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Abstract: Fault-tolerant control of a three-phase inverter can be achieved by performing a hard-
ware reconfiguration of the six-switch and three-phase (6S3P) topology to the four-switch and
three-phase (4S3P) topology after detection and localisation of the faulty phase. Together with hard-
ware reconfiguration, the SVPWM algorithm must be appropriately modified to handle the new
453P topology. The presented study focuses on diagnosing three-phase faults in two steps: fault
detection and localisation. Fault detection is needed to recognise the healthy or unhealthy state of
the inverter. The binary state recognition problem can be solved by preparing a feature vector that
is calculated from phase currents (i, i, and i) in the time and frequency domains. After the fault
diagnosis system recognises the unhealthy state, it investigates the signals to localise which phase of
the inverter is faulty. The multiclass classification was solved by a transformation of the three-phase
currents into a single RGB image and by training a convolutional neural network. The proposed
methodology for the diagnosis of three-phase inverters was tested based on a simulation model
representing a laboratory test bench. After the learning process, fault detection was possible based
on a 128-sample window (corresponding to a time of 0.64 ms) with an accuracy of 99 percent. In the
next step, the localisation of selected individual faults was performed on the basis of a 256-sample

ElTaedc:tfgsr window (corresponding to a time of 1.28 ms) with an accuracy of 100 percent.
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Actuators 2023, 12, 125. https://

doi.org/10.3390/act12030125 Households and industrial plants are equipped with many electric drives that have
limited lifetimes. The proper maintenance of electric drives with mechanical loads is es-
sential for reducing the amount of waste electrical and electronic equipment (WEEE) [1-6].

1. Introduction
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stiffness of the shaft, and changes in the moment of inertia [13-16]. Mechanical loading can
be characterized by one mechanical resonance in a two-mass mechanical system [17-21],

two or three mechanical resonances in a three- or four-mass system [22-25], or multiple me-
chanical resonances in a multi-mass system [13-15]. Mechanical resonance is characterized
by mechanical vibrations [26]. These problems can lead to inverter overloading and faults
distributed under the terms and 1N the three-phase inverter. According to [27-31], the inverter fault is mainly caused by an
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to a 4S3P (four switches and three phases) topology [32,33]. Therefore, in this research
stage, the authors focused on the feature extraction and classification of inverter faults
in the cloud. This approach can limit the system deployment time compared with hard
embedded programming.

2. Fault-Tolerant Control System

The considered fault-tolerant control system is a control system that can operate
under constrained conditions compared with a healthy three-phase inverter. After fault
detection and localisation of the faulty inverter phase, the hardware is reconfigured to
a 4S3P topology. The fault-tolerant control system consists of two hardware capacitors
connected to the PMSM (permanent magnet synchronous motor) phase instead of the faulty
inverter phase. Figure 1 shows a healthy 6S3P topology and the reconfiguration to 4S3P in
phase C of the PMSM after fault detection and localisation.

Figure 1. Inverter basic for the 653P topology (left); fault-tolerant reconfiguration of phase C in the
453P topology (right).

In a previous stage of investigation, the 6S3P and 4S3P topologies were successfully
tested on a laboratory bench (Figure 2) [32,33]. The laboratory rig was equipped with the
ALFINE-TIM ALS-G3-1369 controller board, which was based on using the Analog Devices
SHARC® ADSP-21369 digital signal processor (DSP), ALFINE-TIM three-phase inverter,
and LABINVERTER P3-5.0/550MFE. Further details of the laboratory setup, including the
PMSM parameters, have been published in [34].

=gy

-

Figure 2. Photography of the laboratory stand.

The reconfiguration between the 653P and 4S3P topology is accomplished by the
Ptaue switch (see Figure 3), which is controlled by the fault diagnosis module described
in the following sections. Furthermore, after hardware reconfiguration from 6S3P to
4S3P, the SVPWM (space vector pulse width modulation) switching method must be
modified for proper operation [32,33] in the new topology. Other parts of the control
system remain unchanged. However, the number of available voltage vectors is reduced.
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The parameters of the current controllers R(i;), R(i7), and the speed controller R(w) are
unchanged. Empirical tests conducted in a previous research phase confirm that only
a modification of the SVPWM is required when the topology is changed to 4S3P after
a single-phase fault.
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Figure 3. Block diagram of closed-loop vector control (top), the general structure of the laboratory
stand (bottom).

