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Abstract: Surface-bound 3D micro-magnets are fabricated from photoreactive copolymers filled
with magnetic nanoparticles by maskless 3D writing. The structures are generated by 2-photon
crosslinking (2PC), which allows direct writing into solid films of composites consisting of magnetic
particles and a photoreactive elastomer precursor. With this strategy, it is possible to directly write
complex, surface-bound magnetic actuator structures, which generates new opportunities in the
fields of microfluidics and bioanalytical systems. Compared to the common 2-photon polymerization,
in which the writing process takes place in a liquid resin, the direct writing based on the 2PC method
takes place in a solid polymer film (i.e., in the glassy state).

Keywords: micro-actuators; two-photon lithography; two-photon crosslinking; photoreactive polymers;
micro-magnets

1. Introduction

Micro-actuators are very interesting systems both from an academic as well as from an
application-oriented point of view as they allow the generation of large fields of actuators
which can work in concert. They can be used to generate coordinated and cooperative
movements and, thus, allow the development of novel devices and systems [1,2]. Such
systems are particularly attractive for microfluidic pumping and mixing and even more
so for complex active stimulation of biological systems, including those that involve cell
stimulation [3]. A strong inspiration for the design of micro-actuators has frequently been
ciliated organisms in nature, which use the movement of tiny hairs to move liquid. Many
different methods have been developed to mimic such ciliated organisms using micro-
actuators and actuator fields, frequently called artificial cilia [4–7]. These synthetically
generated actuators react to different external stimuli, e.g., to electrostatic [8], light [9,10],
piezo [11] and magnetic actuation [6,12–15]. Magnetic actuation is particularly suitable
because the process can be well controlled and the weak interaction of magnetic fields with
biological materials usually causing only minor perturbations [16,17]. Magnetic micro-
actuators generally consist of magnetic particles which are incorporated in elastomers. In
most cases, mask- or mold-based processes are employed to form the magnetic microstruc-
tures [14,18,19]. Published work on artificial cilia shows that high pumping efficiencies
and controlled particle transport can be achieved by actuation with an external magnetic
field [20,21]. In addition to mold-based processes, a mask-based two-color lithography
process based on C,H insertion crosslinking has recently been described for the generation
of magnetic microflaps, which have been incorporated into microfluidic chips. These
actuators achieved average flow velocities of hundreds of µm/s, which shows that effective
pumping rates can also be achieved with such a materials system [14,22,23].

Micro-molding [24] and mask-based techniques are standard technologies and allow
the generation of large actuator fields. However, they are limited when it comes to the
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generation of more complex geometries that vary locally, which is required in more de-
manding applications, such as when cooperative action is needed. Molding processes, for
example, cannot produce undercut or other complex structures, such as spherical objects,
where demolding is difficult or even impossible. Further, in such processes, it is difficult
to implement local variations in the chemical composition or mechanical properties of the
actuators, e.g., produce structures with variations in stiffness. Additionally, for all design
changes of the structure, a new mold needs to be generated which makes complex studies
with frequent structural redesign tedious. In contrast to this, a direct writing process allows
the flexible selection of 3D designs for actuators, giving full control in the manufacturing of
complex and eventually cooperative actuator systems.

A direct writing process that has received much attention in recent years is 2-photon
lithography [25–27], in which high-resolution microstructures are usually written by
2-photon polymerization using a femtosecond laser [28–32]. In such processes, the 2-photon
activation is used to locally initiate a polymerization reaction leading to the formation of
polymers or a polymer network in the illuminated volume element (voxel) [33]. A variety
of freely swimming micro-actuators generated using 2-photon polymerization has been
described. Such systems are of great interest, especially in the field of medical micro-
robots [34–36]. Recent publications have also considered the writing of surface-attached
magnetic micro-springs using 2-photon polymerization, which could be moved with the
help of a magnetic field. In this process, 2.1 wt.% Fe3O4 nanoparticles were introduced in a
monomer resin [37,38].

