i =
[
hxi, hyi

]T

is the desired position defined by an orthogonal frame XfOfYf so that the center of the
formation pattern is located at the frame origin. xr = [xr, yr, θr]

T represents the reference tra-

jectory, which is assumed to be continuously differentiable at any points. xd
i =

[
xd

i , yd
i , θd

i

]T

is the desired state of MWMR-i as follows:

xd
i =

1
Ni + di

(
∑

j∈Ni

(xj + hi − hj) + di(xr + hi)

)
(19)

where Ni is the set of neighbors within the detection range Rdet of MWMR-i and Ni is
the number of MWMRs belonging to Ni. hi =

[
hxi, hyi, 0

]T is the desired formation state
of MWMR-i in XfOfYf. di = 1 is for the leader robot and di = 0 is for follower robots.
An example of three MWMRs’ formation trajectory-tracking is shown in Figure 2, where
the dashed box represents the leader robot, while the solid boxes are follower robots.
Since follower robots MWMR-2 and MWMR-3 cannot perceive the desired trajectory, they
compute the distributed consensus error ∑j∈Ni

(
xi − xj −

(
hi − hj

))
with neighbors. For

the leader robot, since it can perceive the trajectory, it needs to add another tracking term
with respect to the relative position of xr.

Assumption 1. The reference trajectory can be manually determined and can be received by the
leader MWMRs but cannot be received by the follower MWMRs.

Assumption 2. There always exists a directed spanning tree in the time-varying communication
graph G(t) within MWMRs.
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Definition 1 (Problem statement). A set of M MWMRs with the communication graph G is
supposed to satisfy Assumption 2. There exists a set L of l fixed obstacles in the environment.
Given displacement vectors Pd defining the desired state of the MWMRs’ formation, for MWMR-
i, the formation tracking problem is to compute the optimal control input to track the reference
trajectory with a certain desired formation while avoiding collisions and obstacles, which can be
formulated as follows:

lim
k→∞

(xi(k)− xd
i ) = 0 (20)

lim
k→∞

(xi(k)− xj(k)) = hij, ∀i, j ∈ N , i 6= j (21)∣∣∣∣∣∣pi(k)− pj(k)
∣∣∣∣∣∣≥ Rcoll ∀i, j ∈ N , i 6= j (22)

||po
l − pi(k)||≥ Robs ∀l ∈ L (23)

where hij = hj−hi represents the ideal vector for formation between MWMRs. pi(k) = [xi(k), yi(k)]
T

is the position vector of MWMR-i. Rcoll is a safe distance which guarantees the absence of collisions
between MWMRs. po

l =
[
xo

l , yo
l
]T is the closest position of obstacle l and Robs is the safe distance which

guarantees obstacle avoidance.
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3. Formation Control Based on DMPC with PSO Optimizer
3.1. DMPC Framework

The proposed DMPC scheme for MWMR formation is shown in Figure 3. At the k-th
timestep, the control inputs of MWMRs are initialized by using the previous predicted
optimal control trajectories. Then, each MWMR-i receives the assumed control trajectory
from its neighbors and meanwhile transmits its assumed control trajectory to the neighbors.
Based on the estimated state and control trajectories from neighbors, each MWMR evaluates
its own cost function and finds the optimal predicted control trajectory over the current
prediction horizon. Finally, the optimal control trajectory on the first prediction horizon is
implemented to update the states of the MWMRs.
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Set the predictive step length as Np in order to describe the DMPC scheme; the
following state and control input trajectories of MWMR-i within the prediction horizon
[k, k + Np] at timestep k are as follows:

(1) xi(k): the current state trajectories;
(2) ui(k), u∗i (k): the predicted and optimal predicted control sequences;
(3) x∗i (k + s

∣∣k), u∗i (k + s
∣∣k) : the optimal predicted state and control sequences;

(4) x̂i(k + s|k), ûi(k + s|k) : the assumed state and control sequences;
(5) xi(k + s|k), ui(k + s|k) : the actual predicted state and control sequences;
(6) pi(k + s|k) : the predicted position; and
(7) p̂i(k + s|k) : the assumed position;

where s ∈
[
0, Np − 1

]
denotes the future prediction timesteps. The assumed control

sequence ûj(k + s
∣∣k) , j ∈ Ni over the prediction horizon

[
k, k + Np

]
contains two in-

dividual parts. The first part is the same as the previous optimal control sequence
u∗j (k + s