A simulation model of the controller and hardware was created based on the laboratory
setup. The inverter model and SVPWM were designed using the MathWorks Simscape
Electrical™ tool. The healthy 6S3P inverter was simulated with a reference speed 7,.¢ equal
to 1200 rpm. The simulation time was set to 2 s with a sampling time of 5 us. The velocity
and current controllers on the g and d axes operate correctly as shown in Figure 4. The fault
was simulated at a time equal to 1 s for each switch in the inverter. A total of six datasets
were recorded for the fault of the upper and lower switches in each of phases A, B, and
C. The data for the upper switches are shown in Figure 5. However, due to the 1 s time
scale, only the long-term response of the system speed is easily visible. Therefore, the time
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Figure 6. First 4000 samples of simulation after the fault of the upper switch at phase A, B, or C of
the 6S3P topology.

3. Fault Detection

A data-driven fault diagnosis system can be developed with fault detection and fault
localisation as shown in Figure 7. In this section, the focus is on fault detection, which
means that it is only important to have information about the health of the system in one
of two states: normal or abnormal. The normal state means that the system is working
properly and that there are no symptoms to be concerned about. The abnormal state means
that some symptoms of the system are outside of the range that is considered normal.
The designed system needs to recognize these two states. This problem can be solved by
performing a binary classification with the class labels of “normal” and “fault”. The first
stage of preparation for the binary classification is data collection for each class and features
extraction in the desired time, frequency, or time—frequency domain.

Sensors W Feature extraction
data Preprocessing time domain and
| Feature Fault Binary

selection M detection classification

data formatting g4 other domains (e.g.
and filtering frequency domain,
scale domain)

Fault Multiclass
localisation classification

Figure 7. General structure of a data-driven fault detection and localisation system.

The sensor presented in Figure 7 can be of any kind; it can be an additional sensor only
for fault diagnosis or a sensor that is already present in the system and being used by the
control algorithms. The electromechanical machine or power system can be investigated by
using many different sensors and signals: current [35,36] and voltage [37,38], torque [12,39],
angular velocity/position [40,41], linear three-axis acceleration/speed/position [42,43],
Doppler laser vibrometer [44], transmission coefficient and reflexion coefficient of an
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omnidirectional antenna [45], strain/tension [46—-49], power consumption [50-53], inter-
nal/external temperature at selected points [11,54] or surface temperature using a thermal
camera [55,56]; furthermore, depending on the frequency range, displacement [57], vibra-
tions [58-61], sound [62—64], sound from several microphones [65] or ultrasound [66,67],
vibro-acoustic [7], chemical analyses of lubrication [68,69], chemical analyses using spectral
imaging [70-73], camera imaging in the human colour spectrum [74-77], and converting
signals to virtual image [78-81] are also possible.

In the current research, data were collected from the currents in phases A, B, and C.
These data were divided into a time domain window of 128 samples (Figure 8). Six time
domain features were extracted for each current in the window: the standard deviation,
variance, median, minimum, maximum, and peak-to-peak. Three frequency-domain fea-
tures were also extracted: the maximum magnitude frequency component index, minimum
magnitude frequency component index, and peak-to-peak frequency magnitude. In total,
27 features were used to train the classification to detect the “normal” or “fault” class. A
single-switch fault was considered for each switch in the 653P topology. At the current stage
of research, 11934 observations were used in the training process and 1325 observations
were used in the test. The observation time window had 12 samples overlapping with the
previous time window. Training was performed in MathWorks Matlab R2022b using the
Statistics and Machine Learning Toolbox version 12.4. More than 16 classifiers with differ-
ent structures (i.e., linear discriminant; SVM—support vector machine; KNN—Xk-nearest
neighbours; narrow neural network; decision tree; bagged tree) were trained, with a test
accuracy of greater than 99% for the selected features (Figure 9).
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Figure 8. The fault of the upper switch in phase A of the 6S3P topology with a purple time window
(left) and 128 samples in the selected time domain window (right).
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Figure 9. Confusion matrix of a single trained classificator: validation data (left) and test data (right).



Actuators 2023, 12,125

7 of 14

4. Fault Localisation

Fault location provides more information about fault detection. Fault localisation
indicates which part of the system is faulty and the extent of the fault. Therefore, the
inverter fault diagnosis has been divided into separate tasks: (1) fast fault detection; and
(2) the inverter fault localisation phase. Investigating the inverter fault in the 653P topology
requires identifying the phase where the switch is broken in order to properly change the
structure to a 4S3P topology; this problem can be solved by multi-label classification using
the ‘A’, ‘B’, or ‘C’ class labels of the faulty phase.