Recently, a new technique in 2-photon lithography called 2-photon crosslinking has
been introduced, which represents an attractive alternative to the commonly used 2-photon
polymerization process [39]. In this method, copolymers are used which are equipped
with a photochemically reactive group and can be simultaneously crosslinked and surface-
bonded by 2-photon excitation in the glassy state using C,H insertion chemistry [39].
Compared to 2-photon polymerization, several layers of different polymers can be applied
on top of each other, resulting in a multifunctional material [40]. This technique uses no
monomeric compounds, which is very attractive from a safety point of view for working
in an optics laboratory. Additionally, as the polymer can be thoroughly purified before
use, the final structures are monomer-free, which is very important for any biological or
biomedical application. Quality control with respect to the contents of residual monomers
in additive manufacturing processes based on polymerization reactions is difficult to ensure
as only single objects are generated. This is potentially a serious problem as the monomer
content depends very strongly on the details of the conditions under which the writing
process is performed [39,41].

Following up on this concept, we present here a novel method for the direct writing
of micro-magnets using 2-photon crosslinking (2PC), based on a photoactive elastomeric
copolymer with magnetically embedded nanoparticles. A schematic illustration of this
process is shown in Figure 1b,c. As described, the process is based on 2-photon absorption
in a small volume around the focal point (voxel), which eventually leads to formation of a
polymer network via a C,H insertion crosslinking (CHic) reaction. The very same reaction
leads to a surface-attached layer if the surface of the substrate is first decorated with an
alkyl silane layer [40–43]. The non-crosslinked polymer is easily removed using a suitable
solvent, and the written microstructures remain on the surface as they are covalently linked
to the substrate. We will also show how the resulting layers can be actuated using a rotating
magnet which is operated below the substrate and discuss the resulting deflections of the
micro-actuators based on simple Euler–Bernoulli beam theory [44,45].
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Figure 1. (a) Molecular structures of the copolymer P(nBA-AAHAQ), and the triethoxy anthraqui-
none silane (TEA-silane) used for a covalent attachment to the glass slide. (b) Schematic represen-
tation of the 2-photon crosslinking process. The femtosecond laser triggers a C,H insertion cross-
linking reaction within a small volume (voxel) in the solid, nanoparticle containing, polymer layer. 
The formation of a polymer network and the incorporation of the nanoparticles result in the writing 
of three-dimensional structures from bottom to top. (c) By developing in a suitable solvent (e.g., 
toluene/butanol), the non-crosslinked polymer chains are washed out and the micro-actuators are 
obtained. 

2. Materials and Methods 
Materials: 2-Amino-3-hydroxyanthraquinone was purchased from TCI, Germany. 

All other chemicals were purchased from Sigma Aldrich, Germany. Dimethyl acrylamide 
and n-butylacrylate (nBA) were purified by filtration through basic aluminum oxide and 
distillation. 2,2′-Azobis(2-methylpropionitrile) (V70; Fujifilm Wako Chemicals Europe, 
Neuss, Germany) was recrystallized from ethanol. All other chemicals and solvents were 
used as received. 

Photoreactive monomer: 2-Amino-3-hydroxyanthraquinone (2.39 g, 10.0 mmol, 1.0 
eq) was dissolved in an inert gas atmosphere in 1,4-dioxane (100 mL). A solution of acrylic 
acid chloride (0.68 mL, 0.72 g, 8.0 mmol, 0.8 eq) in dioxane (20 mL) was added while stir-
ring at 0 °C. After complete addition, the reaction mixture was heated for 6 h to reflux. 
Afterwards the reaction solution was filtered and the filter cake was taken up in ethanol 
(3 × 150 mL) and heated to reflux. The solid product was filtered off and dried under 
vacuum, resulting in a yellow product with a yield of 84% (1.97 g, 6.7 mmol). 

1H-NMR (250 MHz, DMSO-d6, δ): 5.80 (dd, J = 2 Hz, 10 Hz, 1H), 6.35 (dd, J = 2 Hz, 17 
Hz, 1H), 6.87 (dd, J = 10 Hz, 17 Hz, 1H), 7.63 (s, 1H, Ar-H), 7.82–7.94 (m, 2H, Ar-H), 8.10–
8.22 (m, 2H, Ar-H), 9.05 (s, 1H, Ar-H), 9.81 (s, 1H, OH), 11.71 (s, 1H, NH). 