∣∣∣k− 1) , j ∈ Ni, s ∈
[
0, Np − 1

)
, and the second part follows the last control input

in the optimal control sequence. To be specific, the assumed control sequence ûj(k + s
∣∣k)

can be derived as follows:

ûj(k + s|k) =

u∗j (k + s
∣∣∣k− 1), s ∈

[
0, Np − 1

)
u∗j (k + Np − 2

∣∣∣k− 1), s = Np − 1
(24)

Thus, the corresponding assumed state trajectories of MWMR-j, j ∈ Ni can also be
computed as:

x̂j(k + s + 1
∣∣k) = f

(
x̂j(k + s

∣∣k), ûj(k + s
∣∣k)) s ∈

[
0, Np − 1

]
(25)
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where x̂j(k + s + 1
∣∣k) is the predicted states of neighbor j at timestep k + s + 1. f (·) is the

prediction model based on Equation (15).
Based on the assumed control sequence and state trajectory, the DMPC optimization

problem for MWMR-i at the timestep k ≥ 0 is formulated as follows:

Ji = min
ui(k+s|k)

Np−1

∑
s=0

(
J f
i (xi, ui, x̂j, ûj) + Jc

i (xi, ui, x̂j, ûj) + Jo
i (xi, ui)

)
(26)

s.t.
xi(k + s + 1|k) = f (xi(k + s|k), ui(k + s|k)) (27)

ui(k + s|k) ∈ U (28)∣∣∣∣∣∣xi(k + Np

∣∣∣k)− xd
i (k + Np)

∣∣∣|2Q = 0 (29)

where Equation (27) is the prediction model based on Equation (15); the allowed control
variable space U is limited within [umin, umax]; Equation (29) is the terminal constraint to
ensure stability. Ji is the distributed cost function for MWMR-i, which includes three parts,
given as follows.

(1) The cost function of formation J f
i :

J f
i (xi, ui, x̂j, ûj) =

∣∣∣∣∣∣xi(k + s + 1
∣∣∣k)− xd

i (k + s + 1)
∣∣∣|2Q+∣∣∣∣∣∣ui(k + s

∣∣∣k)∣∣∣|2R (30)

where Q and R are the positive definite symmetric matrices. Similar to (19), xd
i (k + s + 1) is

the desired state at timestep k + s + 1, given as:

xd
i (k + s + 1) =

1
Ni + di

(
∑

j∈Ni

(x̂j(k + s + 1) + hi − hj) + di(xr(k) + hi)

)
(31)

where xr(k) = [xr(k), yr(k), θr(k)]
T denotes the reference trajectory point at timestep k.

(2) The cost function of collision avoidance Jc
i :

Jc
i (xi, ui, x̂j, ûj)

=

 0,
∣∣∣∣∣∣pi(k + s + 1

∣∣∣k)− p̂j(k + s + 1
∣∣∣k)∣∣∣∣∣∣> Rcoll

−Kcoll

(∣∣∣∣∣∣pi(k + s + 1
∣∣∣k)− p̂j(k + s + 1

∣∣∣k)∣∣∣∣∣∣−Rcoll

)
,
∣∣∣∣∣∣pi(k + s + 1

∣∣∣k)− p̂j(k + s + 1
∣∣∣k)∣∣∣∣∣∣≤ Rcoll

 (32)

where Kcoll is the positive penalty gain number of collision avoidance.
(3) The cost function of obstacle avoidance Jo

i :

Jo
i (xi, ui) =

(
0,

∣∣∣∣pi(k + s + 1
∣∣k)− po

l

∣∣∣∣> Robs
−Kobs

(∣∣∣∣pi(k + s + 1
∣∣k)− po

l

∣∣∣∣−Robs
)
,
∣∣∣∣pi(k + s + 1

∣∣k)− po
l

∣∣∣∣≤ Robs

)
(33)

where Kobs is a positive penalty gain number of obstacle avoidance.
The schematic diagram of collision avoidance and obstacle avoidance is shown in

Figure 4, where R0 is the radius of the obstacle. Equations (32) and (33) ensure that the
distances from each MWMR to the neighbors as well as the obstacles are strictly greater
than the critical distance in the entire prediction domain.
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Pseudo-code of the designed DMPC scheme is shown as Algorithm 1.