At the current stage of the research, the time domain signal is transformed into an
image. The dataset prepared for each class was used to train a CNN (convolutional neural
network). The single RGB image consists of three channels: red, green, and blue. The data
collection was studied in time window equal to 256 samples, which results in an image
size of 16 x 16 pixels. In this approach, the time domain signal was converted into an
image with a size of 16 x 16 x 3 (Figure 10), where red, green, and blue colours represent
the current in phase A, current in phase B, and current in phase C, respectively. The time
domain data of the 256 samples of a single phase are transformed into a 16 x 16 matrix,
which is treated as an image. The image columns contain the consecutive samples of the
signal. Example images at the same observation time for each phase are shown in Figure 11.
There were 618 RGB images for each class, which provided a total of 1854 images. The
time window of a single observation had 64 samples overlapping with the previous time
window. All images were divided into training, validation, and test sets.

RGB of A, B, C phase
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2 0 b 2 g
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Red channel of A phase Green channel of B phase Blue channel of C phase
Figure 10. Transformation of the i,, i, and ic currents into an RGB image for the fault of an upper
switch in phase A of the 6S3P topology. The frame of the time window and its RGB image (top); each
channel of the image (bottom).
The fault of the up-  The fault of the up- The fault of the Fault of lower
per switch at the per switch at the lower switch at the ~ switch at the time
time window starts ~ time window starts  time window starts ~ window starts at
at 1.0077 s at 1.0653 s at 1.0077 s 1.0653 s4
Fault in
phase
A
phase B
Fault in
phase C

Figure 11. Example images in fault phases A, B, or C for the upper and lower switches of the
6S3P topology.
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The three-label classifier (“A’, ‘B’, and ‘C’) was designed as a convolutional neural
network (CNN). An essential part of the design process is the selection of a CNN struc-
ture capable of RGB image recognition. At the current stage of the research, the CNN
consists of seven layers (Figure 12 [left]): (1) an image input with a size of 16 x 16 x 3;
(2) a 2D convolution of 8 x 8 x 3 convolutions; (3) a batch normalization with 20 channels;
(4) ReLU; (5) three fully connected layers; (6) softmax; and (7) a classification output with
class ‘A’, ‘B’, and ‘C’. The CNN training was performed in MathWorks Matlab R2022b using
Deep Learning Toolbox version 14.5. The training result is shown in Figure 12 (bottom
right). The total number of trained parameters in the CNN is 8763. The test accuracy was
100% for the test dataset.

[ ~of] imageinput
imagelnputLayer

N conv
V| convolution2dl

0
batchnorm o
batchNormaliza “

relu
reluLayer

fc
fullyConnected

True Class
@

softmax
softmaxLayer

echcbonta A 5
Predicted Class
Figure 12. CNN structure (left), training process accuracy (top right) dark blue — training smoothed;
light blue — training; dotted — validation; and test confusion matrix of the learnt CNN (right bottom).

5. Discussion

Fault diagnosis firstly requires the detection of a fault; secondly, it requires the location
of the fault. The three-phase inverter studied in the 6S3P topology can have one switch
(upper or lower) be unhealthy in one phase. An unhealthy condition means that the circuit
is opened by a non-working transistor, but the diode is conducting normally. Such a
situation is typical for transistor gate driver failures. In the methodology proposed in the
first stage, the fault of the inverter is detected by a vector of features that are calculated for
each phase current. The features are in the time and frequency domain and are calculated
from samples that are collected in a short time window. After fault detection, more samples
in a wider time window are examined. The phase currents i,, i, and i. collected in the time
window are transformed into a matrix with a size of 16 x 16 x 3, which corresponds to a
16 x 16 RGB image. The fault simulation allows for the preparation of the data acquisition.
In total, six defects were investigated. For each transistor in phase, a fault was identified
and labelled in the three classes corresponding to phases ‘A’, ‘B’, and ‘C’. This approach
allowed us to transform the collected currents into RGB images that were labelled by phase.
The RGB image recognition was designed by selecting the CNN structure and performing
the training process. The result of the localisation test (multi-class RGB image classification)
with 100% accuracy confirms the appropriateness of this approach.

The approach of the RGB image localisation was compared with the build of the
reference localisation classifiers based on the selected 27 features used for fault detection.
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For all reference localisation classifiers, the time window size was equal to the 256 samples.
Therefore, all features were recalculated in each window with 25 overlap samples. Each
of the reference classifiers had a worse accuracy (lower than the 99.4%) than proposed
approach. The confusion matrix and the accuracy percentage of the reference classifiers are
presented in Table 1.