13C-NMR (250 MHz, DMSO-d6, δ): 112.51 (C3), 119.90 (C6), 126.71 (C5), 127.34 (C11), 
127.49 (C14), 128.84 (C17), 130.77 (C13), 132.51 (C12), 133.09 (C1), 133.96 (C16), 134.15 (C8), 
134.88 (C9), 135.17 (C2), 153.38 (C4), 164.92 (C15), 182.36 (C7), 182.75 C10). 
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zation with 92.5 mol% nBA and 7.5 mol% 2-amino-3-hydroxyanthraquinone (AAHAQ) at 

Figure 1. (a) Molecular structures of the copolymer P(nBA-AAHAQ), and the triethoxy anthraquinone
silane (TEA-silane) used for a covalent attachment to the glass slide. (b) Schematic representation of
the 2-photon crosslinking process. The femtosecond laser triggers a C,H insertion crosslinking reaction
within a small volume (voxel) in the solid, nanoparticle containing, polymer layer. The formation of a
polymer network and the incorporation of the nanoparticles result in the writing of three-dimensional
structures from bottom to top. (c) By developing in a suitable solvent (e.g., toluene/butanol), the
non-crosslinked polymer chains are washed out and the micro-actuators are obtained.

2. Materials and Methods

Materials: 2-Amino-3-hydroxyanthraquinone was purchased from TCI, Germany. All
other chemicals were purchased from Sigma Aldrich, Germany. Dimethyl acrylamide
and n-butylacrylate (nBA) were purified by filtration through basic aluminum oxide and
distillation. 2,2′-Azobis(2-methylpropionitrile) (V70; Fujifilm Wako Chemicals Europe,
Neuss, Germany) was recrystallized from ethanol. All other chemicals and solvents were
used as received.

Photoreactive monomer: 2-Amino-3-hydroxyanthraquinone (2.39 g, 10.0 mmol, 1.0 eq)
was dissolved in an inert gas atmosphere in 1,4-dioxane (100 mL). A solution of acrylic acid
chloride (0.68 mL, 0.72 g, 8.0 mmol, 0.8 eq) in dioxane (20 mL) was added while stirring at
0 ◦C. After complete addition, the reaction mixture was heated for 6 h to reflux. Afterwards
the reaction solution was filtered and the filter cake was taken up in ethanol (3 × 150 mL)
and heated to reflux. The solid product was filtered off and dried under vacuum, resulting
in a yellow product with a yield of 84% (1.97 g, 6.7 mmol).

1H-NMR (250 MHz, DMSO-d6, δ): 5.80 (dd, J = 2 Hz, 10 Hz, 1H), 6.35 (dd, J = 2 Hz,
17 Hz, 1H), 6.87 (dd, J = 10 Hz, 17 Hz, 1H), 7.63 (s, 1H, Ar-H), 7.82–7.94 (m, 2H, Ar-H),
8.10–8.22 (m, 2H, Ar-H), 9.05 (s, 1H, Ar-H), 9.81 (s, 1H, OH), 11.71 (s, 1H, NH).

13C-NMR (250 MHz, DMSO-d6, δ): 112.51 (C3), 119.90 (C6), 126.71 (C5), 127.34 (C11),
127.49 (C14), 128.84 (C17), 130.77 (C13), 132.51 (C12), 133.09 (C1), 133.96 (C16), 134.15 (C8),
134.88 (C9), 135.17 (C2), 153.38 (C4), 164.92 (C15), 182.36 (C7), 182.75 C10).

Photocurable copolymer: The copolymer was synthesized via free radical polymer-
ization with 92.5 mol% nBA and 7.5 mol% 2-amino-3-hydroxyanthraquinone (AAHAQ)
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at 30 ◦C with the V70 initiator. Reaction time: 24 h, yield 70%. The AAHAQ content was
determined to be 7.4% according to NMR spectroscopy based on the integration of the sig-
nals due to the aromatic protons (7.6–7.9 ppm). According to the GPC data, the molecular
masses of the obtained copolymers were Mn = 93.000 g/mol and MW = 241.000 g/mol,
so that the polymers carried, on average, approximately 70 AAHAQ repeat units per
polymer chain.