Algorithm 1: Pseudo-code of the DMPC scheme for each MWMR-i, i ∈ 1, 2, . . . , M.

1: // Initialization: at timestep k = 0
2: Initialize the state of its own and neighbors: xi(0), xj(0)

3:
Set ûi(s

∣∣∣0) = 0, ûj(s
∣∣∣0) = 0, s ∈

[
0, Np − 1

]
and solve (26)–(29) for MWMR-i, yielding the

optimal control
sequence u∗i (s

∣∣0), s ∈
[
0, Np − 1

]
4: Apply the first control input u∗i (0

∣∣0)
5: Main loop: at any timestep k > 0
6: Measure the current state xi(k)
7: Transmit ûi(k + s

∣∣k), s ∈ [0, Np − 1] to every neighbor j

8:
Receive ûj(k + s

∣∣∣k), s ∈ [0, Np − 1] from every neighbor j and compute assumed

trajectory x̂j(k + s + 1
∣∣∣k), s ∈ [0, Np − 1]

9:
Solve (26)–(29) using Algorithm 2 for MWMR-i, yielding the optimal control sequence
u∗i (k + s

∣∣k), s ∈
[
0, Np − 1

]
10:

Apply the first control input u∗i (k
∣∣k)

// Results
11: Validate the state constraints and terminal conditions

3.2. PSO Optimizer

PSO is a powerful swarm intelligence optimization method which has better global
search ability than traditional optimization methods such as the interior point method,
sequential quadratic programming (SQP) method, active set method, ADMM method, etc.
In our proposed DMPC-based formation controller, PSO is used to serve as the control
input optimizer to achieve the optimal control sequences.

The population size of the PSO is set as Mpop. Given the D-dimensional space, each
particle i (i = 1,2, . . . , Mpop) can be represented by a position vector xi = (xi,1, xi,2, . . . , xi,D)
and a velocity vector vi = (pi,1, pi,2, . . . , pi,D). Let Pbesti = (Pbesti,1, Pbesti,2, . . . , Pbesti,D)
be the personal best position of the particle i, and Gbest = (Gbest1, Gbest2, . . . , GbestD) be
the global best position of the whole particle population. At the nc-th iteration, particle-i
updates its velocity and position according to the current velocity and distance from the
personal and global best positions, as follows:

vi(nc + 1) = w · vi(nc) + c1 · r1 · (Pbesti(nc)− xi(nc)) + c2 · r2 · (Gbest(nc)− xi(nc)) (34)

xi(nc + 1) = xi(nc) + vi(nc + 1) (35)
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where c1 and c2 are the cognitive factor and social learning factor; r1, r2 are random numbers
uniformly distributed within [0, 1]; w is the dynamic inertia weight, which decreases linearly
as follows:

w =
(wmax − wmin)(Ncmax − nc)

Ncmax
+ wmin (36)

where wmax and wmin are the maximum and minimum values of the inertia weight and
Ncmax is the maximum iteration number.

Moreover, considering the search space range, the position and velocity which are out
of the range will be modified as follows:

vi,j =

{
vmax if vi,j > vmax
vmin if vi,j < vmin

(37)

xi,j =

{
xmax if xi,j > xmax
xmin if xi,j < xmin

(38)

where xi,j and vi,j are the position and velocity of particle i in the jth dimension, respectively.
xmin and xmax are the lower and upper limits of the particle position; vmin and vmax are the
lower and upper limits of the particle velocity.

As is shown in Figure 5, the cost function for each particle i in iteration nc is de-
fined as Ji(nc). The optimal unknown parameters are contained in the position vector
that relates to the cost function. Therefore, to solve the DMPC problem using PSO at
timestep k, for MWMR-i we just need to initialize prediction control input sequence
ui(k + s

∣∣k), s = 0, · · · , Np − 1 in the prediction horizon Np randomly with the number
equal to the population size Mpop. The lower and upper bounds of each element in
ui(k + s

∣∣k), s = 0, · · · , Np − 1 are umin and umax, respectively. Then, by taking each ele-
ment in ui(k) into the cost function (26) and solving the PSO algorithm until it reaches the
maximum number of iterations, the global best position Gbest(Ncmax) is the optimal con-
trol input sequence u∗i (k). The pseudo-code of the PSO optimizer is listed in Algorithm 2.
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Algorithm 2: Pseudo-code of the PSO optimizer in solving the control sequence of MWMR-i