Table 1. Reference localisation classifiers.

e Validation 1y
Classifier Type Confusion Matrix Validation Accuracy
g
Fine tree § 98.8%
Medium tree é 95.4%
, H
Naive Bayes 2 87.1%
SVM (support vector ° o
. 2 82.8%
machine) =
Predicted Class
8
KNN (k-nearest neighbours) é 92%
5
Narrow neural network E 99.4%

Predicted Class
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The detection of the inter-turn short circuit for the PMSM phase was investigated
in [82], where three different CNN structures were compared. However, the diagnosis
system operated at three full periods of the phase current signal (500 samples), and the fault
detection was performed within a time of 0.06 s. At a previous stage of the investigation,
the fault detection of the inter-turn short circuit was obtained based on 200 samples, which
was equivalent to 0.02 s of measurement [83]. Instead of using a CNN model, fuzzy logic
can also be applied in PMSM fault diagnosis [84]; this approach requires an appropriate
formulation of fuzzy rules by a specialist in the field of electrical drives. The single-power
switch, open-circuit fault was detected 0.08 s after the fault occurrence. In [12], a CNN
diagnosed three motor conditions (health motor, demagnetised motor, and motor with
bearing fault) based on features extracted in the frequency domain. The drawback of
conducting a conversion from time domain data to the frequency domain is that a long
time window (large number of samples) is needed to achieve good resolution in the
frequency domain, e.g., a time window of 1 s will lead to 1 Hz resolution. Therefore, a long
time window is not appropriate for quickly detecting and localising a fault occurring in a
65S3P inverter. The diagnosis system with demagnetisation and semi-demagnetisation faults
can use other domain characteristics by applying a DWT (discrete wavelet transform) [85],
which requires the selection of the level of DWT decomposition and the choice of mother
wavelet shape (one low-pass filter for approximation and one high-pass filter for detail).
The suggested approach is to calculate the fault detection of open switch use features in the
time and frequency domain in a short time window for fast fault disclosure. The advised
data-driven method for fault localisation uses raw data and deep learning without the
need for extraction features from the frequency or scale domain. The proposed approach
operates around one period of the phase currents with faster fault detection based on a
128-sample window (corresponding to a time of 0.64 ms) and faster localisation of faulty
inverter phase based on a 256-sample window (corresponding to a time of 1.28 ms).

6. Conclusions

Research was carried out at TRL (technology readiness level) 1 to validate the proof
of concept. Further research will be performed to increase the TRL to higher levels to
validate the rotary electric machine (electric drive) with a fault diagnosis system in the
laboratory environment. At TRL 1, a single fault of an energo-electronic switch in the
six-switch and three-phase (6S3P) topology was considered. This leads to considering one
of six possible faults; however, faults of two switches in the same phase were tested. The
453P topology with modified SVPWM can operate properly with only one faulty phase,
but not more. Multiple faults in different 6S3P phases are less probable. However, the
authors are currently developing multiple fault diagnoses for all possible combinations
(63 fault classes) of switch faults in a three-phase inverter. The preliminary research of
those 63 classes provides less satisfactory results and needs more effort invested into
them in future research. The authors at the current research stage considered an abrupt
fault without an incipient or intermittent part. Fault detection should return an abnormal
state; however, fault localisation will need a further extension for new types of faults;
that extension could require a different approach or a retraining of a convolutional neural
network with an extended phase current RGB images dataset. Another aspect of possible
future research is an investigation of the power distribution system, with the detection
and localisation of one of many SVPWM inverter connected in power grid. The issue of a
short circuit or break circuit can be found in a hybrid circuit system [86] or vehicles with an
internal power grid system, e.g., a car, aircraft [87], or ship.

In the event of a transistor fault in a three-phase inverter with 6S3P topology, it is
possible to operate in a fault-tolerant manner after hardware reconfiguration to 4S3P. This
approach can be used when one phase fails. The presented research with the proposed
methodology in two steps allows for the proper fault detection and precise localisation
of the faulty phase. Fault detection is the first step and is a trigger for the execution of
the fault localisation part of the system. After fault detection, the control system can be
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shut down or the reference speed can be slightly reduced to slow down the system. In
parallel, the localisation module can detect which phase of the inverter is faulty in order to
switch one of the PMSM phases between capacitors. After hardware reconfiguration and
modification of the SVPWM algorithm, the system can still operate normally under the
constrained current conditions compared with a healthy state. The proposed multi-class
classification of phase currents as RGB images provides satisfactory results at the current
research stage.

Author Contributions: Feature and RGB image extraction, D.L.; fault detection and localisation
classifier design, D.L.; two-stage fault diagnosis approach, D.L. and S.B.; faults selection of three-
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read and agreed to the published version of the manuscript.
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