Magnetic resin: The photo-cross-linkable magnetic composite was obtained by mixing
25 µL of commercial Fe3O4 superparamagnetic ferrofluid (EMG 905 containing oleic acid
as stabilizer, Ferrotec, NH, Bedford, MA, USA) in a solution of 100 mg photocurable
copolymer P(nBA-7.5%AAHAQ) in 0.975 mL toluene to obtain a homogenous dispersion.

Fabrication process of the micro-actuators: For the fabrication of the magnetic micro-
actuators, glass slides (22 × 22 mm, 170 µm thick) were first silanized with a 50 mM
triethoxy anthraquinone silane ((TEA)-silane) in toluene. The synthesis of the TEA-silane
was carried out according to [39]. The solution (100 µL) was applied to a glass slide and
spin-coated at 1000 rpm for 30 s. For the surface attachment, it was heated to 120 ◦C for
30 min and the non-attached silane was washed out with toluene. To obtain a polymer
nanoparticle layer of about 80–100 µm, 50–100 µL of the dispersion described above was
drop-cast onto the treated glass slide. The toluene was slowly evaporated over 2 h at room
temperature to avoid bubble formation. As soon as the layer had solidified, the remaining
toluene could be removed by heating to 100 ◦C for 1 h. A 100 µm thick glassy polymer
composite layer with approx. 10 wt.% nanoparticles was obtained. After completion of the
2-PC process, the substrates were placed in n-butanol and developed for at least 2 h, thus
washing out the unreacted polymer.

Design of the micro-actuators: The beam-like micro-actuators were designed to have
a height of 60–75 µm and a length of 20 µm. The thickness varied from 3 µm to 8 µm
depending on the structure. The distance between two adjacent bars was 80 µm.

Direct writing of the magnetic micro-actuators: All structures were designed using
Solidworks or Think3D computer programs to generate a stereolithography file (stl.). The
2-photon lithographs were performed using the Nanoone setup (UpNano GmbH, Vienna,
Austria). It was equipped with a Ti-sapphire laser having a wavelength of 780 nm and a
laser power of 500 mW. This printer uses a galvanometer scanning method. The generated
stl. files were loaded into the Think3D version 1.7.3 software (Nanoone, UpNano GmbH,
Vienna, Austria). For writing, a 20× magnification lens with 0.7 NA was used. Printing
was performed in bottom-up mode and the lens was immersed into water. Slicing was set
to 0.5 µm and hatching to 0.15 µm; a laser power of 15 mw and a scan speed of 100 mm/s
were used.

Magnetic actuation and optical microscopy: A rotating permanent magnet was used
to actuate the structures. This magnet had a field strength of 1.4 T (N42). The magnet was
rotated by a motor at 30 rpm installed 1.5 cm below the stage of an optical microscope.
With the help of a magnetometer, a maximum field strength of 130 mT was measured at the
sample position. In this way, the structures could be made to move by the gradient of the
magnetic field strength which ranged from 0 to 130 mT.

SEM: To prevent collapse, the structures kept in ethanol were dried using a critical
point dryer (Leica EM CPD300, Wetzlar, Germany). The parameters chosen for the CPD
were a cooling temperature of 10 ◦C, CO2 in medium velocity, 16 exchange cycles, a critical
temperature of 38 ◦C, and gas out medium velocity. Subsequently, scanning electron
micrographs (5 kV, 0.1 nA) could be obtained using an FEI Scios 2 HiVac (Thermo Fisher,
Waltham, MA, USA). The samples were gold-sputtered with a Cressington Sputter Coater
108auto. The images were taken at a 45◦ angle.

3. Results and Discussion

The material systems for the generation of the micro magnetic structures by 2-photon
crosslinking processes consisted of superparamagnetic particles and a copolymer, which
was composed of a matrix component and a photoreactive unit for crosslinking. As pho-
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toreactive group 2-amino-3-hydroxyanthraquinone (AAHAQ) developed by Schwärzle
et al. was chosen, which exhibits pronounced 2-photon absorption due to its designed elec-
tronic structure (i.e., conjugated π-system, planarity, donor and acceptor groups) [39].
Briefly, the photoreactive group AAHAQ was obtained in a one-step synthesis from
2-amino-3-hydroxyanthraquinone and acrylic acid chloride. The desired P(nBA-AAHAQ)
copolymer (see Figure 1a) was prepared by free radical polymerization of N-buylacrylate
(nBA) and AAHAQ at 30 ◦C using a low-temperature initiator (2,2′-azobis(4-methoxy-2,4-
dimethylvaleronitrile (V70).