1: Compute x̂j(k + s
∣∣∣k), s ∈ [0, Np] of its every neighbor j at timestep k

2: Initialize the parameters in population vector xi(1) and vi(1) randomly within [umin, umax] and [vmin, vmax] at
nc = 1
3: for i = 1 : Mpop do
4: Evaluate cost function using Equations (26)–(29)
5: if Ji(1) < J(Pbesti)
6: Pbesti ← xi(1)
7: Ji(1)← J(Pbesti)
8: end if
9: end for
10: Calculate Gbest(1) at nc = 1
11: while nc < Ncmax
12: nc = nc + 1
13: for i = 1 : Mpop do
14: Evaluate cost function using Equations (26)–(29)
15: if Ji(nc) < J(Pbesti)
16: Pbesti ← xi(nc)
17: Ji(nc)← J(Pbesti)
18: end if
19: Determine the current global best position Gbest(nc)
20: Update vi(nc + 1) using Equation (34)
21: Update xi(nc + 1) using Equation (35)
22: for j = 1: D do
23: if xi,j ≥ umax
24: xi,j ← umax
25: end if
26: if xi,j ≤ umin
27: xi,j ← umin
28: end if
29: end for
30: end for
31: end while
32: u∗i (k|k )← Gbest(Ncmax)

3.3. Disturbance Compensation

The model uncertainties and input disturbances are time-varying parameters which
cannot be solved well using the ESO or traditional feedback compensation techniques.
Therefore, we propose a double closed-loop disturbance feedback compensation controller,
which divides the system into an external loop and inner loop through two proportional
feedback compensations.

As is shown in Figure 6, due to the uncertain kinematics, the optimal velocity vector
in XbObYb satisfying Equation (3) cannot be obtained accurately; therefore, in the external
loop, the measured actual state output xi and ideal state output x∗i of MWMR-i in the global
frame obtained from the DMPC optimization are the input quantities, then the output
quantity of the external loop can be obtained as:

.
x∗ib = K1(xi − x∗i ) (39)

where
.
x∗ib is the optimal output velocity vector in the local frame. K1 is the feedback gain

matrix with a size of 3 × 3. Through the inverse kinematic model without uncertainties,

the optimal rotational speed of the four wheels of MWMR-i
.
q∗i =

[ .
q∗i1,

.
q∗i2,

.
q∗i3,

.
q∗i4
]T

can be
obtained as:

.
q∗i = J

.
x∗ib (40)
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As for the inner loop, taking the measured actual rotational speed of the four wheels
.
qi

and optimal rotational speed of the four wheels
.
q∗i as the input quantities, then the output

quantity of the inner loop can be obtained as:

uc = K2(
.
qi −

.
q∗i ) (41)

where uc is the compensation for the torque of the four wheels and K2 is a gain matrix with
the size of 4 × 4. Therefore, the actual control input of MWMR-i can be obtained as:

ua = uc + u∗i (k|k) (42)

In this way, by choosing appropriate values of K1 and K2, the uncertainties and
disturbances can be compensated in a real-time manner.

3.4. Stability Analysis

Proposition 1 (Recursive feasibility).: If (26)–(29) optimization is feasible at initial time k = 0,
then it is feasible at any future point in time.

Proposition 2 (Uniform asymptotic stability).: If communication graph G(t) satisfies Assump-
tion 2 and at least one MWMR can perceive the reference trajectory, then the consensus error of the
formation system via DMPC is uniformly asymptotically stable.

Proposition 3. (Collision avoidance guarantee).: Given any initial cost function value satis-
fying Ji(0) < g, no inter-robot collisions and collisions with obstacles occur at any future point in
time.

Proof of Proposition 1. Define the error state and optimal error state at timestep k + s,
respectively, as follows:

ei(k + s
∣∣∣k) = xi(k + s

∣∣∣k)− xd
i (k + s

∣∣∣k)
e∗i (k + s

∣∣∣k) = x∗i (k + s
∣∣∣k)− xd

i (k + s
∣∣∣k) (43)

The optimal control input and error state sequences at time k are chosen by

u∗i (k) =
[
u∗i (k

∣∣k), u∗i (k + 1
∣∣k), · · · , u∗i (k + Np − 1

∣∣k)]T

e∗i (k) =
[
e∗i (k

∣∣k), e∗i (k + 1
∣∣k), · · · , e∗i (k + Np − 1

∣∣k), 0
]T (44)
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The corresponding state and control sequences at k + 1 can be derived as:

ui(k + 1) =
[
ui(k + 1

∣∣k + 1), ui(k + 2
∣∣k + 1), · · · , ui(k + Np − 1

∣∣k + 1), ui(k + Np
∣∣k + 1)

]T

=
[
u∗i (k + 1

∣∣k), u∗i (k + 2
∣∣k), · · · , u∗i (k + Np − 1

∣∣k), 0
]T

(45)

ei(k + 1) =
[
ei(k + 1

∣∣k + 1), ei(k + 2
∣∣k + 1), · · · , ei(k + Np

∣∣k + 1), ei(k + Np + 1
∣∣k + 1)

]T

=
[
e∗i (k + 1

∣∣k), e∗i (k + 2
∣∣k), · · · , e∗i (k + Np − 1

∣∣k), 0, 0
]T

(46)

The above derivations indicate that there exists at least one set of solutions satisfying all
constraints, and the optimization (26)–(29) is feasible at all prediction steps. �

Proof of Proposition 2. After the terminal equality constraint in (29), we consider the total
cost function of all MWMRs J(k), which becomes

J(k) =
M

∑
i=1

[
Np−1

∑
s=0

(
∣∣∣∣∣∣ei(k + s

∣∣∣k)∣∣∣|2Q+∣∣∣∣∣∣ui(k + s
∣∣∣k)∣∣∣|2R)] (47)

Select the candidate for the Lyapunov function V(k) provided via the optimal func-
tion J∗(k):

J∗(k) =
M

∑
i=1

[
Np−1

∑
s=0

(
∣∣∣∣∣∣e∗i (k + s

∣∣∣k)∣∣∣|2Q+∣∣∣∣∣∣u∗i (k + s
∣∣∣k)∣∣∣|2R)] (48)

The selected Lyapunov function is positive definite and decrescent. Thus, the objective
function J(k + 1) at timestep k + 1 yields

J(k + 1) =
M
∑

i=1
[
Np−1

∑
s=0

(
∣∣∣∣∣∣ei(k + s + 1

∣∣∣k + 1)
∣∣∣|2Q+∣∣∣∣∣∣ui(k + s + 1

∣∣∣k + 1)
∣∣∣|2R)]

= J∗(k)−
M
∑

i=1
(
∣∣∣∣∣∣e∗i (k∣∣∣k)∣∣∣|2Q+∣∣∣∣∣∣u∗i (k∣∣∣k)∣∣∣|2R)

(49)

and

V(k + 1)−V(k) = J∗(k + 1)− J∗(k) ≤ J(k + 1)− J∗(k)

≤ −
M
∑

i=1
(
∣∣∣∣∣∣e∗i (k∣∣∣k)∣∣∣|2Q+∣∣∣∣∣∣u∗i (k∣∣∣k)∣∣∣|2R) (50)

It indicates that the Lyapunov function is decreasing, and uniform asymptotical stabil-
ity of the formation system is confirmed. On the one hand, G(t) satisfying Assumption 2
indicates that no individual MWMR will be disconnected; on the other hand, the quadratic
form indicates that any item in the cost function is greater than or equal to zero, i.e., the cost
function containing both trajectory-tracking and formation will asymptotically converge to
zero, which means that the MWMRs’ system can achieve formation trajectory-tracking. �

Proof of Proposition 3. Following (50), without considering the collision avoidance and
obstacle avoidance penalty terms, we have Ji(k + 1) < Ji(k), ∀k and thus Ji(k) < g, ∀k
when Ji(1) < g. Hence,

Ji(k) < g ∀k > 0 (51)

Considering the penalty terms, the penalty gains Kcoll and Kobs are large enough,
Ji(k)� g, which contradicts Equation (51). Therefore, no inter-robot collision and collisions
with obstacles occurs, nor for all future points in time. �
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4. Experimental Results

In order to evaluate the effectiveness of our proposed PSO-DMPC-based control
method, three simulation scenes for formation trajectory-tracking of the MWMRs con-
sidering the various physical constraints are performed in the MATLAB environment.
The control effect of PSO-DMPC is compared with the SQP-DMPC and traditional PID
controllers. SQP is a typical optimizer that is often used to solve MPC problems in re-
cent research [42–45], while PID is the typical and widely-used control method [46–48].
Each MWMR uses the DC brushless gear motor to drive the four mecanum wheels. The
definition and values of the main parameters of the MWMR are shown in Table 1.