For the incorporation of the nanoparticles, particular attention must be paid to the com-
patibility of the particles and the copolymer. N-butylacrylate is a suitable soft component
and an attractive component for biological applications, especially cell experiments [46].
Due to the hydrophobic nature of the nBA polymer, hydrophobically coated (i.e., oleic acid
stabilized) iron nanoparticles were chosen, to allow sufficient miscibility. The copolymer
and the nanoparticles were dispersed in toluene to form a homogeneous dispersion, which
was stable between 0–20 wt.% content of nanoparticles. In order to obtain comparable
results, in the following, we focus on dispersions with 10 wt.% nanoparticles.

For attaching the forming structures to the surfaces, a triethoxy anthraquinone silane
(TEA-silane, see Figure 1a) was prepared and a self-assembled monolayer was formed on
the glass surface. For the writing process, the dispersion was drop-cast onto the substrate
to form a thin film of about 100 µm. Upon 2-photon illumination, the chromophore in
the copolymer was excited into a triplet state and the polymer crosslinked through C,H
insertion reactions (CHic). At the same time, the crosslinker units in those voxels in direct
contact with the silane monolayer were also excited and attached to the forming network, so
that the entire forming structure became covalently bound to the glass substrate. Moreover,
the crosslinker molecules could probably also insert into the C,H bonds of the oleic acid
molecules on the surface of the Fe3O4-nanoparticles, thus firmly binding the nanoparticles
into the network. After writing the latent 3D image into the film, it was developed using
n-butanol, a theta-solvent for the polymer. If a good solvent, such as toluene, was chosen
instead, the structures formed became too strongly swollen, so that, in some cases, the
swelling pressure became so great that they were torn off from the surface and the yield
of perfectly formed structures was lower than that in the case where a solvent for the
polymer was used as the developer, which was still capable of dissolving the polymer,
but was of lower solvent quality. The micro-actuators were then transferred to ethanol in
which the actuation took place. To dry the structures, i.e., for SEM imaging, in the case
of high-aspect-ratio structures, critical point drying with CO2 was employed. Since no
meniscus formed during the drying process, a collapse of the structures was completely
prevented, and large fields of perfectly shaped actuators were obtained.

To characterize the movement of micro-actuators written with the 2PC process, simple
beam structures were investigated. A 20×water immersion objective with 0.7 NA was used
for writing the micro-actuators. The writing parameters chosen for this material were a
laser power of 15 mW, a writing speed of 100 mm/s, a hatching distance of 0.15 µm and a
slicing distance of 0.5 µm. These parameters were used for all experiments described in this
paper. Figure 2a shows a schematic representation of the deflection of the micro-actuators.
A permanent magnet (N42) was rotated with a speed of 30 rpm under the micro-actuators,
which responded to the gradient of the field lines. The magnetic flux density B in the y- and
z-directions at the actuator position as a function of the rotation angle is shown in Figure 2b.
The micro-actuators experienced a maximum magnetic flux density of 130 mT, which led to
the desired deflection of the beams. Figure 2d shows the resulting deflection of the beams
under investigation. The actuators not deflected are shown in the upper part of the figure,
and the maximum deflected actuators are shown in the lower part of the figure. The beams
shown here were printed with a width of 20 µm, a thickness of 3 µm and a height of 70 µm.
In ethanol, the micro-actuators swelled by a factor of 1.2 but remained firmly attached to
the substrate as they were covalently bound there. The actuator fields were practically free
of defects, illustrating the high reproducibility of this manufacturing technique. Figure 2c
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shows scanning electron microscope images that demonstrate the high resolution of the beam
structures. As the specimens dried, they de-swelled, causing a slight decrease in volume. The
drying process was also the reason for the slight rounding of the structures at the edges.
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Figure 2. (a) Schematic representation of the deflection of beam structures by a rotating permanent
magnet. (b) Graphical representation of the magnetic flux density B as a function of the rotation angle
of the permanent magnet (N42). The permanent magnet was placed at a distance of 1.5 cm between
the center of the magnet and the sample position. (c) Scanning electron microscopy images of the
beam structures after critical point drying. (d) The corresponding light microscopic images of the
written beam structures in the undeflected (top) and maximally deflected states (bottom). In the field
shown, 49 structures (one printing field) were written in 6 min.