Table 1. Parameter values of the multi-robot formation system.

Definition Symbol Value Unit

Mass of robots m 5 kg
Sampling period ts 0.025 s
Radius of wheels Rw 0.05 m
Moment of inertia of robots Jz 0.01875 kg·m2

Moment of inertia of wheels Jw 0.000625 kg·m2

Longitudinal distance of wheels to center a 0.145 m
Lateral distance of wheels to center b 0.145 m
Viscous friction coefficient of wheels λi 0.2 None
Static friction coefficient of wheels µ 0.1 None

The parameters in the uncertain terms ∆M, ∆J, and ∆H are given as [aij]3×4, [bij]3×4,
[cij]3×4, |aij| < 0.1, |bij| < 0.1, |cij| < 0.1; the uncertain terms of static friction ∆F are
given as [dij]4×1, |dij| < 0.1, and the unknown time-varying input disturbances are given as

τd = [eij]4×1,
∣∣∣eij

∣∣∣< 0.5 . The detection range of each robot is given as Rdet = 5 m. Parameters

of the DMPC are set as Np = 7, Q = 105 I1, and R = I2. The feedback compensation gain
matrixes are chosen as K1 = −103 I3, K2 = −I4, where I1, I2, I3, and I4 are identity matrices
of appropriate dimensions. The penalty gains of collision avoidance and obstacle avoidance
are chosen as Kobs = Kcoll = 107. The maximum and minimum output torque of the motor
are set as umax = 5 N·m and umin = 5 N·m. The parameters in the PSO optimizer are set
as Mpop = 50, Ncmax = 5, wmax = 0.9, wmin = 0.4, c1 = 2, and c2 = 2. The parameters of the
SQP optimizer are set as the initial guess of u∗i (k): [uij]28×1, |uij| < umax; the maximum
number of iterations Imax = 30; and termination error ε = 10−20. The parameters of the PID
controller are set as: Kp = 15, Ki = 0.1, and Kd = 0.3.

To quantitatively illustrate the average tracking errors of the MWMRs’ formation, the
following indices are introduced to evaluate the formation average tracking performance:

||e||RMS =

√√√√ 1
Nt

M

∑
i=1
||e||2 (52)

where Nt is the total number of sampling steps. ||ex||RMS,
∣∣∣∣ey
∣∣∣∣

RMS, and ||eθ ||RMS are average
tracking performance along the x and y directions, as well as the heading angle, respectively.

Further, to illustrate the formation performance based on the relative position of
MWMRs, the position consensus error is defined as follows:

eh =
1
M

M

∑
i=1

∑
j∈Ni

∣∣∣∣∣∣pi − pj − (pd
i − pd

j )
∣∣∣∣∣∣2 (53)
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4.1. Example 1 (Straight Line Formation Tracking)

In the first numerical simulation an example is used to test its ability to generate and
maintain the desired formation without a change of reference direction using the proposed
PSO-DMPC method. The target shape of the formation is designed as a square with a
side length of 1 m. Table 2 shows the initial states of four MWMRs. Table 3 shows the
parameter settings of the obstacles. The reference trajectory xr is assumed to be available
only to MWMR-1, and the desired line trajectory is given as:

xr = 2 + t
yr = 2 + t
θr = π/4

(54)

Table 2. Initial states of four MWMRs (Example 1).

MWMR (x, y) (m) θ (rad) (vx, vy) (m/s) w (rad/s)

MWMR-1 (2, 2) π/3 (1, 1) π/4
MWMR-2 (2, 3) π/3 (1, 1) π/4
MWMR-3 (2, 1.5) π/3 (1, 1) π/4
MWMR-4 (2, 1) π/3 (1, 1) π/4

Table 3. Parameter settings of obstacles (Example 1).