2PC allows for a rather simple variation of the actuator dimensions or aspect ratios. We
have investigated the latter and compared our results to simple theoretical predictions using
the Euler–Bernoulli beam theory [45]. The written beams have one end fixed to the surface
and one free end. By neglecting the torsional motions, a simple cantilever model can be used.
Since the nanoparticles are homogeneously distributed in the beam, a uniformly distributed
volume load can be assumed. For simplification, this volume load is projected onto a line
load q, which is shown schematically in Figure 3a. Thus, the model used now corresponds
to a cantilever with a uniformly distributed load. The aim is to determine the maximum
deflection at the free end of the beam as a function of the beam structure, i.e., the beam height.
An expression for the maximum deflection of the beam can be obtained by integrating twice
the ordinary differential equation of the deflection curve. Here, it is assumed that the system
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is in the linear elastic range (Hooke’s law) and the equation is therefore only valid for small
deflections. For the maximum deflection δ of the beam the following formula is obtained:

δ =
q·h4

8
·E·I

Thus, the maximum deflection of a beam depends on the fourth power of the height of
the beam. The dependence of the deflection on the Young’s modulus E reflects the material
properties. The area moment of inertia I involves the structural properties of the beams
and can be described according to:

I =
b·a3

12
In this expression, the moment of inertia of the area is linearly related to the width

b and depends on the cube of the thickness a of the beam. However, changing the width
or thickness would also increase the load because the nanoparticles are homogeneously
distributed throughout the volume. Since the equation uses the uniformly distributed line
load, increasing the thickness or width will not increase the load in the equation. Therefore,
in order to obtain the proper dependency of these parameters on deflection, the increase
in load due to a change in width or thickness must be projected onto the linear load, as
shown in Figure 3b,c. As a result, the deflection δ is independent of the width and inversely
proportional to the square of the thickness.
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Figure 3. (a) Schematic representation of a cantilever beam with a uniformly distributed load and the
resulting deflection. The position of the maximum deflection is shown by the green line. Schematic
representation and light microscope images of beams which were (b) varied in height, increasing the
height from 60 to 75 µm in 5 µm steps, and (c) varied in thickness, increasing the thickness from 5 to
8 µm in 1 µm steps. The not-deflected structures are shown on the left and the deflected structures on
the right. (d) Zoomed-in image showing the deflection of a beam with a height of 65 µm.
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To verify the results obtained from beam theory, the deflections were determined
using light microscopy images (Figure 3b,c). For better visualisation of the actuation,
Figure 3c shows a zoomed-in image of the deflection of a beam with a height of 65 µm;
in the supporting information videos of the actuation process are shown in Figure 3b,c.
(Movies S1 and S2). The obtained deflections were plotted against the respective height
h or thickness a. These were then fitted as functions of h and a. Figure 4 shows the fit
curves obtained. A good agreement between the measured deflections and the calculated
dependencies (solid lines) can be seen. Even for larger deflections in the range of 10 µm
(>10% of the height of the structure), the measured deflection agreed well with theory,
demonstrating that the simple beam theory is suitable to describe the deflection behavior.
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4. Conclusions

Two-photon crosslinking of a composite consisting of a precursor of an elastic polymer
and superparamagnetic particles allows direct writing of flexible 3D micro-magnets of
almost any three-dimensional shape with high resolution. A unique feature of this method
is that the magnetic micro-actuators are not printed from a liquid monomer containing
solution, but from a polymer in the glassy state. This allows the writing of complex
systems and large arrays of micro magnets in a very simple way in one step with high yield.
Additionally, simple beam theory can be used to predict the deflection behavior of such
architectures as a function of actuator dimensions and mechanical properties.

We believe that these findings pave the way for writing of cooperative actuator fields,
which allow, among other things, controlled pushing of particles by combinations of
movable and non-movable actuators, as well as the generation of metachronal waves and
multicomponent micro-actuators.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/act12030124/s1, Movie S1: Support_Figure3_1.gif, Movie S2:
Support_Figure3_2.gif.
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