Obstacle Position (m) Ro (m)

Obstacle-1 (5.5, 3.5) 1
Obstacle-2 (8, 10) 1

The formation trajectory-tracking results of example 1 using the traditional PID con-
troller, the SQP-DMPC controller and PSO-DMPC controller in the x–y plane are presented
in Figure 7. It can be seen that by implementing the PSO-DMPC, the formation is restored
immediately after the obstacle avoidance is completed, while the SQP-DMPC and PID
controllers have a transition process before restoring the initial formation. This is because
PSO has a better processing ability for nonlinear obstacle avoidance and collision avoid-
ance constraints with input limitation and has a stronger ability to find the global optimal
solution. The relative distances of the three methods are presented in Figure 8. It can be
seen from Figure 8 that the PSO-DMPC has the smallest mutual distance fluctuations when
avoiding obstacles, which further shows that the quality of the optimal solution obtained
via PSO is the best, and the deformation of the formation can be effectively reduced. The
tracking performance along the x and y directions are shown in Figure 9a,b, respectively,
and Figure 9c presents the heading angle tracking results of the MWMRs. It can be seen
that the DMPC method has good tracking performance but that the PID controller has
large steady-state tracking errors in the x and y coordinates. This is because the recede
horizon optimization of the DMPC has a stronger ability to predict and correct nonlinear
systems than the PID controller. The PSO-DMPC has a faster convergence rate than the
SQP-DMPC and PID controllers. The RMS errors are show in Table 4. It can be observed
that both the tracking error of the position and heading angle of the PSO-DMPC have the
highest precision. The comparison of position consensus errors is presented in Figure 10.
It can be observed that position consensus errors of the three methods converge to zero
after about 2.5 s, and when avoiding obstacles, the PSO-DMPC have smaller consensus
errors and faster formation convergence rates than the SQP-DMPC and PID controllers.
The speeds of the MWMRs are shown in Figure 11.
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Table 4. RMS values of tracking error for example 1. (unit: m).

RMS Value PID SQP-MPC PSO-MPC

||ex||RMS 0.1166 0.1200 0.0883∣∣∣∣ey
∣∣∣∣

RMS 0.1448 0.1102 0.0845
||eθ ||RMS 0.0145 0.0103 0.0125
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4.2. Example 2 (Circle Line Formation Tracking)

In this example, a numerical simulation is performed further to test the ability to
generate and maintain the desired formation with the time-varying heading angle using the
proposed PSO-DMPC method. The desired formation shape is designed as an equilateral
triangle with a side length of 1 m. Table 5 shows the initial states of three MWMRs. Table 6
shows the obstacle settings. The equation of the desired circle trajectory is given as:

xr = 7.5 + 5 cos 0.035t
yr = 7.5 + 5 sin 0.035t

θr = π/2 + 0.035t
(55)

Table 5. Initial states of three MWMRs (Example 2).

MWMR (x, y) (m) θ (rad) (vx, vy) (m/s) w (rad/s)

MWMR-1 (12.5, 7.5) π/3 (1, 1) π/4
MWMR-2 (12.5, 8) π/3 (1, 1) π/4
MWMR-3 (12.5, 9) π/3 (1, 1) π/4

Table 6. Parameter settings of the obstacle (Example 2).

Obstacle Position (m) Ro (m)

Obstacle-1 (7, 11.5) 1
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Figure 12 shows the formation trajectory-tracking results of the PSO-DMPC, SQP-
DMPC, and traditional PID controller of example 2, and the relative distances of the
MWMRs are shown in Figure 13. From Figures 12 and 13, it can be seen that when the
critical distance to the obstacle is reached, the formation deformations of the two DMPC
methods are quite small, while the PID controller has a large formation deformation due to
the insufficient ability to deal with constraints and disturbances. When PSO-DMPC ends the
obstacle avoidance process, the SQP-DMPC and PID controllers still have larger formation
deformation due to the insufficient ability to find global optimal solutions. The tracking
performance along the x and y direction and the heading angle are shown in Figure 14a–c,
respectively. It can be seen that the DMPC–based controller has a bigger tracking error
when avoiding obstacles than the PID controllers but has a smaller tracking error during
the formation maintaining process. To further illustrate the tracking performance, the
RMS errors are show in Table 7. It can be observed that both the tracking error of the
position and heading angle of the PSO-DMPC have the highest precision. The comparison
of the position consensus errors is presented in Figure 15. It can be observed that all three
methods have the capability of generating and maintaining the desired formation swiftly,
and when avoiding obstacles, the PSO-DMPC has a smaller position consensus error and
faster formation convergence rate than the SQP-DMPC and PID controllers. In Figure 16,
the speeds of the MWMRs are shown.
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4.3. Example 3 (Curve Formation Tracking with Formation Reconstruction)

Example 3 is performed to test the formation maintenance and reconstruction ability
of our proposed PSO-DMPC method. The desired trajectory is an irregular segmented
trajectory containing two semicircles. The desired formation shape to be maintained is
designed as an isosceles triangle with a bottom length of 2 m and a height length of 1 m.
The desired formation shape to be reconstructed is designed as a rectangle with both the
length and width as 1 m. Table 8 shows the initial states of six MWMRs. Table 9 shows the
parameter settings of the obstacles.

Table 8. Initial states of six MWMRs (Example 3).

MWMR (x, y) (m) θ (rad) (vx, vy) (m/s) w (rad/s)

MWMR-1 (3, 13) π/3 (1, 1) π/4
MWMR-2 (2.5, 13.5) π/3 (1, 1) π/4
MWMR-3 (2.5, 12.5) π/3 (1, 1) π/4
MWMR-4 (2, 14) π/3 (1, 1) π/4
MWMR-5 (2, 13) π/3 (1, 1) π/4
MWMR-6 (2, 12) π/3 (1, 1) π/4

Table 9. Parameter settings of the obstacles (Example 3).

Obstacle Position (m) Length (m) Width (m)

Obstacle-1 (5.3, 4) 1 5
Obstacle-2 (8.3, 9) 4 1

Figure 17 shows the formation trajectory-tracking results of the PSO-DMPC, SQP-
DMPC, and traditional PID controller of example 3; we can see that the six MWMRs have
good performance in generating, maintaining the desired formation, and tracking the
desired trajectory. Figure 18 shows the relative distances between each of the two MWMRs
in the formation. It can be found that the distances can maintain the desired initial values,
and no collision between MWMRs occurs. Figure 19a–c shows the tracking performance
along the x and y direction and the heading angle, respectively. The comparison of the
position consensus errors is presented in Figure 20. From Figures 19 and 20, it can be seen
that the three methods perform equally well. Therefore, to further illustrate the tracking
performance, the RMS errors are show in Table 10. It can be observed that although the
tracking error in the y direction of the PSO-DMPC controller is slightly less than that of
the PID controller, both the tracking error of the x direction and heading angle of the
PSO-DMPC have the highest precision. In Figure 21 the speeds of the MWMRs are shown.
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From the above simulation results, it can be concluded that the proposed PSO-DMPC
controller has the better and more robust capability in terms of convergence time, tracking
error, and consensus error than both the SQP-DMPC and PID controllers. Moreover, the
simulation results also reflect the adaptability of the PSO-DMPC, which makes the designed
closed-loop compensator have much better adaptive ability for the MWMRs in the presence
of uncertainties and external disturbances. Therefore, the PSO-DMPC control method is
effective and feasible for formation trajectory-tracking control of MWMRs with physical
constraints and collision/obstacle avoidance simultaneously.

5. Conclusions

In this paper, the collision-free trajectory tracking formation control problem for multi-
ple MWMRs under complexed obstacle environments via the DMPC scheme and real-time
disturbance compensation is studied. The formation model for MWMRs is developed
using a consensus strategy with the integrated kinematics and dynamics under the leader–
follower framework. The DMPC scheme for the MWMRs’ formation is constructed, in
which prediction information are shared among neighbors. Collision avoidance and obsta-
cle avoidance are guaranteed by adding the penalty into the optimal control cost function.
The constrained optimal control problems are solved online by the PSO algorithm. Then,
the double closed-loop disturbance compensation controller is introduced to achieve real-
time compensation for uncertainties and disturbances. Simulation results show that our
proposed method can remove the effects of external disturbances and model uncertainties
and achieve the formation trajectory-tracking with obstacle avoidance and collision avoid-
ance accurately. Comparative studies indicate that the designed PSO-DMPC controller
has better formation performance than the SQP-DMPC controller and the PID controller.
Our future work will focus on the cooperative formation reconfiguration, including split
and merge, under the unknown dynamic environment. In addition, the formation recur-
sive self-healing and cooperative intent recognition under time-varying communication
topology are also our following research interests.
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